You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

343 lines
12 KiB
C

//============================================================================
// QP/C Real-Time Event Framework (RTEF)
//
// Copyright (C) 2005 Quantum Leaps, LLC. All rights reserved.
//
// Q u a n t u m L e a P s
// ------------------------
// Modern Embedded Software
//
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-QL-commercial
//
// This software is dual-licensed under the terms of the open-source GNU
// General Public License (GPL) or under the terms of one of the closed-
// source Quantum Leaps commercial licenses.
//
// Redistributions in source code must retain this top-level comment block.
// Plagiarizing this software to sidestep the license obligations is illegal.
//
// NOTE:
// The GPL does NOT permit the incorporation of this code into proprietary
// programs. Please contact Quantum Leaps for commercial licensing options,
// which expressly supersede the GPL and are designed explicitly for
// closed-source distribution.
//
// Quantum Leaps contact information:
// <www.state-machine.com/licensing>
// <info@state-machine.com>
//============================================================================
#define QP_IMPL // this is QP implementation
#include "qp_port.h" // QP port
#include "qp_pkg.h" // QP package-scope interface
#include "qsafe.h" // QP Functional Safety (FuSa) Subsystem
#ifdef Q_SPY // QS software tracing enabled?
#include "qs_port.h" // QS port
#include "qs_pkg.h" // QS package-scope internal interface
#else
#include "qs_dummy.h" // disable the QS software tracing
#endif // Q_SPY
Q_DEFINE_THIS_MODULE("qf_port")
//............................................................................
void QF_init(void) {
QF_bzero_(&QF_priv_, sizeof(QF_priv_));
QF_bzero_(&QActive_registry_[0], sizeof(QActive_registry_));
QTimeEvt_init(); // initialize QTimeEvts
}
//............................................................................
int_t QF_run(void) {
QF_onStartup(); // QF callback to configure and start interrupts
// produce the QS_QF_RUN trace record
QS_CRIT_STAT
QS_CRIT_ENTRY();
QS_BEGIN_PRE(QS_QF_RUN, 0U)
QS_END_PRE()
QS_CRIT_EXIT();
return 0; // return success
}
//............................................................................
void QF_stop(void) {
QF_onCleanup(); // cleanup callback
}
//............................................................................
static void thread_function(ULONG thread_input) { // ThreadX signature
QActive *act = (QActive *)thread_input;
// event-loop
for (;;) { // for-ever
QEvt const *e = QActive_get_(act);
QASM_DISPATCH(&act->super, e, act->prio);
QF_gc(e); // check if the event is garbage, and collect it if so
}
}
//............................................................................
void QActive_start(QActive * const me,
QPrioSpec const prioSpec,
QEvtPtr * const qSto, uint_fast16_t const qLen,
void * const stkSto, uint_fast16_t const stkSize,
void const * const par)
{
me->prio = (uint8_t)(prioSpec & 0xFFU); // QF-priority
me->pthre = (uint8_t)(prioSpec >> 8U); // QF preemption-threshold
QActive_register_(me); // make QF aware of this AO
// create the ThreadX message queue for the AO
UINT tx_err = tx_queue_create(&me->eQueue,
me->thread.tx_thread_name,
TX_1_ULONG,
(VOID *)qSto,
(ULONG)(qLen * sizeof(QEvtPtr)));
QF_CRIT_STAT
QF_CRIT_ENTRY();
Q_ASSERT_INCRIT(110, tx_err == TX_SUCCESS);
QF_CRIT_EXIT();
// top-most initial tran. (virtual call)
QASM_INIT(&me->super, par, me->prio);
QS_FLUSH(); // flush the trace buffer to the host
UINT tx_prio = QF_TO_TX_PRIO_MAP(me->prio);
UINT tx_pt = QF_TO_TX_PRIO_MAP(me->pthre);
tx_err = tx_thread_create(
&me->thread, // ThreadX thread control block
me->thread.tx_thread_name, // unique thread name
&thread_function, // thread function
(ULONG)me, // thread parameter
stkSto, // stack start
stkSize, // stack size in bytes
tx_prio, // ThreadX priority
tx_pt, // ThreadX preempt-threshold, see NOTE1
TX_NO_TIME_SLICE,
TX_AUTO_START);
QF_CRIT_ENTRY();
Q_ASSERT_INCRIT(120, tx_err == TX_SUCCESS);
QF_CRIT_EXIT();
}
//............................................................................
