Parallelizing the Standard
Algorithms Library

Jared Hoberock
\NAVAIB]VAY

Programming Systems and Applications Research Group

CppCon
September, 2014



Bringing Parallelism to C++

Technical Specification for Parallel Algorithms
Multi-vendor collaboration
Based on proven technologies

e Thrust (NVIDIA)
e PPL (Microsoft)
e TBB (Intel)

Multiple implementations in progress
Targeting C++17



Roadmap

Parallelism?

Motivating example
What's included in the box
The detalls

Future work



What do | mean by parallelism?

That'’s like threads, right?
When | say “parallel”, think “independent”

e Concurrency is an optimization

e Concurrency can be hard

e |ocking, exclusion, communication, shared
state, data races...



What do | mean by parallelism?

Parallel programming => identifying tasks which
may be performed independently s

How to communicate
this information to the
system?

It, S easyl Minimum space needed = length of your car +

-1+ (1407 - (J7-T-w-1-k



Simple parallelism for everyone

Easy to access

Interoperability with existing codes
Supported as broadly as possible
Concurrency is an invisible optimization
Vendor extensible



Motivating Example



Motivating Example: Weld Vertices

Marching Cubes Algorithm

| N m\
w0




Motivating Example: Weld Vertices

Problem: Marching Cubes produces “triangle soup”
Solution: “Weld” redundant vertices together

NA* A



Motivating Example: Weld Vertices

Easy with the right high-level algorithms
Procedure:

1. Sort triangle vertices
2. Collapse spans of like vertices
3. Search for each vertex’s unique index



Motivating Example: Weld Vertices

using namespace std;

using vertex = tuple<float, float>;
vector<vertex> vertices = input;
vector<size t> indices(input.size());

// sort vertices to bring duplicates together
sort (vertices.begin(), vertices.end())

// find unique vertices and erase redundancies
auto redundant begin = unique (vertices.begin(), vertices.end());
vertices.erase (redundant begin, vertices.end());

// find index of each vertex in the list of unique vertices

my find all lower bounds(vertices.begin(), vertices.end(),
input.begin(), input.end(),
indices.begin()) ;



Now do it in parallel?



Easy!

using namespace std;
using namespace std::experimental: :parallel;

using vertex = tuple<float, float>;
vector<vertex> vertices = input;
vector<size_ t> indices(input.size())

// sort vertices to bring duplicates together
sort (par, vertices.begin(), vertices.end())

// find unique vertices and erase redundancies
auto redundant begin = unique (par, vertices.begin(), vertices.end())
vertices.erase (redundant begin, vertices.end());

// £ind index of each vertex in the list of unique vertices

my find all lower bounds(par, vertices.begin(), vertices.end(),
input.begin(), input.end(),
indices.begin()) ;



Wait, | changed my mind...

using namespace std;
using namespace std::experimental: :parallel;

using vertex = tuple<float, float>;
vector<vertex> vertices = input;
vector<size_ t> indices(input.size())

// sort vertices to bring duplicates together
sort (seq, vertices.begin(), vertices.end())

// find unique vertices and erase redundancies
auto redundant begin = unique(seq, vertices.begin(), vertices.end())
vertices.erase (redundant begin, vertices.end());

// £ind index of each vertex in the list of unique vertices

my find all lower bounds(seq, vertices.begin(), vertices.end(),
input.begin(), input.end(),
indices.begin()) ;



Don’t make me choose!

using namespace std;
using namespace std::experimental: :parallel;

execution policy exec = seq;
if (input.size() > some_ threshold) exec = par;

// sort vertices to bring duplicates together
sort (exec, vertices.begin(), vertices.end()):;

// find unique vertices and erase redundancies
auto redundant begin = unique (exec, vertices.begin(), vertices.end());
vertices.erase (redundant begin, vertices.end());

// find index of each vertex in the list of unique vertices

my find all lower bounds(exec, vertices.begin(), vertices.end(),
input.begin(), input.end(),
indices.begin()) ;



my find all lower bounds

template<class ExecutionPolicy,
class ForwardIterator,
class InputIterator,
class OutputIterator>
OutputIterator my find all lower bounds (ExecutionPolicyé& exec,
ForwardIterator haystack begin,
ForwardIterator haystack_end,
InputIterator needles begin,
InputIterator needles_end,
OutputIterator result)
{
return transform(exec, needles begin, needles _end, result,
[=] (auto& needle)
{
auto iter = std::lower bound(haystack begin, haystack end, needle);
return std::distance (haystack begin, iter);

})



my find all lower bounds

Truly general

e generic in data types (via iterators)
e generic in execution (via execution policy)

Composing our higher-level algorithms from

lower-level primitives gives us parallelism for
free!



