sqlppll - An SQL Library Worthy of Modern C++

Dr. Roland Bock

2014-09-11

Dr. Roland Bock sqlppll - An SQL Library Worthy of Modern C++



Strings vs. EDSL
Code samples

Strings vs. EDSL

o Prefer compile-time and link-time errors to runtime errors
Scott Meyers, Effective C++ (2nd Edition)

Dr. Roland Bock sqlppll - An SQL Library Worthy of Modern C++



Strings vs. EDSL

Code samples

Strings vs. EDSL

Let's look at some code

String based

In the talk, we looked at a string-based example from cppdb first:
http://cppcms.com/sql/cppdb/intro.html

It is very easy to add all kinds of errors into this code that will pass the
compiler but fail at runtime.

| A

sqlppll

We then looked at examples from sqlppll:

https://github.com /rbock/sqlpp11/blob/develop/examples/insert.cpp
https://github.com /rbock/sqlppl1/blob/develop/examples/select.cpp
The compiler finds all those errors and more with sqlppll and reports
them in a decent way. Check it out for yourself or watch the video.

Dr. Roland Bock sqlppll - An SQL Library Worthy of Modern C++



sqlppll Mechanics

The Member Template

Member Template

Names
Constraints

template<typename T>
struct _member_t
{

T feature;

s

Dr. Roland Bock

sqlppll - An SQL Library Worthy of Modern C++



Names

sqlppll Mechanics Constraints

The Member Template

Member Template

template<typename T>
struct _member_t
{

T feature;

(]
\

Basic Usage

struct my_struct: public _member_t<int>
{
378

Dr. Roland Bock sqlppll - An SQL Library Worthy of Modern C++



Names

sqlppll Mechanics s

The Member Template

A real-world column

struct Feature
{
struct _name_t
{
static constexpr const charx _get_name() { return "feature"; }
template<typename T>
struct _member_t
{
T feature;
T& operator() () { return feature; }
const T& operator() () const { return feature; }
};
};
using _traits = sqlpp::make_traits<sqlpp::integer, sqlpp::tag::require_insert>;
};
v

Dr. Roland Bock sqlppll - An SQL Library Worthy of Modern C++



Names

sqlppll Mechanics Constraints

The Member Template

A real-world table

struct TabPerson: sqlpp::table_t<TabPerson,
TabPerson_::1d,
TabPerson_: :Name,
TabPerson_: :Feature>
{
struct _name_t
{
static constexpr const char* _get_name() { return "tab_person"; }
template<typename T>
struct _member_t
{
T tabPerson;
T& operator() () { return tabPerson; }
const T& operator() () const { return tabPerson; }
78
s
I8
W

Dr. Roland Bock sqlppll - An SQL Library Worthy of Modern C++



Names
Constraints

sqlppll Mechanics

The Member Template

Usage in tables

template<typename Table, typename... ColumnSpec>
struct table_t:
public ColumnSpec::_name_t::template _member_t<column_t<Table, ColumnSpec>>..|.
{
I oo
I8

Dr. Roland Bock sqlppll - An SQL Library Worthy of Modern C++



Names

sqlppll Mechanics Constraints

The Member Template

Usage in rows

template<typename Db, std::size_t index, typename FieldSpec>
struct result_field:
public FieldSpec::_name_t::template
_member_t<result_field_t<value_type_of<FieldSpec>, Db, FieldSpec>>
{
I oooo
};

Dr. Roland Bock sqlppll - An SQL Library Worthy of Modern C++



Names

sqlppll Mechanics Constraints

Constraints

| am so looking forward to Concepts Lite!

Dr. Roland Bock sqlppll - An SQL Library Worthy of Modern C++



Names

sqlppll Mechanics Constraints

A real life example

Insert assignments

// Basics

static_assert(sizeof...(Assignments), "");
static_assert(all_t<is_assignment_t<Assignments>::value...>::value, "");
static_assert(not has_duplicates<lhs_t<Assignments>...>::value, "");

// All columns from one table
using _required_tables = make_joined_set_t<required_tables_of<lhs_t<Assignments>
static_assert(sizeof...(Assignments) ? (_required_tables::size::value == 1) : tr

// Table semantics required and prohibited insert columns

using _table = typename lhs_t<first_arg_t<Assignments...>>::_table;

using required_columns = typename _table::_required_insert_columns;

using columns = make_type_set_t<lhs_t<Assignments>...>;
static_assert(is_subset_of<required_columns, columns>::value, "");
static_assert(none_t<must_not_insert_t<lhs_t<Assignments>>::value...>::value, ""

e

o’

Dr. Roland Bock sqlppll - An SQL Library Worthy of Modern C++



Extending the EDSL
Other than string-based backends
Adding Vendor Specifics What's next?

Code Layers

Code using sqlppll has the following layers:

@ user code

@ sqlppll (vendor neutral)
@ sqlppll-connector

@ native database library

Dr. Roland Bock sqlppll - An SQL Library Worthy of Modern C++



Extending the EDSL
Other than string-based backends
Adding Vendor Specifics What's next?

