y

£
y

How Facebook’s HHVM Uses
C++ for Fun and Profit

September 8th, 2014 Drew Paroski

What is HHVM?

* HHVM = HipHop Virtual Machine

* HHVM is a new open-source virtual
machine designed to execute
programs written in PHP or Hack’

* Hack is a new language that evolved from PHP which
adds a bunch of useful features

What is HHVM?

* Uses trace-based JIT compilation to
deliver superior performance while
maintaining the flexibility and
productivity that PHP developers are
used to

e Supports virtually all of the PHP 5.6
language including eval()

HHVM at Facebook

* A lot of core logic for a wide range of
Facebook’s features and products is
written in PHP/Hack

* HHVM was developed to deliver better
performance for Facebook’s PHP/Hack
code base

e HHVM evolved from a PHP->C++
transpiler called “HPHPCc”

Performance

e As of mid-2014, HHVM (and HPHPc before it)
has realized a ~10x increase in throughput and
over a 75% reduction in memory usage for
facebook.com compared with PHP 5.2

* Notes:

— This compares HHVM circa 2014 with a version of vanilla PHP from 2009

— These figures were calculated by taking multiple delta measurements over
multiple years and stitching them together — direct comparison is not
possible because FB’s codebase is no longer compatible with vanilla PHP

— HHVM/HPHPc and FB’s codebase have co-evolved over the past 4 years;
until recently HHVM optimization efforts focused solely on FB’s codebase

Facebook Data Center

Performance

* The performance of the stock php.net
interpreter has notably improved in
recent years

e Still, HHVM produces a boost of ~2x
or more for a lot of PHP applications
when compared with PHP 5.5 with
opcode cache

Productivity

* HHVM supports the flexible “edit, save,
run” development workflow that PHP
developers are accustomed to

* When a PHP source file gets modified,
HHVM detects that the file changed
and recompiles PHP code as needed

What can HHVM run?

facebook.com
Symfony
MediaWiki
WordPress
Laravel
Magento
Drupal

And dozens more of the most popular
PHP frameworks and applications

How does HHVM work?

* PHP is parsed and then converted into
untyped bytecode and metadata

* Basic blocks of bytecode (tracelets) are
analyzed using live type information
and converted to a typed IR

* Typed IR is then optimized and
converted into x64 machine code

Basic Compilation Pipeline

PHP
Source

parse emit analyze
Abstract Bytecode - Intermedlatce
Syntax Tree Representation
interpretation codegen
Y
HHVM Interpreter x64
Runtime Machine
Code
CPU

PHP - HHBC compilation

1 <7php T Er o
2: $a = array("hello" => "world");
3: f(%a, 42); 18: String "hit: "
4: f($a, "hello"); 23t String "\n”
- 28: CGetlL2 1
5: function f($a, $k) { k/// 30: Concat
6: if (lempty($a[$k])) { 31: Concat
7: print "hit: ".$k."\n"; // ;; Eg;rcﬁ
8: return; SN
9: } else { 35: RetC
10: print "miss: ".$k."\n"; S6: String "mice:
S rin miss:
11: return; N oy String e
12: } 46: CGetl2 1
13: } 48: Concat
49: Concat
50: Print
51: PopC
52: Null
53: RetC

Tracelets

e HHVM’s JIT compiler translates small amounts
of bytecode at a time, using run time type
information to drive predictions and generate
type-specialized machine code:

Bytecode leg type Type speughzed
info translation

CGetL O Local 0 is Prologue

String “x” type integer (type guards)

Concat Machine code to

CGetL 1 Local 1 is perform actual work

Eq type string

JmpZ 22

Epilogue (jump to
the next tracelet)

Translation example

function f(%$a, $k) {
if (lempty($a[$k])) {
echo "hit $k\n";
return;
} else {
echo "miss $k\n";
return;