void QActive_setAttr(QActive *const me, uint32_t attr1, void const *attr2) {
// this function must be called before QActive_start(),
// which implies that me->thread.tx_thread_name must not be used yet;
QF_CRIT_STAT
QF_CRIT_ENTRY();
Q_REQUIRE_INCRIT(150, me->thread.tx_thread_name == (char *)0);
switch (attr1) {
case THREAD_NAME_ATTR:
// temporarily store the name, cast 'const' away
me->thread.tx_thread_name = (char *)attr2;
break;
// ...
default:
break;
}
QF_CRIT_EXIT();
}
//............................................................................
bool QActive_post_(QActive * const me, QEvt const * const e,
uint_fast16_t const margin, void const * const sender)
{
#ifndef Q_SPY
Q_UNUSED_PAR(sender);
#endif
QF_CRIT_STAT
QF_CRIT_ENTRY();
Q_REQUIRE_INCRIT(200, e != (QEvt *)0);
uint_fast16_t nFree = (uint_fast16_t)me->eQueue.tx_queue_available_storage;
bool status;
if (margin == QF_NO_MARGIN) {
if (nFree > 0U) {
status = true; // can post
}
else {
status = false; // cannot post
Q_ERROR_INCRIT(210); // must be able to post the event
}
}
else if (nFree > (QEQueueCtr)margin) {
status = true; // can post
}
else {
status = false; // cannot post
}
if (status) { // can post the event?
QS_BEGIN_PRE(QS_QF_ACTIVE_POST, me->prio)
QS_TIME_PRE(); // timestamp
QS_OBJ_PRE(sender); // the sender object
QS_SIG_PRE(e->sig); // the signal of the event
QS_OBJ_PRE(me); // this active object (recipient)
QS_2U8_PRE(e->poolNum_, e->refCtr_);
QS_EQC_PRE(nFree); // # free entries available
QS_EQC_PRE(0U); // min # free entries (unknown)
QS_END_PRE()
if (e->poolNum_ != 0U) { // is it a pool event?
Q_ASSERT_INCRIT(205, e->refCtr_ < (2U * QF_MAX_ACTIVE));
QEvt_refCtr_inc_(e); // increment the reference counter
}
QF_CRIT_EXIT();
UINT tx_err = tx_queue_send(&me->eQueue, (VOID *)&e, TX_NO_WAIT);
QF_CRIT_ENTRY();
// posting to the ThreadX message queue must succeed, see NOTE3
Q_ASSERT_INCRIT(220, tx_err == TX_SUCCESS);
QF_CRIT_EXIT();
}
else {
QS_BEGIN_PRE(QS_QF_ACTIVE_POST_ATTEMPT, me->prio)
QS_TIME_PRE(); // timestamp
QS_OBJ_PRE(sender); // the sender object
QS_SIG_PRE(e->sig); // the signal of the event
QS_OBJ_PRE(me); // this active object (recipient)
QS_2U8_PRE(e->poolNum_, e->refCtr_);
QS_EQC_PRE(nFree); // # free entries available
QS_EQC_PRE(0U); // min # free entries (unknown)
QS_END_PRE()
QF_CRIT_EXIT();
}
return status;
}
//............................................................................
void QActive_postLIFO_(QActive * const me, QEvt const * const e) {
QF_CRIT_STAT
QF_CRIT_ENTRY();
Q_REQUIRE_INCRIT(300, e != (QEvt *)0);
QS_BEGIN_PRE(QS_QF_ACTIVE_POST_LIFO, me->prio)
QS_TIME_PRE(); // timestamp
QS_SIG_PRE(e->sig); // the signal of this event
QS_OBJ_PRE(me); // this active object
QS_2U8_PRE(e->poolNum_, e->refCtr_);
QS_EQC_PRE(me->eQueue.tx_queue_available_storage); // # free
QS_EQC_PRE(0U); // min # free entries (unknown)
QS_END_PRE()
if (e->poolNum_ != 0U) { // is it a pool event?