Vendor Specific

Serialization

template<typename Select>
result_t select(const Select& x)

{
_serializer_context_t context;
::sqlpp::serialize(x, context);
return {...};

}

Roland Bock sqlppll - An SQL Library Worthy of Modern C++



Extending the EDSL
Other than string-based backends
Adding Vendor Specifics What's next?

Vendor Specific

Serialization

template<typename T, typename Context>
auto serialize(const T& t, Context& context)
-> decltype(serializer_t<Context, T>::_(t, context))
{
return serializer_t<Context, T>::_(t, context);

}

Roland Bock sqlppll - An SQL Library Worthy of Modern C++



Extending the EDSL
Other than string-based backends
Adding Vendor Specifics What's next?

Vendor Specific

Serializati

template<typename Context, typename T, typename Enable = void>
struct serializer_t
{

static void _(const T& t, Context& context)

static_assert(wrong_t<serializer_t>::value,
"missing serializer specialization");

s

Roland Bock sqlppll - An SQL Library Worthy of Modern C++



Extending the EDSL
Other than string-based backends
Adding Vendor Specifics What's next?

Vendor Specific

Disable a feature

template<typename Lhs, typename Rhs, typename 0On>
struct serializer_t<sqlite3::serializer_t, join_t<outer_join_t, Lhs, Rhs, On>>

{

using T = join_t<outer_join_t, Lhs, Rhs, On>;

static void _(const T& t, sqlite3::serializer_t& context)

{
static_assert (wrong_t<serializer_t>::value,
"Sqlite3: No support for outer join");

Dr. Roland Bock sqlppll - An SQL Library Worthy of Modern C++



Extending the EDSL
Other than string-based backends
Adding Vendor Specifics What's next?

Vendor Specific

Change the representatio

template<typename First, typename... Args>
struct serializer_t<mysql::serializer_t, concat_t<First, Args...>>

{
using T = concat_t<First, Args...>;

>

static mysql::serializer_t& _(const T& t, mysql::serializer_t& context)
{

context << "CONCAT(";

interpret_tuple(t._args, ’,’, context);

context << ’)7;

return context;

Dr. Roland Bock sqlppll - An SQL Library Worthy of Modern C++



Extending the EDSL
Other than string-based backends
Adding Vendor Specifics What's next?

Vendor Specific

What if | wan ething like this?

select (streets.name)
.from(streets)
.where(intersects(streets.geometry, some_polygon))

select(streets.name)
.from(streets)
.where(streets.geometry.within(from_wkt ("POLYGON((O 0,10 0,10 10,0 10,0 0))"

select(streets.name)
.from(streets)
.where(streets.geometry.distance(some_point) < 100)

(Examples by Adam Waulkiewicz)

Dr. Roland Bock sqlppll - An SQL Library Worthy of Modern C++



Extending the EDSL
Other than string-based backends
Adding Vendor Specifics What's next?

Vendor Specific

Add a value type

struct integral

{
using _traits = make_traits<integral, tag::is_value_type>;
using _tag = tag::is_integral;
using _cpp_value_type = int64_t;

B

template<typename Base>
struct expression_operators<Base, integral> { /*...x/ };

template<typename Base>
struct column_operators<Base, integral> { /*...%/ };

template<>
struct parameter_value_t<integral> { /*...%/ };

template<typename Db, typename FieldSpec>
struct result_field_t<integral, Db, FieldSpec> { /*...%x/ };

Dr. Roland Bock sqlppll - An SQL Library Worthy of Modern C++



Extending the EDSL
Other than string-based backends
Adding Vendor Specifics What's next?

Vendor Specific

Add a value me

template<typename T>
like_t<Base, wrap_operand_t<T>> like(T t) const

{
using rhs = wrap_operand_t<T>;
static_assert(_is_valid_operand<rhs>::value, "invalid argument for like()");
return { *static_cast<const Base*>(this), {t} };

}

Dr. Roland Bock sqlppll - An SQL Library Worthy of Modern C++



Extending the EDSL
Other than string-based backends
Adding Vendor Specifics What's next?

Vendor Specific

dd an on node typ

template<typename Operand, typename Pattern>
struct like_t:
public expression_operators<like_t<Operand, Pattern>, boolean>,
public alias_operators<like_t<Operand, Pattern>>
{
using _traits = make_traits<boolean, tag::is_expression, tag::is_named_expression>;
using _recursive_traits = make_recursive_traits<Operand, Pattern>;
struct _name_t
{
static constexpr const char* _get_name() { return "LIKE"; }
template<typename T>
struct _member_t
{
T like;
T& operator() () { return like; }
const T& operator() () const { return like; }
};
};
Operand _operand;
Pattern _pattern;
};
y

Dr. Roland Bock sqlppll - An SQL Library Worthy of Modern C++



Extending the EDSL
Other than string-based backends
Adding Vendor Specifics What's next?