Translation example

function f($a, $k) {
if (lempty($a[$k])) {
echo "hit $k\n";
return;
} else {
echo "miss $k\n";
return;
}
}

$a: array
$k: integer

if (lempty($a[$k])

Retranslate

:

Translate

|

Translate

Translation example

function f(%a, $k) {
if (lempty($a[$k])) {
echo "hit $k\n";
return;
} else {
echo "miss $k\n";
return;
}
¥

$a: array

$k: integer Retranslate

if (lempty($a[$k])

Translate

$k: integer
echo “miss $k\n”;
return;

Y

Retranslate

Translation example

Retranslate

function f(%a, $k) {
if (lempty($a[$k])) {
echo "hit $k\n"; $a: array $a: array

} Pitur?s $k: integer $k: string
else

echo "miss $k\n"; if (!empty($a[$k]) if (lempty($a[$k])
return; l l l
}

} Translate Translate Translate

$k: integer
echo “miss $k\n”;
return;

y

Retranslate

Translation example

Retranslate

function f(%a, $k) {
if (lempty($a[$k])) {
echo "hit $k\n"; $a: array $a: array
return; $k: integer $k: string
} else {
echo "miss $k\n"; if (lempty($a[$k]) if (lempty($a[$k])
return; l l
} } Translate Translate

$k: integer $k: string
echo “miss $k\n”; echo “hit $k\n”’;
return; return;

y y
Retranslate Retranslate

Another translation example

$n = 3 * $n + 1;

cmpl $@xa, -0x8(%rbp)
Int 3 :
CGetL © jne __retranslate
Mul mov -0x10(%rbp),%rax
mov %rax, %srcx
Int 1
shl %rcXx
Add /)
SetL © add J%rcx,%rax
PonC mov $0x1,%r13d
P add %brax,%srl3

HHVM’s Execution Model

HHVM models the flow of execution
using a stack of frames referred to as
the call stack

Each frame represents a function
Invocation

VM frames correspond to PHP function
invocations (shown in purple)

C++ frames correspond to C++ function
invocations (shown in blue)

myprogram.php

enterTCHelper

HHVM’s Execution Model

HHVM models the flow of execution
using a stack of frames referred to as
the call stack

Each frame represents a function
Invocation

VM frames correspond to PHP function
invocations (shown in purple)

C++ frames correspond to C++ function
invocations (shown in blue)

PHP code can call into C++ code

f array_map

myprogram.php

enterTCHelper

HHVM’s Execution Model ”

. enterTCHelper
HHVM models the flow of execution T

using a stack of frames referred to as
the call stack

Each frame represents a function
Invocation

f array_map

VM frames correspond to PHP function
invocations (shown in purple)

myprogram.php

C++ frames correspond to C++ function
invocations (shown in blue)

. enterTCHelper
PHP code can call into C++ code I

C++ code can call back into PHP code main

Why was C++ a good choice
for building HHVM?

Why was C++ a good choice
for building HHVM?

* C++ hits a sweet spot

— Superb control and performance on one end
— Convenience, maintainability, and safety on the other

— Gives the programmer fine-grained control to choose
between these competing concerns as desired in
different parts of the codebase

Control /
Performance

Convenience /
Maintainability / Safety

Why was C++ a good choice
for building HHVM?

* Performance is equal or better than any
other language (aside from assembly)

* Gives the programmer an incredible
amount of freedom and control:

—Manual memory management
— Unsafe casting, field size, and layout

—Flexible, light-weight interop with assembly
and machine code

Why was C++ a good choice
for building HHVM?

