You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

410 lines
15 KiB
C

/*****************************************************************************
* BSP for EK-TM4C123GXL with QP/C framework
*****************************************************************************/
#include "qpc.h" /* QP/C API */
#include "bsp.h"
2 years ago
#include "TM4C123GH6PM_QL.h" /* the device specific header (TI) */
/* add other drivers if necessary... */
2 years ago
Q_DEFINE_THIS_FILE // define this file for Q_ASSERT()
/* Local-scope objects -----------------------------------------------------*/
/* LEDs on the board */
#define LED_RED (1U << 1)
#define LED_GREEN (1U << 3)
#define LED_BLUE (1U << 2)
/* Buttons on the board */
#define BTN_SW1 (1U << 4)
#define BTN_SW2 (1U << 0)
/* Test pins */
#define PD0_PIN (1U << 0)
#define PD1_PIN (1U << 1)
#ifdef Q_SPY
#define UART_BAUD_RATE 115200U
#define UART_FR_TXFE (1U << 7)
#define UART_FR_RXFE (1U << 4)
#define UART_TXFIFO_DEPTH 16U
#endif
2 years ago
/* Assertion handler ======================================================*/
Q_NORETURN Q_onAssert(char const * module, int_t id) {
/* TBD: Perform corrective actions and damage control
* SPECIFIC to your particular system.
*/
(void)module; /* unused parameter */
(void)id; /* unused parameter */
GPIOF_AHB->DATA_Bits[LED_RED | LED_GREEN | LED_BLUE] = 0xFFU; /* all ON */
#ifndef NDEBUG /* debug build? */
while (1) { /* tie the CPU in this endless loop */
}
#endif
NVIC_SystemReset(); /* reset the CPU */
}
//............................................................................
2 years ago
// assert-handling function called by exception handlers in the startup code
2 years ago
void assert_failed(char const * const module, int_t const id); // prototype
void assert_failed(char const * const module, int_t const id) {
Q_onAssert(module, id);
}
2 years ago
// ISRs ======================================================================
void SysTick_Handler(void) {
GPIOD_AHB->DATA_Bits[PD0_PIN] = PD0_PIN;
2 years ago
QTIMEEVT_TICK_X(0U, (void *)0); // time events at rate 0
2 years ago
// Perform the debouncing of buttons. The algorithm for debouncing
// adapted from the book "Embedded Systems Dictionary" by Jack Ganssle
// and Michael Barr, page 71.
static struct {
uint32_t depressed;
uint32_t previous;
} buttons = { 0U, 0U };
uint32_t current = ~GPIOF_AHB->DATA_Bits[BTN_SW1 | BTN_SW2]; /* read SW1 & SW2 */
uint32_t tmp = buttons.depressed; /* save the debounced depressed buttons */
buttons.depressed |= (buttons.previous & current); /* set depressed */
buttons.depressed &= (buttons.previous | current); /* clear released */
buttons.previous = current; /* update the history */
tmp ^= buttons.depressed; /* changed debounced depressed */
if ((tmp & BTN_SW1) != 0U) { /* debounced SW1 state changed? */
if ((buttons.depressed & BTN_SW1) != 0U) { /* is SW1 depressed? */
/* post the "button-pressed" event from ISR */
2 years ago
static QEvt const buttonPressedEvt
= QEVT_INITIALIZER(BUTTON_PRESSED_SIG);
QACTIVE_POST(AO_TimeBomb, &buttonPressedEvt, 0U);
GPIOD_AHB->DATA_Bits[PD1_PIN] = PD1_PIN;
QS_BEGIN_ID(QS_USER, 0)
QS_STR("SW1");
QS_U8(1U, 1U);
QS_END()
GPIOD_AHB->DATA_Bits[PD1_PIN] = 0U;
}
else { /* the button is released */
/* post the "button-released" event from ISR */
2 years ago
static QEvt const buttonReleasedEvt
= QEVT_INITIALIZER(BUTTON_RELEASED_SIG);
QACTIVE_POST(AO_TimeBomb, &buttonReleasedEvt, 0U);
QS_BEGIN_ID(QS_USER, 0)
QS_STR("SW1");
QS_U8(1U, 0U);
QS_END()
}
}
if ((tmp & BTN_SW2) != 0U) { /* debounced SW2 state changed? */
if ((buttons.depressed & BTN_SW2) != 0U) { /* is SW2 depressed? */
/* post the "button-pressed" event from ISR */
2 years ago
static QEvt const button2PressedEvt
= QEVT_INITIALIZER(BUTTON2_PRESSED_SIG);
QACTIVE_POST(AO_TimeBomb, &button2PressedEvt, 0U);
QS_BEGIN_ID(QS_USER, 0)
QS_STR("SW2");
QS_U8(1U, 1U);
QS_END()
}
else { /* the button is released */
/* post the "button-released" event from ISR */
2 years ago
static QEvt const button2ReleasedEvt
= QEVT_INITIALIZER(BUTTON2_RELEASED_SIG);
QACTIVE_POST(AO_TimeBomb, &button2ReleasedEvt, 0U);
QS_BEGIN_ID(QS_USER, 0)
QS_STR("SW2");
QS_U8(1U, 0U);
QS_END()
}
}
GPIOD_AHB->DATA_Bits[PD0_PIN] = 0U;
}
2 years ago
//............................................................................
