
Strings vs. EDSL
sqlpp11 Mechanics

Adding Vendor Specifics

sqlpp11 - An SQL Library Worthy of Modern C++

Dr. Roland Bock

2014-09-11

Dr. Roland Bock sqlpp11 - An SQL Library Worthy of Modern C++

Strings vs. EDSL
sqlpp11 Mechanics

Adding Vendor Specifics
Code samples

Strings vs. EDSL

Prefer compile-time and link-time errors to runtime errors
Scott Meyers, Effective C++ (2nd Edition)

Dr. Roland Bock sqlpp11 - An SQL Library Worthy of Modern C++

Strings vs. EDSL
sqlpp11 Mechanics

Adding Vendor Specifics
Code samples

Strings vs. EDSL

Let’s look at some code

String based

In the talk, we looked at a string-based example from cppdb first:
http://cppcms.com/sql/cppdb/intro.html
It is very easy to add all kinds of errors into this code that will pass the
compiler but fail at runtime.

sqlpp11

We then looked at examples from sqlpp11:
https://github.com/rbock/sqlpp11/blob/develop/examples/insert.cpp
https://github.com/rbock/sqlpp11/blob/develop/examples/select.cpp
The compiler finds all those errors and more with sqlpp11 and reports
them in a decent way. Check it out for yourself or watch the video.

Dr. Roland Bock sqlpp11 - An SQL Library Worthy of Modern C++

Strings vs. EDSL
sqlpp11 Mechanics

Adding Vendor Specifics

Names
Constraints

The Member Template

Member Template

template<typename T>

struct _member_t

{

T feature;

};

Basic Usage

struct my_struct: public _member_t<int>

{

};

Dr. Roland Bock sqlpp11 - An SQL Library Worthy of Modern C++

Strings vs. EDSL
sqlpp11 Mechanics

Adding Vendor Specifics

Names
Constraints

The Member Template

Member Template

template<typename T>

struct _member_t

{

T feature;

};

Basic Usage

struct my_struct: public _member_t<int>

{

};

Dr. Roland Bock sqlpp11 - An SQL Library Worthy of Modern C++

Strings vs. EDSL
sqlpp11 Mechanics

Adding Vendor Specifics

Names
Constraints

The Member Template

A real-world column

struct Feature

{

struct _name_t

{

static constexpr const char* _get_name() { return "feature"; }

template<typename T>

struct _member_t

{

T feature;

T& operator()() { return feature; }

const T& operator()() const { return feature; }

};

};

using _traits = sqlpp::make_traits<sqlpp::integer, sqlpp::tag::require_insert>;

};

Dr. Roland Bock sqlpp11 - An SQL Library Worthy of Modern C++

Strings vs. EDSL
sqlpp11 Mechanics

Adding Vendor Specifics

Names
Constraints

The Member Template

A real-world table

struct TabPerson: sqlpp::table_t<TabPerson,

TabPerson_::Id,

TabPerson_::Name,

TabPerson_::Feature>

{

struct _name_t

{

static constexpr const char* _get_name() { return "tab_person"; }

template<typename T>

struct _member_t

{

T tabPerson;

T& operator()() { return tabPerson; }

const T& operator()() const { return tabPerson; }

};

};

};

Dr. Roland Bock sqlpp11 - An SQL Library Worthy of Modern C++

Strings vs. EDSL
sqlpp11 Mechanics

Adding Vendor Specifics

Names
Constraints

The Member Template

Usage in tables

template<typename Table, typename... ColumnSpec>

struct table_t:

public ColumnSpec::_name_t::template _member_t<column_t<Table, ColumnSpec>>...

{

// ...

};

Dr. Roland Bock sqlpp11 - An SQL Library Worthy of Modern C++

Strings vs. EDSL
sqlpp11 Mechanics

Adding Vendor Specifics

Names
Constraints

The Member Template

Usage in rows

template<typename Db, std::size_t index, typename FieldSpec>

struct result_field:

public FieldSpec::_name_t::template

_member_t<result_field_t<value_type_of<FieldSpec>, Db, FieldSpec>>

{

//....

};

Dr. Roland Bock sqlpp11 - An SQL Library Worthy of Modern C++

Strings vs. EDSL
sqlpp11 Mechanics

Adding Vendor Specifics

Names
Constraints

Constraints

I am so looking forward to Concepts Lite!