* C++ offers many convenient features
that can be used as little or as much as
desired

— Virtual methods

— Multiple inheritance

— reinterpret_cast vs. dynamic_cast

— Plain old data vs. constructors/destructors

— Raw pointers vs. references vs. smart pointers
— Stack allocation vs. malloc vs. new

— Templates and macros

Templates

* Templates are great for maintainability
* More hygienic than preprocessor macros

 For HHVM, templates were particularly
useful for critical parts of the engine
where we wanted the compiler to do as
much inlining as possible to improve perf

Templates

* Eliminating branches:

void foo(bool b, ..) { template <bool b>
if (b) { void foo(..) {
bar(); if (b) {
} bar () ;
}
} ..
}
test %rdi, %rdi call 0x4005a0 <bar>
jz L1
call 0x4005a0 <bar>
Ll:

Templates

* Reducing indirection:

void foo(int(*fn) (), ..) template <class T>
{ void foo(..) {

int x = fn(); int x = T::staticMeth();
} }

call *%rdi call 0x400780 <Foo::staticMeth>

C++11’s Lambdas

* Lambdas are useful because the help
keep related pieces of logic together in

onhe place

* For HHVM, we typically use reference
capture (i.e. “[&]”) and we’re careful
about making sure lambdas do not
outlive the captured variables on the

stack

C++11’s Lambdas

void CodeGenerator::cgCountArray(IRInstruction* inst) {

ifThenElse(vmain(), vcold(), CC_Z,
[&] (Vout& Vv) {
cgCallNative(v, inst);

}o
[&] (Vout& Vv) {
v << loadl{baseReg[ArrayData::offsetofSize()],
dstReg};
}

X Macros

* C++'s preprocessor is unhygienic, but it
is extremely powerful and it can be very
useful

* The X Macro technique can help with
maintainability if used judiciously

* HHVM'’s bytecode definitions use the
X Macro technigue to make it easy to
add, remove, or modify bytecode
instructions

X Macros

#define OPCODES \

O(PopC, NA, ONE(CV), NOV, NF) \
O(PopV, NA, ONE (VV), NOV NF) \
O(CGetL, ONE(LA), NOV, ONE(CV), NF) \
O(Add, NA, TWO(CV,CV), ONE(CV), NF) \

enum class Op : uint8 t {

#define O(name, ...) name,
OPCODES

#undef O

}i

X Macros

#define OPCODES \

O(PopC, NA, ONE (CV), NOV, NF) \
O(PopV, NA, ONE (VV), NOV NF) \
O(CGetL, ONE(LA), NOV, ONE(CV), NF) \
O(Add, NA, TWO(CV,CV), ONE(CV), NF) \
#define PUSH_NOV /* nop */
#define PUSH _ONE(t) PUSH ##t

#define PUSH TWO(tl, t2) PUSH ##t2; PUSH ##tl
#define PUSH_CV
#define PUSH_VV

#define O(name, imm, push, pop, flags) \
PUSH_##push

OPCODES

#undef O

#undef PUSH_NOV

Unions and field size

* Unions are super useful when dealing
with dynamically-typed values

e Unions can also be used to reduce the
size of structs that have mutually
exclusive fields

 Ability to control field size also comes in

handy:
— 8-bit, 16-bit, 32-bit, or 64-bit integers

TypedValue union

struct TypedValue { enum DataType : int8 t {
union { KindOfClass = -13,
int64 t num; KindOfUninit = 0x00,
double dbl; KindOfNull = 0x08,
StringData* pstr; KindOfBoolean = 0x09,
ArrayData* parr; KindOfInt64 = 0x0a,
ObjectData* pobij; KindOfDouble = 0x0b,
ResourceData* pres; KindOfString = 0x14,
Class* pcls; KindOfArray = 0x20,
RefData* pref; KindOfObject = 0x30,
} m data; KindOfResource = 0x40,
DataType m_ type; KindOfRef = 0x50,

AuxUnion m_aux;

}i }i

Unsafe casts and bit-stealing

 C++ allows for unsafe casts between
integers and different pointer types

* The implementation of malloc used
by HHVM always returns chunks of
memory aligned to 8-byte boundaries

* Unsafe casts and bit masking can be
used to steal the low bits of pointers

Activation Records ”