void QV_onIdle(void) {
#ifdef Q_SPY
QF_INT_ENABLE();
QS_rxParse(); /* parse all the received bytes */
if ((UART0->FR & UART_FR_TXFE) != 0U) { /* TX done? */
uint16_t fifo = UART_TXFIFO_DEPTH; /* max bytes we can accept */
uint8_t const *block;
QF_INT_DISABLE();
block = QS_getBlock(&fifo); /* try to get next block to transmit */
QF_INT_ENABLE();
while (fifo-- != 0) { /* any bytes in the block? */
UART0->DR = *block++; /* put into the FIFO */
}
}
#elif defined NDEBUG
/* Put the CPU and peripherals to the low-power mode.
* you might need to customize the clock management for your application,
* see the datasheet for your particular Cortex-M MCU.
*/
QV_CPU_SLEEP(); /* atomically go to sleep and enable interrupts */
#else
QF_INT_ENABLE(); /* just enable interrupts */
#endif
}
/* BSP functions ===========================================================*/
void BSP_init(void) {
/* enable clock for to the peripherals used by this application... */
SYSCTL->RCGCGPIO |= (1U << 5); /* enable Run mode for GPIOF */
SYSCTL->RCGCGPIO |= (1U << 3); /* enable Run mode for GPIOD */
SYSCTL->GPIOHBCTL |= (1U << 5); /* enable AHB for GPIOF */
SYSCTL->GPIOHBCTL |= (1U << 3); /* enable AHB for GPIOD */
__ISB();
__DSB();
/* configure LEDs (digital output) */
GPIOF_AHB->DIR |= (LED_RED | LED_BLUE | LED_GREEN);
GPIOF_AHB->DEN |= (LED_RED | LED_BLUE | LED_GREEN);
GPIOF_AHB->DATA_Bits[LED_RED | LED_BLUE | LED_GREEN] = 0U;
/* configure Test pins (digital output) */
GPIOD_AHB->DIR |= (PD0_PIN | PD1_PIN);
GPIOD_AHB->DEN |= (PD0_PIN | PD1_PIN);
/* configure switches... */
/* unlock access to the SW2 pin because it is PROTECTED */
GPIOF_AHB->LOCK = 0x4C4F434BU; /* unlock GPIOCR register for SW2 */
/* commit the write (cast const away) */
*(uint32_t volatile *)&GPIOF_AHB->CR = 0x01U;
GPIOF_AHB->DIR &= ~(BTN_SW1 | BTN_SW2); /* input */
GPIOF_AHB->DEN |= (BTN_SW1 | BTN_SW2); /* digital enable */
GPIOF_AHB->PUR |= (BTN_SW1 | BTN_SW2); /* pull-up resistor enable */
*(uint32_t volatile *)&GPIOF_AHB->CR = 0x00U;
GPIOF_AHB->LOCK = 0x0; /* lock GPIOCR register for SW2 */
2 years ago
// initialize the QS software tracing...
if (!QS_INIT((void *)0)) {
Q_ERROR();
}
2 years ago
// prodice the QS dictionaries...
QS_OBJ_DICTIONARY(AO_TimeBomb);
QS_SIG_DICTIONARY(BUTTON_PRESSED_SIG, (void *)0);
QS_SIG_DICTIONARY(BUTTON_RELEASED_SIG, (void *)0);
QS_SIG_DICTIONARY(BUTTON2_PRESSED_SIG, (void *)0);
QS_SIG_DICTIONARY(BUTTON2_RELEASED_SIG, (void *)0);
QS_SIG_DICTIONARY(TIMEOUT_SIG, (void *)0);
2 years ago
// setup the QS filters...