Dr. Roland Bock sqlpp11 - An SQL Library Worthy of Modern C++

Strings vs. EDSL
sqlpp11 Mechanics

Adding Vendor Specifics

Names
Constraints

A real life example

Insert assignments

// Basics

static_assert(sizeof...(Assignments), "");

static_assert(all_t<is_assignment_t<Assignments>::value...>::value, "");

static_assert(not has_duplicates<lhs_t<Assignments>...>::value, "");

// All columns from one table

using _required_tables = make_joined_set_t<required_tables_of<lhs_t<Assignments>>...>;

static_assert(sizeof...(Assignments) ? (_required_tables::size::value == 1) : true, "");

// Table semantics required and prohibited insert columns

using _table = typename lhs_t<first_arg_t<Assignments...>>::_table;

using required_columns = typename _table::_required_insert_columns;

using columns = make_type_set_t<lhs_t<Assignments>...>;

static_assert(is_subset_of<required_columns, columns>::value, "");

static_assert(none_t<must_not_insert_t<lhs_t<Assignments>>::value...>::value, "");

Dr. Roland Bock sqlpp11 - An SQL Library Worthy of Modern C++

Strings vs. EDSL
sqlpp11 Mechanics

Adding Vendor Specifics

Extending the EDSL
Other than string-based backends
What’s next?

Code Layers

Code using sqlpp11 has the following layers:

user code

sqlpp11 (vendor neutral)

sqlpp11-connector

native database library

Dr. Roland Bock sqlpp11 - An SQL Library Worthy of Modern C++

Strings vs. EDSL
sqlpp11 Mechanics

Adding Vendor Specifics

Extending the EDSL
Other than string-based backends
What’s next?

Vendor Specific

Serialization

template<typename Select>

result_t select(const Select& x)

{

_serializer_context_t context;

::sqlpp::serialize(x, context);

return {...};

}

Dr. Roland Bock sqlpp11 - An SQL Library Worthy of Modern C++

Strings vs. EDSL
sqlpp11 Mechanics

Adding Vendor Specifics

Extending the EDSL
Other than string-based backends
What’s next?

Vendor Specific

Serialization

template<typename T, typename Context>

auto serialize(const T& t, Context& context)

-> decltype(serializer_t<Context, T>::_(t, context))

{

return serializer_t<Context, T>::_(t, context);

}

Dr. Roland Bock sqlpp11 - An SQL Library Worthy of Modern C++

Strings vs. EDSL
sqlpp11 Mechanics

Adding Vendor Specifics

Extending the EDSL
Other than string-based backends
What’s next?

Vendor Specific

Serialization

template<typename Context, typename T, typename Enable = void>

struct serializer_t

{

static void _(const T& t, Context& context)

{

static_assert(wrong_t<serializer_t>::value,

"missing serializer specialization");

}

};

Dr. Roland Bock sqlpp11 - An SQL Library Worthy of Modern C++

Strings vs. EDSL
sqlpp11 Mechanics

Adding Vendor Specifics

Extending the EDSL
Other than string-based backends
What’s next?

Vendor Specific

Disable a feature

template<typename Lhs, typename Rhs, typename On>

struct serializer_t<sqlite3::serializer_t, join_t<outer_join_t, Lhs, Rhs, On>>

{

using T = join_t<outer_join_t, Lhs, Rhs, On>;

static void _(const T& t, sqlite3::serializer_t& context)

{

static_assert(wrong_t<serializer_t>::value,

"Sqlite3: No support for outer join");

}

};

Dr. Roland Bock sqlpp11 - An SQL Library Worthy of Modern C++

Strings vs. EDSL
sqlpp11 Mechanics

Adding Vendor Specifics

Extending the EDSL
Other than string-based backends
What’s next?

Vendor Specific

Change the representation

template<typename First, typename... Args>

struct serializer_t<mysql::serializer_t, concat_t<First, Args...>>

{

using T = concat_t<First, Args...>;

static mysql::serializer_t& _(const T& t, mysql::serializer_t& context)

{

context << "CONCAT(";

interpret_tuple(t._args, ’,’, context);

context << ’)’;

return context;

}

};

Dr. Roland Bock sqlpp11 - An SQL Library Worthy of Modern C++

Strings vs. EDSL
sqlpp11 Mechanics

Adding Vendor Specifics

Extending the EDSL
Other than string-based backends
What’s next?