, . enterTCHelper
e HHVM’s ActRec struct is used as the T

header for each VM frame

f array_map

e ActRecs store essential information
about the PHP function invocation, such
as:

— The name and other metadata pertaining
to the current function

— Where to jump to when the function myprogram.php
returns

— Necessary bookkeeping to support getting enterTCHelper
a PHP backtrace (i.e. debug backtrace()) i

Bit-stealing with ActRecs

struct ActRec {

ActRec* m savedFp;

uint64 t m savedRip;

Func* m_ func;

uint32 t m soff;

uint32 t m numArgsAndFlags;

union {
ObjectData* m this;
Class* m cls;

}i

union {
VarkEnv* m varkEnv;
ExtraArgs* m extraArgs;
StringData* m invName;

Saved FP

Saved RIP

Func

Bytecode| # args/
offset flags

“this” pointer /
late-bound class

VarEnv / ExtraArgs /
InvName

Bit-stealing with ActRecs

struct ActRec {

ActRec* m savedFp;

uint64 t m savedRip;

Func* m_ func;

uint32 t m soff;

uint32 t m numArgsAndFlags;

union ({
ObjectData* m_this;
Class* m_cls;

};

union {
VarkEnv* m varkEnv;
ExtraArgs* m extraArgs;
StringData* m invName;

Saved FP

Saved RIP

Func

Bytecode| # args/
offset flags

“this” pointer /
late-bound class

VarEnv / ExtraArgs /
InvName

Bit-stealing with ActRecs

* For unions of pointers, we steal the low
bit(s) and use it as a tag to disambiguate

bool hasThis() const {
return m this && ! ((intptr t)m this & 1);
}
ObjectData* getThis() {
return m this;
}
void setThis(ObjectData* val) {
m this = val;
}
bool hasClass() {
return (intptr t)m cls & 1;

}

Class* getClass() {

return (Class¥*)((intptr t)m cls & 1);
}
void setClass(Class* val) {

m cls = (Class*)((intptr t)val | 1);

}

Bit-stealing with ActRecs

struct ActRec {

ActRec* m savedFp;

uint64 t m savedRip;

Func* m_ func;

uint32 t m soff;

uint32 t m numArgsAndFlags;

union {
ObjectData* m this;
Class* m cls;

}i

union {
VarkEnv* m varkEnv;
ExtraArgs* m extraArgs;
StringData* m invName;

Saved FP

Saved RIP

Func

Bytecode | # args /
offset flags

“this” pointer /
late-bound class

VarEnv / ExtraArgs /
InvName

Bit-stealing with ActRecs

* Form numArgsAndFlags, we steal the
high bit(s) for flags

int32 t numArgs() {

return m numArgsAndFlags & Ox7fffffff;
}
bool isCtorFrame() {

return m numArgsAndFlags & (1 << 31);

}

void initNumArgs(uint32 t numArgs) {
assert (! (numArgs & (1 << 31)));
m numArgsAndFlags = numArgs;

}

void initNumArgsCtorFrame(uint32 t numArgs) ({
assert (! (numArgs & (1 << 31)));
m numArgsAndFlags = numArgs | (1 << 31);

}

Profiling

* The C++ ecosystem has lots of mature
tools for profiling

* Linux’s perf tool is awesome

— Uses a sampling technique to determine
which functions a program spends the most
CPU time on

— Keeps track of the full call stack for each
sample

Profiling
* On x64, Linux’s perf tool works by using

the rbp-chain to walk the call stack

* C++ code needs be compiled with frame
pointers (i.e. -fno-omit-frame-pointer)

CPU Memory
rbp rip L]

T I ol g =y W

.