//QS_GLB_FILTER(QS_UA_RECORDS); /* all User records */
//QS_GLB_FILTER(QS_SM_RECORDS); /* state machine records */
QS_GLB_FILTER(QS_ALL_RECORDS); /* all QS records */
QS_GLB_FILTER(-QS_QF_TICK); /* disable */
}
2 years ago
//............................................................................
void QF_onStartup(void) {
/* set up the SysTick timer to fire at BSP_TICKS_PER_SEC rate
* NOTE: do NOT call OS_CPU_SysTickInit() from uC/OS-II
*/
2 years ago
SystemCoreClockUpdate();
SysTick_Config(SystemCoreClock / BSP_TICKS_PER_SEC);
/* set priorities of ALL ISRs used in the system, see NOTE1 */
NVIC_SetPriority(SysTick_IRQn, QF_AWARE_ISR_CMSIS_PRI + 1U);
/* ... */
/* enable IRQs in the NVIC... */
/* ... */
}
/*..........................................................................*/
void QF_onCleanup(void) {
}
/*..........................................................................*/
void BSP_ledRedOn(void) {
GPIOF_AHB->DATA_Bits[LED_RED] = LED_RED;
QS_BEGIN_ID(QS_USER, 0)
QS_STR("red");
QS_U8(1U, 1U);
QS_END()
}
/*..........................................................................*/
void BSP_ledRedOff(void) {
GPIOF_AHB->DATA_Bits[LED_RED] = 0U;
QS_BEGIN_ID(QS_USER, 0)
QS_STR("red");
QS_U8(1U, 0U);
QS_END()
}
/*..........................................................................*/
void BSP_ledBlueOn(void) {
GPIOF_AHB->DATA_Bits[LED_BLUE] = LED_BLUE;
QS_BEGIN_ID(QS_USER, 0)
QS_STR("blue");
QS_U8(1U, 1U);
QS_END()
}
/*..........................................................................*/
void BSP_ledBlueOff(void) {
GPIOF_AHB->DATA_Bits[LED_BLUE] = 0U;
QS_BEGIN_ID(QS_USER, 0)
QS_STR("blue");
QS_U8(1U, 0U);
QS_END()
}
/*..........................................................................*/
void BSP_ledGreenOn(void) {
GPIOF_AHB->DATA_Bits[LED_GREEN] = LED_GREEN;
QS_BEGIN_ID(QS_USER, 0)
QS_STR("green");
QS_U8(1U, 1U);
QS_END()
}
/*..........................................................................*/
void BSP_ledGreenOff(void) {
GPIOF_AHB->DATA_Bits[LED_GREEN] = 0U;
QS_BEGIN_ID(QS_USER, 0)
QS_STR("green");
QS_U8(1U, 0U);
QS_END()
}
/* QS callbacks ============================================================*/
#ifdef Q_SPY
/*..........................................................................*/
uint8_t QS_onStartup(void const *arg) {
Q_UNUSED_PAR(arg);
static uint8_t qsTxBuf[1000]; /* buffer for QS transmit channel */
static uint8_t qsRxBuf[100]; /* buffer for QS receive channel */
QS_initBuf (qsTxBuf, sizeof(qsTxBuf));
QS_rxInitBuf(qsRxBuf, sizeof(qsRxBuf));
/* enable clock for UART0 and GPIOA (used by UART0 pins) */
SYSCTL->RCGCUART |= (1U << 0); /* enable Run mode for UART0 */
SYSCTL->RCGCGPIO |= (1U << 0); /* enable Run mode for GPIOA */
/* configure UART0 pins for UART operation */
uint32_t tmp = (1U << 0) | (1U << 1);
GPIOA->DIR &= ~tmp;
GPIOA->SLR &= ~tmp;
GPIOA->ODR &= ~tmp;
GPIOA->PUR &= ~tmp;
GPIOA->PDR &= ~tmp;
GPIOA->AMSEL &= ~tmp; /* disable analog function on the pins */
GPIOA->AFSEL |= tmp; /* enable ALT function on the pins */
GPIOA->DEN |= tmp; /* enable digital I/O on the pins */
GPIOA->PCTL &= ~0x00U;
GPIOA->PCTL |= 0x11U;
/* configure the UART for the desired baud rate, 8-N-1 operation */
tmp = (((SystemCoreClock * 8U) / UART_BAUD_RATE) + 1U) / 2U;
UART0->IBRD = tmp / 64U;
UART0->FBRD = tmp % 64U;
UART0->LCRH = (0x3U << 5); /* configure 8-N-1 operation */
UART0->LCRH |= (0x1U << 4); /* enable FIFOs */