How to write parallel programs

High-level algorithms

Control sequential/parallel execution with
policies

Communicate dependencies



What's included in the box

Execution Policies
Parallel Algorithms

Parallel Exceptions



Execution Policies

using namespace std::experimental: :parallelism;
std: :vector<int> data =

// vanilla sort
sort (data.begin(), data.end()) ;

// explicitly sequential sort
sort (seq, data.begin(), data.end())

// permitting parallel execution
sort (par, data.begin(), data.end()) ;

// permitting vectorization as well
sort (par_vec, data.begin(), data.end());



Execution Policies

// sort with dynamically-selected execution
size_ t threshold =
execution policy = seq;
if (vec.size () > threshold)
{
exec = par;

}

sort (exec, vec.begin(), vec.end())



Execution Policies

sort(vectorize in this thread, vec.begin(), wvec.end());
sort(submit to my thread pool, vec.begin(), vec.end());
sort (execute on that gpu, vec.begin(), vec.end()):

sort (cffload to my fpga, vec.begin(), vec.end())
sort(send to the cloud, vec.begin(), vec.end());

sort (launder through botnet, wvec.begin(), vec.end())

Implementation-Defined
(Non-Standard)



What is an execution policy?

Promise that a particular kind of reordering will
preserve the meaning of a program

Request that the implementation use some sort
of execution strategy

What sorts of reordering are allowable?



The Details



Sequential Execution

algo (seq, begin, end, func);

calling thread

¥

algo invokes function

and iterator operations calling thread
in sequential order in ime A

the calling thread

£

calling thread



Parallelizable Execution

algo (par, begin, end, func);

algo is permitted to invoke function
unsequenced if invoked in different threads,
and indeterminate order if invoked in the same

thread



Parallelizable Execution

algo (par, begin, end, func);

calling thread

¥
thread 1 thread 2 ... thread N
func () func () func ()
local func () func () func ()
time func () func () func ()
4

calling thread



Parallelizable Execution

It is the caller's responsibility to ensure
correctness, for example that the invocation
does not introduce data races or deadlocks.



Parallelizable Execution

// data race

int a[] = {0,1};

std: :vector<int> v;

for each(par, a, a + 2, [&] (inté& 1)
{

}) s



Parallelizable Execution

// OK (don't do this):
int a[] = {0,1};
std: :vector<int> v;

std: :mutex mut;
for each(par, a, a + 2, [&] (inté& 1)
{

mut.lock () ;

v.push back(i);

mut.unlock () ;

}) s



Parallelizable Execution

// OK (do this):
int a[] = {0,1};
std: :vector<int> v (2);

for each(par, a, a + 2, [&] (inté& 1)
{
v[ii] = 1;

})



Parallelizable Execution

// may deadlock (don't do this):
std: :atomic<int> counter = 0;
int a[] = {0,1};

for each(par, a, a + 2, [&] (int& i)
{

counter++;

// spin wait for both lambdas to arrive

// try to do something crazy

}) s



Parallelizable + Vectorizable Execution

algo (par vec, begin, end, func);

algo is permitted to invoke function
unsequenced if invoked in different threads,
and unsequenced if invoked in the same thread



Parallelizable + Vectorizable Execution

algo (par vec, begin, end, func);

calling thread

4

thread 1 thread 2 thread N
fnc()) A fung )4 mne o
func () func () £ ()
func () func () unfc
fung,()e () func () fuélncc<())
func () func () func ()

4

calling thread



Difference between par & par vec

Function invocation is unsequenced when in
different threads

When executed in the same thread

e par: unspecified, sequenced invocations
® par vec: no sequence exists at all



Parallelizable + Vectorizable Execution

It is the caller’s responsibility to ensure
correctness, for example that the invocation of
functions do not attempt to synchronize with
each other.



Parallelizable + Vectorizable Execution

// may deadlock (don't do this):
int counter = 0;
int a[] = {0,1};

for each(par vec, a, a + 2, [&] (int)

{

++counter;

}) s



Parallelizable + Vectorizable Execution

// OK:
std: :atomic<int> counter = 0;

int a[] = {0,1};
for each(par vec, a, a + 2, [&] (int)

{

++counter;

}) s



Parallelizable + Vectorizable Execution

// Best:
int count = count if(par vec, ...);

Use the highest-level algorithm that does the job!