x64 code

— =

Profiling

* ActRec is designed
so the first 16 bytes Saved FP Saved RIP

has the same layout

Bytecode| #args/

Func offset flags

as C++ frames
This / Cls VarEnv / ExtraArgs /
¢ HHVM SEtS Up VM InvName

frames so that they
are participate in the rbp-chain

* This makes it possible to profile PHP

programs running under HHVM using
Linux’s per £ tool

Events: 4K cycles
- 1.02% hhvm hhvm [.] HPHP: :0bjectData: :setProp(HPHP: :Class*, HPHP::S
- HPHP: :0ObjectData: :setProp(HPHP: :Class*, HPHP::StringData const*, HPHP::Typed
- 73.64% HPHP: :JIT::MInstrHelpers::setPropCO(HPHP: :Class*, HPHP::TypedValue
+ 57.02% PHP::/www/wordpress/wp-includes/post.php: :WP_Post::__construct
+ 16.74% PHP: :/www/wordpress/wp-includes/post.php: :WP_Post::__construct
+ 16.61% PHP: :/www/wordpress/wp-includes/post.php::sanitize_post
+ 16.47% HPHP: :0ObjectData: :o_setArray(HPHP: :Array const&)
+ 3.98% PHP::/www/wordpress/wp-includes/post.php: :WP_Post::__construct
0.80% hhvm hhvm [.] HPHP::f_in_array(HPHP: :Variant const&, HPHP::Va
- HPHP: :f_in_array(HPHP: :Variant const&, HPHP::Variant const&, bool)
+ 49.94% PHP: :/www/wordpress/wp-includes/post.php::sanitize_post_field
+ 26.36% PHP::/www/wordpress/wp-includes/post.php::sanitize_post_field
+ 5.86% PHP::/www/wordpress/wp-includes/option.php: :get_option
+ 3.90% PHP::/www/wordpress/wp-includes/post.php::sanitize_post
0.73% hhvm hhvm [.] HPHP: :Unit: :GetNamedEntity(HPHP: :StringData con
- HPHP: :Unit: :GetNamedEntity(HPHP: :StringData const*, bool, HPHP::String*)
- 31.10% HPHP: :f_is_a(HPHP: :Variant const&, HPHP::String const&, bool)
+ 73.09% PHP::/www/wordpress/wp-includes/post.php::get_post
+ 25.37% PHP: :/www/wordpress/wp-includes/post.php: :get_post
+ 1.17% PHP::/www/wordpress/wp-includes/post.php: :get_post
- 27.98% HPHP: :Unit::loadFunc(HPHP: :StringData const*)
- 85.99% HPHP: :JIT::fpushCufHelperString(HPHP: :StringData*, HPHP: :ActRec
+ 97.73% PHP: :/www/wordpress/wp-includes/plugin.php: :apply_filters

+ 0.77% PHP: :/www/wordpress/wp-includes/plugin.php: :apply_filters
Press '?' for help on key bindings

Exception handling / unwinding

* setjmp/ longjmp can be useful when
implementing exception handling for a

VM

e HHVM'’s initial EH implementation used
setjmp and longjmp to skip over the
enterTCHelper trampoline and VM
frames when an exception was thrown

— This scheme was a bit clunky but it got
HHVM'’s EH system up and running quickly

Exception handling / unwinding

Later, HHVM switched over to using g++’s
__register frame() function to integrate

with the C++ runtime’s exceptlon unwmdmg

system by registering a “personality routine”

Unwind Reason Code
tc_unwind_ personality(
int version,
_Unwind Action actions,
uint64 t exceptionClass,
_Unwind Exception* exceptionObj,
_Unwind Context* context

) ;

C++ / machine code interop

* On x64 and other popular platforms,
C++ has a well-defined ABI for
function calls

* Generating calls from machine code
to C++ functions is light-weight and
easy’

* Provided that parameters are pointers or primitive types and virtual
methods are not involved

