
Parallelizing the Standard
Algorithms Library

Jared Hoberock
NVIDIA
Programming Systems and Applications Research Group

CppCon
September, 2014

Bringing Parallelism to C++

Technical Specification for Parallel Algorithms
Multi-vendor collaboration
Based on proven technologies
● Thrust (NVIDIA)
● PPL (Microsoft)
● TBB (Intel)
Multiple implementations in progress
Targeting C++17

Roadmap

Parallelism?
Motivating example
What’s included in the box
The details
Future work

What do I mean by parallelism?

That’s like threads, right?
When I say “parallel”, think “independent”
● Concurrency is an optimization
● Concurrency can be hard
● locking, exclusion, communication, shared

state, data races...

What do I mean by parallelism?

Parallel programming => identifying tasks which
may be performed independently

How to communicate
this information to the
system?

It’s easy!

image credit: npr.org

Simple parallelism for everyone

Easy to access
Interoperability with existing codes
Supported as broadly as possible
Concurrency is an invisible optimization
Vendor extensible

Motivating Example

Motivating Example: Weld Vertices

case 0 case 1

case 2 case 3

Marching Cubes Algorithm

Motivating Example: Weld Vertices

Problem: Marching Cubes produces “triangle soup”
Solution: “Weld” redundant vertices together

0 1

2 5 4

3 6 7

8

0 1 2

34

Motivating Example: Weld Vertices

Easy with the right high-level algorithms
Procedure:
1. Sort triangle vertices
2. Collapse spans of like vertices
3. Search for each vertex’s unique index

Motivating Example: Weld Vertices
using namespace std;

using vertex = tuple<float,float>;
vector<vertex> vertices = input;
vector<size_t> indices(input.size());

// sort vertices to bring duplicates together
sort(vertices.begin(), vertices.end());

// find unique vertices and erase redundancies
auto redundant_begin = unique(vertices.begin(), vertices.end());
vertices.erase(redundant_begin, vertices.end());

// find index of each vertex in the list of unique vertices
my_find_all_lower_bounds(vertices.begin(), vertices.end(),
 input.begin(), input.end(),
 indices.begin());

Now do it in parallel?

Easy!
using namespace std;
using namespace std::experimental::parallel;

using vertex = tuple<float,float>;
vector<vertex> vertices = input;
vector<size_t> indices(input.size());

// sort vertices to bring duplicates together
sort(par, vertices.begin(), vertices.end());

// find unique vertices and erase redundancies
auto redundant_begin = unique(par, vertices.begin(), vertices.end());
vertices.erase(redundant_begin, vertices.end());

// find index of each vertex in the list of unique vertices
my_find_all_lower_bounds(par, vertices.begin(), vertices.end(),
 input.begin(), input.end(),
 indices.begin());

Wait, I changed my mind...
using namespace std;
using namespace std::experimental::parallel;

using vertex = tuple<float,float>;
vector<vertex> vertices = input;
vector<size_t> indices(input.size());

// sort vertices to bring duplicates together
sort(seq, vertices.begin(), vertices.end());

// find unique vertices and erase redundancies
auto redundant_begin = unique(seq, vertices.begin(), vertices.end());
vertices.erase(redundant_begin, vertices.end());

// find index of each vertex in the list of unique vertices
my_find_all_lower_bounds(seq, vertices.begin(), vertices.end(),
 input.begin(), input.end(),
 indices.begin());

Don’t make me choose!
using namespace std;
using namespace std::experimental::parallel;

...

execution_policy exec = seq;
if(input.size() > some_threshold) exec = par;

// sort vertices to bring duplicates together
sort(exec, vertices.begin(), vertices.end());

// find unique vertices and erase redundancies
auto redundant_begin = unique(exec, vertices.begin(), vertices.end());
vertices.erase(redundant_begin, vertices.end());

// find index of each vertex in the list of unique vertices
my_find_all_lower_bounds(exec, vertices.begin(), vertices.end(),
 input.begin(), input.end(),
 indices.begin());

my_find_all_lower_bounds
template<class ExecutionPolicy,
 class ForwardIterator,
 class InputIterator,
 class OutputIterator>
OutputIterator my_find_all_lower_bounds(ExecutionPolicy& exec,
 ForwardIterator haystack_begin,
 ForwardIterator haystack_end,
 InputIterator needles_begin,
 InputIterator needles_end,
 OutputIterator result)
{
 return transform(exec, needles_begin, needles_end, result,
 [=](auto& needle)
 {
 auto iter = std::lower_bound(haystack_begin, haystack_end, needle);
 return std::distance(haystack_begin, iter);
 });
}

my_find_all_lower_bounds

Truly general
● generic in data types (via iterators)
● generic in execution (via execution policy)

Composing our higher-level algorithms from
lower-level primitives gives us parallelism for
free!