Q_ASSERT_INCRIT(305, e->refCtr_ < (2U * QF_MAX_ACTIVE));
QEvt_refCtr_inc_(e); // increment the reference counter
}
QF_CRIT_EXIT();
UINT tx_err = tx_queue_front_send(&me->eQueue, (VOID *)&e, TX_NO_WAIT);
QF_CRIT_ENTRY();
// LIFO posting must succeed, see NOTE3
Q_ASSERT_INCRIT(310, tx_err == TX_SUCCESS);
QF_CRIT_EXIT();
}
//............................................................................
QEvt const *QActive_get_(QActive * const me) {
QEvtPtr e;
UINT tx_err = tx_queue_receive(&me->eQueue, (VOID *)&e, TX_WAIT_FOREVER);
QF_CRIT_STAT
QF_CRIT_ENTRY();
Q_ASSERT_INCRIT(710, tx_err == TX_SUCCESS);
QS_BEGIN_PRE(QS_QF_ACTIVE_GET, me->prio)
QS_TIME_PRE(); // timestamp
QS_SIG_PRE(e->sig); // the signal of this event
QS_OBJ_PRE(me); // this active object
QS_2U8_PRE(e->poolNum_, e->refCtr_);
QS_EQC_PRE(me->eQueue.tx_queue_available_storage);// # free
QS_END_PRE()
QF_CRIT_EXIT();
return e;
}
//............................................................................
void QFSchedLock_(QFSchedLock * const lockStat, uint_fast8_t prio) {
lockStat->lockHolder = tx_thread_identify();
QF_CRIT_STAT
QF_CRIT_ENTRY();
// must be in thread context, so current TX thread must be valid
Q_REQUIRE_INCRIT(800, lockStat->lockHolder != (TX_THREAD *)0);
QF_CRIT_EXIT();
// change the preemption threshold of the current thread
UINT tx_err = tx_thread_preemption_change(lockStat->lockHolder,
QF_TO_TX_PRIO_MAP(prio),
&lockStat->prevThre);
if (tx_err == TX_SUCCESS) {
lockStat->lockPrio = prio;
QF_CRIT_ENTRY();
QS_BEGIN_PRE(QS_SCHED_LOCK, 0U)
QS_TIME_PRE(); // timestamp
QS_2U8_PRE(TX_TO_QF_PRIO_MAP(lockStat->prevThre),
prio); // new lock prio
QS_END_PRE()
QF_CRIT_EXIT();
}
else if (tx_err == TX_THRESH_ERROR) {
// threshold was greater than (lower prio) than the current prio
lockStat->lockPrio = 0U; // threshold not changed
}
else {
// no other errors are tolerated
QF_CRIT_ENTRY();
Q_ERROR_INCRIT(810);
//QF_CRIT_EXIT();
}
}
//............................................................................
void QFSchedUnlock_(QFSchedLock const * const lockStat) {
QF_CRIT_STAT
QF_CRIT_ENTRY();
// the lock holder must be valid and the scheduler must be locked
Q_REQUIRE_INCRIT(900, (lockStat->lockHolder != (TX_THREAD *)0)
&& (lockStat->lockPrio != 0U));
QS_BEGIN_PRE(QS_SCHED_UNLOCK, 0U)
QS_TIME_PRE(); // timestamp
QS_2U8_PRE(lockStat->lockPrio, // prev lock prio
TX_TO_QF_PRIO_MAP(lockStat->prevThre)); // new lock prio
QS_END_PRE()
QF_CRIT_EXIT();
// restore the preemption threshold of the lock holder
UINT old_thre;
UINT tx_err = tx_thread_preemption_change(lockStat->lockHolder,
lockStat->prevThre,
&old_thre);
QF_CRIT_ENTRY();
Q_ASSERT_INCRIT(910, tx_err == TX_SUCCESS);
QF_CRIT_EXIT();
}
//============================================================================
// NOTE1:
// When QF preemption threshold is NOT specified (upper byte of prio is 0),
// QActive_register_() will set me->pthre equal to me->prio, which means
// that tx_pt == tx_prio. In that case the call to ThreadX tx_thread_create()
// will disable the ThreadX preemption-threshold for this thread.
//
// NOTE3:
// The event posting to ThreadX message queue occurs OUTSIDE critical section,
// which means that the remaining margin of available slots in the queue
// cannot be guaranteed. The problem is that interrupts and other tasks can
// preempt the event posting after checking the margin, but before actually
// posting the event to the queue.
//