C++ / machine code interop

* Making C++ call into machine code is also
relatively simple

* C++ allows the programmer to take a
void* that points to machine code and
cast it to a function pointer and invoke it:

void* p = getMachineCodeAddress();
typedef int(*FuncPtr) (int);
FuncPtr fn = (FuncPtr)p;

int result = £fn(123);

enterTCHelper example

enterTCHelper:
push %rbp

push %rcx

mov %rdi, $rbx

mov %r8,%rl2

mov $%$rsi, $rbp
call *3%rdx

pop %rbx

mov %rdi,0x0(%rbx)
mov %rsi,0x8(%rbx)
pop %rbp

ret

// Parameters: rdi, rsi, rdx, rcx, r8
extern "C" void
enterTCHelper (Cell* sp, ActRec* fp,

TCA start, TReqInfo* info,

void* tlBase);

inline void
enterTC(TCA start, TReqgInfo& info) {

asm volatile(""

"rbx", "ri2", "ri3", "ril4d4", "ril5");
auto& regs = vmRegsUnsafe();
enterTCHelper (regs.stkTop(), regs.fp,

start, &info, tl base());

asm volatile(
"rbX", l|r12l|, Ilr13ll, "r14", llrl5ll);

Manual Memory Management

 C++ gives the programmer freedom to
manually manage memory; this was
essential for HHVM

* High compatibility with the php.net
interpreter was important; given PHP’s
semantics, refcounting was less risky

— Thus tracing GC was not an attractive option
at the outset

Native allocation

* C++ provides an easy and
light-weight means for the
programmer to choose
which implementation of
malloc they want to use

jemalloc

* HHVM uses jemalloc to handle calls
to malloc APIs such asmalloc (),
free(),calloc(), etc.

jemalloc

* jemalloc is a world-class
concurrent memory allocator
used by the FreeBSD operating
system, Firefox, and many other
software projects

jemalloc

* Very efficient both for single- and multi-
threaded programs

— Particularly good at minimizing fragmentation
for long-running processes

jemalloc

* HHVM takes advantage of jemalloc-specific
APls that aren’t part of the standard malloc

interface

 Some features were added to jemalloc to
specifically to help out HHVM

— jemalloc’smallocx () and allocm() APIs were
updated to support allocating memory with “low”
addresses that can fit within 32 bits

— Sophisicated heap profiling functionality was added
to jemalloc to aid with investigating how to improve

HHVM'’s performance

Low addresses

* Allocating memory with low addresses
helps make HHVM'’s data structures

smaller and helps with generating more
more efficient machine code

struct LowClassPtr {
int32 t m raw;
Class* get() {
return reinterpret cast<Class*>(m raw);
}

void set(Class* c) {
m raw = reinterpret cast<int32 t>(c);

}
}i

Low addresses

movl $0x7671a20, -0x20(%rbx)

[c7 43 e0 20 1la 67 07]

7 bytes total

movabs $S0x7fffe8408000, %rax
mov 3rax, -0x20(%rbx)

[48 b8 00 80 40 e8 f£f 7f 00 00 48 89 43 e0]

14 bytes total

Memory Management for PHP

 The PHP language requires that engines
provide some form of automatic memory
management for programs written in PHP

* PHP models concurrency using separate
requests

* Each request has its own distinct heap, and
at the end of a request the entire heap dies

* A given request cannot directly access the
heap of another request

HHVM’s request allocator

* HHVM implements its own custom
request allocator
— Maintains separate isolated heap for each

request; this means refcounting doesn’t
need to use atomic inc/dec

— Optimizes reclamation at the end of
the request

— Avoids some of the overheads of malloc

— Controlling the allocator implementation
makes it easier to optimize how JIT'd code
interacts with the allocator

Huge pages

* Manual memory management also made
it possible for HHVM to take advantage of
madvise()’s MADV HUGEPAGE feature
which takes advantage of larger page
sizes supported by the TLB hardware
— By using fewer iTLB entries we were able to

significantly reduce iTLB misses, which gave
us a nice boost for larger PHP codebases

Obstacles

* There were some features of C++
that posed challenges for us when
building HHVM