Vendor Specific

Add a serializer

template<typename Context, typename Operand, typename Pattern>
struct serializer_t<Context, like_t<Operand, Pattern>>
{
using T = like_t<Operand, Pattern>;
static Context& _(const T& t, Context& context)
{
serialize(t._operand, context);
context << " LIKE(";
serialize(t._pattern, context);
context << ")";
return context;
¥
I8
W

Dr. Roland Bock sqlppll - An SQL Library Worthy of Modern C++



Extending the EDSL
Other than string-based backends
Adding Vendor Specifics What's next?

Vendor Specific

template<typename Database>

using blank_select_t = statement_t<Database,
select_t,
no_select_flag_list_t,
no_select_column_list_t,
no_from_t,
no_where_t<true>,
no_group_by_t,
no_having_t,
no_order_by_t,
no_limit_t,
no_offset_t>;

template<typename... Columns>

auto select(Columns... columns)

-> decltype(blank_select_t<void>() .columns(columns...))
{

return blank_select_t<void>().columns(columns...);

}

Dr. Roland Bock sqlppll - An SQL Library Worthy of Modern C++



Extending the EDSL
Other than string-based backends
Adding Vendor Specifics What's next?

Use the interpreter

ered terr

template<typename Context, typename T, typename Enable = void>
struct interpreter_t
{

static void _(const T& t, Context& context)

{

static_assert(wrong_t<interpreter_t>::value,
"missing interpreter specialization");

}

B
”

Roland Bock sqlppll - An SQL Library Worthy of Modern C++



Extending the EDSL
Other than string-based backends
Adding Vendor Specifics What's next?

Use the interpreter

Unchartered territory

o Serialize into source code
o A python script for extracting data from HTML

@ Transform at compile-time into another expression tree

Dr. Roland Bock sqlppll - An SQL Library Worthy of Modern C++



Extending the EDSL
Other than string-based backends
Adding Vendor Specifics What's next?

nterpreted Assignment

template<typename Lhs, typename Rhs>
struct assignment_t

{
template<typename T>
void operator() (T& t)
_lhs(t) = _rhs(t);
Lhs _lhs;
Rhs _rhs;
};

template<typename Lhs, typename Rhs>
struct interpreter_t<container::context_t, assignment_t<Lhs, Rhs>>

{
static auto _(const assignment_t<Lhs, Rhs>& t, container::context_t& context)
-> container::assignment_t<decltype(interpret(t._lhs, context)),
decltype(interpret(t._rhs, context))>
{
return { interpret(t._lhs, context), interpret(t._rhs, context) };
}
};

Dr. Roland Bock sqlppll - An SQL Library Worthy of Modern C++



Extending the EDSL
Other than string-based backends
Adding Vendor Specifics What's next?

An SQL Interface To std::vector

It took less than a day to write a working (partial) SQL Interface for
std::vector.

See https://github.com/rbock/sqlppll-connector-stl

Dr. Roland Bock sqlppll - An SQL Library Worthy of Modern C++



Extending the EDSL
Other than string-based backends

Adding Vendor Specifics What's next?

An SQL Interface To std::vector

Code sample

constexpr TabSample tab{};

struct sample

{
int64_t alpha;
std::string beta;
bool gamma;

I8
int main()

sql::connection<std::vector<sample>> db{{}};

db(insert_into(tab) .
db(insert_into(tab) .

db(insert_into(tab).set(tab.alpha = 42, tab.beta = "hello", tab.gamma = true));
db(insert_into(tab).set(tab.gamma = true));
for (const sample& row: db(select(tab.alpha)
.from(tab)
.where(tab.alpha < 18 and tab.beta != "cheesecake")))
{
std::cerr << "alpha=" << row.alpha << ", beta=" << row.beta << ", gamma=" << row.gamma << std::endl;
}

}

set(tab.alpha = 17));
set(tab.beta

Dr. Roland Bock

"cheesecake"));

sqlppll - An SQL Library Worthy of Modern C++



Extending the EDSL
Other than string-based backends
Adding Vendor Specifics What's next?

What's next?

sqlppll could be the foundation for type-safe SQL interfaces with
immediate feedback at compile time for all kinds of databases, e.g.:

o SQL databases

o ODBC databases
o NoSQL databases
o Containers of the C++ Standard Library and others
o Streams

o XML

o JSON

°

Dr. Roland Bock sqlppll - An SQL Library Worthy of Modern C++



Extending the EDSL
Other than string-based backends
Adding Vendor Specifics What's next?

Acknowledgements

Thanks to everybody who uses the library, contributes to it, asks
questions about it, listens to me when | talk about it, spreads the word.

Dr. Roland Bock sqlppll - An SQL Library Worthy of Modern C++



Extending the EDSL
Other than string-based backends

Adding Vendor Specifics What's next?

Thank Youl

Roland Bock sqlppll - An SQL Library Worthy of Modern C++



	Strings vs. EDSL
	Code samples

	sqlpp11 Mechanics
	Names
	Constraints

	Adding Vendor Specifics
	Extending the EDSL
	Other than string-based backends
	What's next?