Parallel Algorithms

Provide overloads of standard algorithm which
receive execution policy as parameter

To the degree possible, parallelize everything



New Algorithms

reduce : reduction over a collection
result = init + a[0] + a[l] + .. + a[N-1]

exclusive scan : exclusive prefix sum
result[i] = init + a[0] + a[l] + .. + a[1-1]

inclusive scan :inclusive prefix sum
result[i] = init + a[0] + a[l] + .. + a[1i]



No Parallelism

Binary search algorithms
Heap algorithms

Permutation algorithms
Shuffling algorithms
Sequential numeric algorithms



Parallel Exceptions

Parallel algorithms throw one of two:

e If no temporary storage is available,
bad alloc

e exception list of exceptions thrown by
user-provided code



Exceptions Example

struct superstition_error { const char* what() { return "eek"; } };
std: :vector<int> data =

try
{
for each(data.begin(), data.end(), [] (auto x)
{
if(x == 13)
{
throw superstition error();
}
})
}
catch(superstition_erroré& error)
{
std: :cerr << error.what() << std::endl;

}



Exceptions Example

struct superstition_error { const char* what() { return "eek"; } };
std: :vector<int> data =
using namespace std::experimental::parallelism;

try
{
for each(par, data.begin(), data.end(), [](auto x)
{
if(x == 13)
{
throw superstition_error();
}
}) s
}

catch (exception list& error)

{

std: :cerr << “Encountered “ << errors.size() << “ unlucky numbers” << std::endl;

reduce (par, errors.begin(), errors.end(), my handler());

}



Exceptions Example

struct superstition_error { const char* what() { return "eek"; } };
std: :vector<int> data =
using namespace std::experimental::parallelism;

try
{
for each(seq, data.begin(), data.end(), [](auto x)
{
if(x == 13)
{
throw superstition_error();
}
}) s
}

catch (exception listé& error)

{

std: :cerr << “Encountered “ << errors.size() << “ unlucky numbers” << std::endl;

reduce (seq, errors.begin(), errors.end(), my handler());

}



Example: Estimating Pi



Example: Estimating Pi

Area of circle = pi * radius”2

Throw darts at unit square
pi ~ 4 * green / total

Algorithm: Count the number T

of darts which fall within
guarter circle




Example: Estimating Pi

// generate a random point and test whether it // burtleburtle.net/bob/hash/integer.html
// lies in the quarter circle int my hash(int a)
bool test quarter circle(int seed) { -
{ a = (a+0x7ed55d16) + (a<<12);

// seed an RNG a = (a*0xc76lc23c) ~ (a>>19);

std: :default_random engine rng(my hash(seed)) ; a = (a+0x165667bl) + (a<<5);

] a = (a+0xd3a2646c) * (a<<9);
// generate numbers uniformly a = (a+0x£d7046c5) + (a<<3);
// in the unit interval a = (a*0xb55a4£09) ~ (a>>16);

std: :uniform real distribution<float> u01(0,1);
- - return a;

// generate a point within the unit square
float x = u0l(rng);
float y = u0l(rng);

// measure distance from the origin
float dist2 = std::sqrt(x*x + y*y);,

return dist2 <= 1.0f;



Example: Estimating Pi

// throw 300M darts
auto n = 300 << 20;

// create the integers [0..n)
auto iter = boost::make counting iterator (0);

// count the number of points in the quarter circle
using namespace std::experimental: :parallel;

auto num within quarter circle =
count if(par, iter, iter + n, test quarter circle);

double pi estimate = (4.0 * num within quarter circle) / n;



Performance Portability

1x 5.25X 19.0x



Future Work



Scheduling?

algo (exec, begin, end, func);
algo needs to compose with scheduling decisions in the
surrounding application
exec specifies how algo is allowed to execute

e specifies what work an implementation is allowed to

create
e does not specify where the work should be executed

Placement is orthogonal



Scheduling?

algo (exec (sched) , begin, end,
func) ;

We anticipate extending our execution policies to accept
scheduling requirements as parameters

sched specifies where the work should be executed



Scheduling?

sched could be:

e hard requirement to execute vectorizable work in the
current thread

number of threads to use

a thread pool to use

an executor to use

which GPU(s) to use



Implementations in progress

github.com/n3554
e based on Thrust

parallelstl.codeplex.com
e based on PPL?

github.com/t-lutz/ParallelSTL
e basedon std: :thread



Summary

High-level algorithms make parallelism easy

e Portable & Composable
e Concurrency is invisible

Standardization

e On track for C++17
e Experimental Tech Spec in the meantime
e github.com/cplusplus/parallelism-ts



Questions?

jhoberock@nvidia.com
github.com/jaredhoberock



mailto:jhoberock@nvidia.com
mailto:jhoberock@nvidia.com