How to write parallel programs

High-level algorithms

Control sequential/parallel execution with
policies

Communicate dependencies

What’s included in the box

Execution Policies

Parallel Algorithms

Parallel Exceptions

Execution Policies
using namespace std::experimental::parallelism;
std::vector<int> data = ...

// vanilla sort
sort(data.begin(), data.end());

// explicitly sequential sort
sort(seq, data.begin(), data.end());

// permitting parallel execution
sort(par, data.begin(), data.end());

// permitting vectorization as well
sort(par_vec, data.begin(), data.end());

Execution Policies
// sort with dynamically-selected execution
size_t threshold = ...
execution_policy = seq;
if(vec.size() > threshold)
{
 exec = par;
}

sort(exec, vec.begin(), vec.end());

Execution Policies
sort(vectorize_in_this_thread, vec.begin(), vec.end());

sort(submit_to_my_thread_pool, vec.begin(), vec.end());

sort(execute_on_that_gpu, vec.begin(), vec.end());

sort(offload_to_my_fpga, vec.begin(), vec.end());

sort(send_to_the_cloud, vec.begin(), vec.end());

sort(launder_through_botnet, vec.begin(), vec.end());

Implementation-Defined
(Non-Standard)

What is an execution policy?

Promise that a particular kind of reordering will
preserve the meaning of a program

Request that the implementation use some sort
of execution strategy

What sorts of reordering are allowable?

The Details

Sequential Execution
algo(seq, begin, end, func);

algo invokes function
and iterator operations
in sequential order in
the calling thread

calling thread

calling thread
func()
func()
func()

.

.

.

calling thread

time

Parallelizable Execution

algo(par, begin, end, func);

algo is permitted to invoke function
unsequenced if invoked in different threads,
and indeterminate order if invoked in the same
thread

Parallelizable Execution

algo(par, begin, end, func);

calling thread

thread N
func()
func()
func()

.

.

.

calling thread

local
time

thread 1
func()
func()
func()

.

.

.

thread 2
func()
func()
func()

.

.

.

...

Parallelizable Execution

It is the caller’s responsibility to ensure
correctness, for example that the invocation
does not introduce data races or deadlocks.

Parallelizable Execution
// data race
int a[] = {0,1};
std::vector<int> v;
for_each(par, a, a + 2, [&](int& i)
{
 v.push_back(i);
});

Parallelizable Execution
// OK (don't do this):
int a[] = {0,1};
std::vector<int> v;

std::mutex mut;
for_each(par, a, a + 2, [&](int& i)
{
 mut.lock();
 v.push_back(i);
 mut.unlock();
});

Parallelizable Execution
// OK (do this):
int a[] = {0,1};
std::vector<int> v(2);

for_each(par, a, a + 2, [&](int& i)
{
 v[i] = i;
});

Parallelizable Execution
// may deadlock (don't do this):
std::atomic<int> counter = 0;
int a[] = {0,1};

for_each(par, a, a + 2, [&](int& i)
{
 counter++;

 // spin wait for both lambdas to arrive
 while(counter.load() != 2)
 {
 ;
 }

 // try to do something crazy
 ...
});

Parallelizable + Vectorizable Execution

algo(par_vec, begin, end, func);

algo is permitted to invoke function
unsequenced if invoked in different threads,
and unsequenced if invoked in the same thread

Parallelizable + Vectorizable Execution

algo(par_vec, begin, end, func);

calling thread

calling thread

...thread 1
func()

func()
func()

func()func()
func()

thread 2

func()
func()

func()

func()

func()
func()

thread N
func()func()

func()

func()

func()

func()

Difference between par & par_vec

Function invocation is unsequenced when in
different threads

When executed in the same thread
● par: unspecified, sequenced invocations
● par_vec: no sequence exists at all

Parallelizable + Vectorizable Execution

It is the caller’s responsibility to ensure
correctness, for example that the invocation of
functions do not attempt to synchronize with
each other.

Parallelizable + Vectorizable Execution
// may deadlock (don't do this):
int counter = 0;
int a[] = {0,1};

std::mutex m;
for_each(par_vec, a, a + 2, [&](int)
{
 mut.lock();
 ++counter;
 mut.unlock();
});

Parallelizable + Vectorizable Execution
// OK:
std::atomic<int> counter = 0;
int a[] = {0,1};
for_each(par_vec, a, a + 2, [&](int)
{
 ++counter;
});

Parallelizable + Vectorizable Execution
// Best:
int count = count_if(par_vec, ...);

Use the highest-level algorithm that does the job!