Vendor Specific

What if I want something like this?

select(streets.name)

.from(streets)

.where(intersects(streets.geometry, some_polygon))

select(streets.name)

.from(streets)

.where(streets.geometry.within(from_wkt("POLYGON((0 0,10 0,10 10,0 10,0 0))")))

select(streets.name)

.from(streets)

.where(streets.geometry.distance(some_point) < 100)

(Examples by Adam Wulkiewicz)

Dr. Roland Bock sqlpp11 - An SQL Library Worthy of Modern C++

Strings vs. EDSL
sqlpp11 Mechanics

Adding Vendor Specifics

Extending the EDSL
Other than string-based backends
What’s next?

Vendor Specific

Add a value type

struct integral

{

using _traits = make_traits<integral, tag::is_value_type>;

using _tag = tag::is_integral;

using _cpp_value_type = int64_t;

};

template<typename Base>

struct expression_operators<Base, integral> { /*...*/ };

template<typename Base>

struct column_operators<Base, integral> { /*...*/ };

template<>

struct parameter_value_t<integral> { /*...*/ };

template<typename Db, typename FieldSpec>

struct result_field_t<integral, Db, FieldSpec> { /*...*/ };

Dr. Roland Bock sqlpp11 - An SQL Library Worthy of Modern C++

Strings vs. EDSL
sqlpp11 Mechanics

Adding Vendor Specifics

Extending the EDSL
Other than string-based backends
What’s next?

Vendor Specific

Add a value method

template<typename T>

like_t<Base, wrap_operand_t<T>> like(T t) const

{

using rhs = wrap_operand_t<T>;

static_assert(_is_valid_operand<rhs>::value, "invalid argument for like()");

return { *static_cast<const Base*>(this), {t} };

}

Dr. Roland Bock sqlpp11 - An SQL Library Worthy of Modern C++

Strings vs. EDSL
sqlpp11 Mechanics

Adding Vendor Specifics

Extending the EDSL
Other than string-based backends
What’s next?

Vendor Specific

Add an expression node type

template<typename Operand, typename Pattern>

struct like_t:

public expression_operators<like_t<Operand, Pattern>, boolean>,

public alias_operators<like_t<Operand, Pattern>>

{

using _traits = make_traits<boolean, tag::is_expression, tag::is_named_expression>;

using _recursive_traits = make_recursive_traits<Operand, Pattern>;

struct _name_t

{

static constexpr const char* _get_name() { return "LIKE"; }

template<typename T>

struct _member_t

{

T like;

T& operator()() { return like; }

const T& operator()() const { return like; }

};

};

Operand _operand;

Pattern _pattern;

};

Dr. Roland Bock sqlpp11 - An SQL Library Worthy of Modern C++

Strings vs. EDSL
sqlpp11 Mechanics

Adding Vendor Specifics

Extending the EDSL
Other than string-based backends
What’s next?

Vendor Specific

Add a serializer

template<typename Context, typename Operand, typename Pattern>

struct serializer_t<Context, like_t<Operand, Pattern>>

{

using T = like_t<Operand, Pattern>;

static Context& _(const T& t, Context& context)

{

serialize(t._operand, context);

context << " LIKE(";

serialize(t._pattern, context);

context << ")";

return context;

}

};

Dr. Roland Bock sqlpp11 - An SQL Library Worthy of Modern C++

Strings vs. EDSL
sqlpp11 Mechanics

Adding Vendor Specifics

Extending the EDSL
Other than string-based backends
What’s next?

Vendor Specific

Add/Change/Remove subclauses

template<typename Database>

using blank_select_t = statement_t<Database,

select_t,

no_select_flag_list_t,

no_select_column_list_t,

no_from_t,

no_where_t<true>,

no_group_by_t,

no_having_t,

no_order_by_t,

no_limit_t,

no_offset_t>;

template<typename... Columns>

auto select(Columns... columns)

-> decltype(blank_select_t<void>().columns(columns...))

{

return blank_select_t<void>().columns(columns...);

}

Dr. Roland Bock sqlpp11 - An SQL Library Worthy of Modern C++

Strings vs. EDSL
sqlpp11 Mechanics

Adding Vendor Specifics

Extending the EDSL
Other than string-based backends
What’s next?