UART0->CTL = (1U << 0) /* UART enable */
| (1U << 8) /* UART TX enable */
| (1U << 9); /* UART RX enable */
/* configure UART interrupts (for the RX channel) */
UART0->IM |= (1U << 4) | (1U << 6); /* enable RX and RX-TO interrupt */
UART0->IFLS |= (0x2U << 2); /* interrupt on RX FIFO half-full */
/* NOTE: do not enable the UART0 interrupt yet. Wait till QF_onStartup() */
NVIC_SetPriority(UART0_IRQn, 0U); /* kernel unaware interrupt */
NVIC_EnableIRQ(UART0_IRQn); /* UART0 interrupt used for QS-RX */
/* configure TIMER5 to produce QS time stamp */
SYSCTL->RCGCTIMER |= (1U << 5); /* enable run mode for Timer5 */
TIMER5->CTL = 0U; /* disable Timer1 output */
TIMER5->CFG = 0x0U; /* 32-bit configuration */
TIMER5->TAMR = (1U << 4) | 0x02; /* up-counting periodic mode */
TIMER5->TAILR= 0xFFFFFFFFU; /* timer interval */
TIMER5->ICR = 0x1U; /* TimerA timeout flag bit clears*/
TIMER5->CTL |= (1U << 0); /* enable TimerA module */
return 1U; /* return success */
}
/*..........................................................................*/
void QS_onCleanup(void) {
}
/*..........................................................................*/
QSTimeCtr QS_onGetTime(void) { /* NOTE: invoked with interrupts DISABLED */
return TIMER5->TAV;
}
/*..........................................................................*/
void QS_onFlush(void) {
while (true) {
/* try to get next byte to transmit */
QF_INT_DISABLE();
uint16_t b = QS_getByte();
QF_INT_ENABLE();
if (b != QS_EOD) { /* NOT end-of-data */
/* busy-wait as long as TX FIFO has data to transmit */
while ((UART0->FR & UART_FR_TXFE) == 0) {
}
/* place the byte in the UART DR register */
UART0->DR = b;
}
else {
break; /* break out of the loop */
}
}
}
/*..........................................................................*/
/*
* ISR for receiving bytes from the QSPY Back-End
* NOTE: This ISR is "QF-unaware" meaning that it does not interact with
* the QF/QK and is not disabled. Such ISRs don't need to call QK_ISR_ENTRY/
* QK_ISR_EXIT and they cannot post or publish events.
*/
4 months ago
/* NOTE: The name of this ISR must match the Vector Table in the startup code.
* Unfortunately, the ISR names provided in the startup code in the ST RTE
* (Run-Time Environment) are NOT compatible with the CMSIS naming convention
* XXX_IRQHandler(). Instead, the startup code (file in Device/starup_TM4C123.s)
* uses the name XXX_Handler(). Therefore this ISR is change here to match
* this non-standard convention.
*/
void UART0_Handler(void) { // should be UART0_IRQHandler() by CMSIS
uint32_t status = UART0->RIS; /* get the raw interrupt status */
UART0->ICR = status; /* clear the asserted interrupts */
while ((UART0->FR & UART_FR_RXFE) == 0) { /* while RX FIFO NOT empty */
uint32_t b = UART0->DR;
QS_RX_PUT(b);
}
QV_ARM_ERRATUM_838869();
}
/*..........................................................................*/
/*! callback function to reset the target (to be implemented in the BSP) */
void QS_onReset(void) {
NVIC_SystemReset();
}
/*..........................................................................*/
/*! callback function to execute a user command (to be implemented in BSP) */
void QS_onCommand(uint8_t cmdId,
uint32_t param1, uint32_t param2, uint32_t param3)
{
QS_BEGIN_ID(QS_USER + 1U, 0U) /* app-specific record */
QS_U8(2, cmdId);
QS_U32(8, param1);
QS_U32(8, param2);
QS_U32(8, param3);
QS_END()
}
#endif /* Q_SPY */