Parallel Algorithms

Provide overloads of standard algorithm which
receive execution policy as parameter

To the degree possible, parallelize everything

New Algorithms

reduce : reduction over a collection
result = init + a[0] + a[1] + … + a[N-1]

exclusive_scan : exclusive prefix sum
result[i] = init + a[0] + a[1] + … + a[i-1]

inclusive_scan : inclusive prefix sum
result[i] = init + a[0] + a[1] + … + a[i]

No Parallelism

Binary search algorithms
Heap algorithms
Permutation algorithms
Shuffling algorithms
Sequential numeric algorithms

Parallel Exceptions

Parallel algorithms throw one of two:
● If no temporary storage is available,

bad_alloc

● exception_list of exceptions thrown by
user-provided code

Exceptions Example
struct superstition_error { const char* what() { return "eek"; } };

std::vector<int> data = ...

try
{
 for_each(data.begin(), data.end(), [](auto x)
 {
 if(x == 13)
 {
 throw superstition_error();
 }
 });
}
catch(superstition_error& error)
{
 std::cerr << error.what() << std::endl;
}

Exceptions Example
struct superstition_error { const char* what() { return "eek"; } };

std::vector<int> data = ...

using namespace std::experimental::parallelism;

try
{
 for_each(par, data.begin(), data.end(), [](auto x)
 {
 if(x == 13)
 {
 throw superstition_error();
 }
 });
}
catch(exception_list& error)
{
 std::cerr << “Encountered “ << errors.size() << “ unlucky numbers” << std::endl;

 reduce(par, errors.begin(), errors.end(), my_handler());
}

Exceptions Example
struct superstition_error { const char* what() { return "eek"; } };

std::vector<int> data = ...

using namespace std::experimental::parallelism;

try
{
 for_each(seq, data.begin(), data.end(), [](auto x)
 {
 if(x == 13)
 {
 throw superstition_error();
 }
 });
}
catch(exception_list& error)
{
 std::cerr << “Encountered “ << errors.size() << “ unlucky numbers” << std::endl;

 reduce(seq, errors.begin(), errors.end(), my_handler());
}

Example: Estimating Pi

Area of circle = pi * radius^2

Throw darts at unit square
pi ~ 4 * green / total

Algorithm: Count the number
of darts which fall within
quarter circle

Example: Estimating Pi

1 unit

Example: Estimating Pi
// generate a random point and test whether it
// lies in the quarter circle
bool test_quarter_circle(int seed)
{
 // seed an RNG
 std::default_random_engine rng(my_hash(seed));

 // generate numbers uniformly
 // in the unit interval
 std::uniform_real_distribution<float> u01(0,1);

 // generate a point within the unit square
 float x = u01(rng);
 float y = u01(rng);

 // measure distance from the origin
 float dist2 = std::sqrt(x*x + y*y);

 return dist2 <= 1.0f;
}

// burtleburtle.net/bob/hash/integer.html
int my_hash(int a)
{
 a = (a+0x7ed55d16) + (a<<12);
 a = (a^0xc761c23c) ^ (a>>19);
 a = (a+0x165667b1) + (a<<5);
 a = (a+0xd3a2646c) ^ (a<<9);
 a = (a+0xfd7046c5) + (a<<3);
 a = (a^0xb55a4f09) ^ (a>>16);
 return a;
}

Example: Estimating Pi
// throw 300M darts
auto n = 300 << 20;

// create the integers [0..n)
auto iter = boost::make_counting_iterator(0);

// count the number of points in the quarter circle
using namespace std::experimental::parallel;

auto num_within_quarter_circle =
 count_if(par, iter, iter + n, test_quarter_circle);

double pi_estimate = (4.0 * num_within_quarter_circle) / n;

Performance Portability
single CPU thread
Intel i7 860

time ./pi_seq
pi is approximately
3.14

real0m5.097s
user0m5.098s
sys 0m0.004s

8 CPU threads
OpenMP, Intel i7 860

time ./pi_par
pi is approximately
3.14

real0m0.971s
user0m7.565s
sys 0m0.015s

many GPU threads
CUDA, NVIDIA Tesla K20

time ./pi_gpu
pi is approximately
3.14

real0m0.260s
user0m0.047s
sys 0m0.188s

5.25x1x 19.6x

Future Work

Scheduling?
algo(exec, begin, end, func);

algo needs to compose with scheduling decisions in the
surrounding application
exec specifies how algo is allowed to execute

● specifies what work an implementation is allowed to
create

● does not specify where the work should be executed

Placement is orthogonal

Scheduling?
algo(exec(sched), begin, end,
func);

We anticipate extending our execution policies to accept
scheduling requirements as parameters

sched specifies where the work should be executed

Scheduling?

sched could be:
● hard requirement to execute vectorizable work in the

current thread
● number of threads to use
● a thread pool to use
● an executor to use
● which GPU(s) to use

Implementations in progress

github.com/n3554
● based on Thrust

parallelstl.codeplex.com
● based on PPL?

github.com/t-lutz/ParallelSTL
● based on std::thread

Summary

High-level algorithms make parallelism easy
● Portable & Composable
● Concurrency is invisible

Standardization
● On track for C++17
● Experimental Tech Spec in the meantime
● github.com/cplusplus/parallelism-ts

Questions?
jhoberock@nvidia.com

github.com/jaredhoberock

mailto:jhoberock@nvidia.com
mailto:jhoberock@nvidia.com