Use the interpreter

Unchartered territory

template<typename Context, typename T, typename Enable = void>

struct interpreter_t

{

static void _(const T& t, Context& context)

{

static_assert(wrong_t<interpreter_t>::value,

"missing interpreter specialization");

}

};

Dr. Roland Bock sqlpp11 - An SQL Library Worthy of Modern C++

Strings vs. EDSL
sqlpp11 Mechanics

Adding Vendor Specifics

Extending the EDSL
Other than string-based backends
What’s next?

Use the interpreter

Unchartered territory

Serialize into source code

A python script for extracting data from HTML

Transform at compile-time into another expression tree

Dr. Roland Bock sqlpp11 - An SQL Library Worthy of Modern C++

Strings vs. EDSL
sqlpp11 Mechanics

Adding Vendor Specifics

Extending the EDSL
Other than string-based backends
What’s next?

Use the interpreter

Reinterpreted Assignment

template<typename Lhs, typename Rhs>

struct assignment_t

{

template<typename T>

void operator()(T& t)

{

_lhs(t) = _rhs(t);

}

Lhs _lhs;

Rhs _rhs;

};

template<typename Lhs, typename Rhs>

struct interpreter_t<container::context_t, assignment_t<Lhs, Rhs>>

{

static auto _(const assignment_t<Lhs, Rhs>& t, container::context_t& context)

-> container::assignment_t<decltype(interpret(t._lhs, context)),

decltype(interpret(t._rhs, context))>

{

return { interpret(t._lhs, context), interpret(t._rhs, context) };

}

};

Dr. Roland Bock sqlpp11 - An SQL Library Worthy of Modern C++

Strings vs. EDSL
sqlpp11 Mechanics

Adding Vendor Specifics

Extending the EDSL
Other than string-based backends
What’s next?

An SQL Interface To std::vector

It took less than a day to write a working (partial) SQL Interface for
std::vector.

See https://github.com/rbock/sqlpp11-connector-stl

Dr. Roland Bock sqlpp11 - An SQL Library Worthy of Modern C++

Strings vs. EDSL
sqlpp11 Mechanics

Adding Vendor Specifics

Extending the EDSL
Other than string-based backends
What’s next?

An SQL Interface To std::vector

Code sample

constexpr TabSample tab{};

struct sample

{

int64_t alpha;

std::string beta;

bool gamma;

};

int main()

{

sql::connection<std::vector<sample>> db{{}};

db(insert_into(tab).set(tab.alpha = 17));

db(insert_into(tab).set(tab.beta = "cheesecake"));

db(insert_into(tab).set(tab.alpha = 42, tab.beta = "hello", tab.gamma = true));

db(insert_into(tab).set(tab.gamma = true));

for (const sample& row: db(select(tab.alpha)

.from(tab)

.where(tab.alpha < 18 and tab.beta != "cheesecake")))

{

std::cerr << "alpha=" << row.alpha << ", beta=" << row.beta << ", gamma=" << row.gamma << std::endl;

}

}

Dr. Roland Bock sqlpp11 - An SQL Library Worthy of Modern C++

Strings vs. EDSL
sqlpp11 Mechanics

Adding Vendor Specifics

Extending the EDSL
Other than string-based backends
What’s next?

What’s next?

sqlpp11 could be the foundation for type-safe SQL interfaces with
immediate feedback at compile time for all kinds of databases, e.g.:

SQL databases

ODBC databases

NoSQL databases

Containers of the C++ Standard Library and others

Streams

XML

JSON

. . .

Dr. Roland Bock sqlpp11 - An SQL Library Worthy of Modern C++

Strings vs. EDSL
sqlpp11 Mechanics

Adding Vendor Specifics

Extending the EDSL
Other than string-based backends
What’s next?

Acknowledgements

Thanks to everybody who uses the library, contributes to it, asks
questions about it, listens to me when I talk about it, spreads the word.

Dr. Roland Bock sqlpp11 - An SQL Library Worthy of Modern C++

Strings vs. EDSL
sqlpp11 Mechanics

Adding Vendor Specifics

Extending the EDSL
Other than string-based backends
What’s next?

Thank You!

Dr. Roland Bock sqlpp11 - An SQL Library Worthy of Modern C++

	Strings vs. EDSL
	Code samples

	sqlpp11 Mechanics
	Names
	Constraints

	Adding Vendor Specifics
	Extending the EDSL
	Other than string-based backends
	What's next?