* For most of these obstacles there
was a way to hack around them,
which is a testament to C++’s power
and flexibility

Unions and non-POD types

* Before C++11, unions could only work
with “plain old data” (POD) types

* For HHVM, we wanted to reuse parts of
HPHPCc’s runtime that dealt with iterating
over PHP arrays, but we encountered a
problem where we needed to make a
union of non-POD types

Unions and non-POD types

struct Iter {
bool init(TypedValue* c) {
new (&arr()) Arraylter(c);
}
bool minit (TypedValue* v) {
new (&marr()) MArrayIter(v);

}
void free() { arr().~Arraylter(); }
volid mfree() { marr().~MArrayIter(); }

ArrayIter& arr() { return *(ArrayIter*)m u; }
MArrayIter& marr() { return *(MArrayIter*)m u; }
char m u[MAX(sizeof (ArrayIter),
sizeof (MArraylIter))];
} __attribute ((aligned(16)));

C++11’s Unrestricted Unions

struct Iter {
bool init(TypedValue* c) {
new (&m _u.arr) Arraylter(c);
}
bool minit (TypedValue* v) {
new (&m _u.marr) Arraylter(v);

}
void free() { m_u.arr.~Arraylter(); }
void mfree() { m u.marr.~MArrayIter(); }

union Data ({
ArrayIter arr;
MArraylter marr;
} m_u;

}

Unnecessary refcounting
with smart pointers

* Before move constructors and rvalues were
introduced in C++11, smart pointers would
often do unnecessary refcounting:

class Variant {
Variant (String s) { .. }
}i

class String {

};..
String foo() { .. }

Variant v(foo());

Avoiding unnecessary refcounting

Prior to C++11, we did some awkward dances to
avoid unnecessary refcounting:

class Variant {
enum NoInc { noInc = 0 };
Variant (StringData* s, NoInc) { .. }
}i
class String {
StringData* detach() {
auto p = m data;
m data = nullptr;
return p;
}
}i
String foo() { .. }

Variant v(foo().detach(), Variant::nolnc);

C++11’s Move Constructors

* Move constructors made it a lot easier to

avoid unnecessary refcounting with smart
pointers:

class Variant {
Variant (String&& s) { .. s.detach() .. }
}i
class String {
StringData* detach() {
auto p = m data;
m data = nullptr;
return p;
}
}i
String foo() { .. }

Variant v(foo());

C++ instance methods

* Generating machine code that calls into
a non-virtual C++ instance method was a

bit difficult
— Getting at the machine code address for the
method not straight-forward

e For HHVM, we wanted to reuse some

existing parts of HPHPc’s runtime that
used non-virtual C++ instance methods

* We found a way to make it work for g++

C++ instance methods

template <typename MethPtr>

void* getMethodPtr (MethPtr p) {
union U { MethPtr meth; void* ptr; };
return ((U*)&p)->ptr;

}

class C {
public: int foo(int x) { .. }

}i

void generateCallSite() {
void* addr = getMethodPtr (&C::fo00);
printf(“callg 0x%x\n”, addr);

}

// Example output
callg 0x400570

C++ instance methods

template <typename MethPtr>

void* getMethodPtr (MethPtr p) {
union U { MethPtr meth; void* ptr; };
return ((U*)&p)->ptr;

}

class C {
public: int foo(int x) { .. }

}i

void test(C* c) {
typedef int (*FuncPtr) (void*,int);
void* addr = getMethodPtr (&C::fo00);
((FuncPtr)addr) (c, 123);

C++ virtual methods

* Generating machine code that calls into
a C++ virtual method was tricky

* We found a way to make it work for g++

* For HHVM, we wanted to reuse some
existing parts of HPHPc’s runtime that
used C++ virtual methods

C++ virtual methods

template <typename MethPtr>

int getVTableOffset (MethPtr p) {
union U { MethPtr meth; inté64 t off; };
return ((U*)&p)->o0ff - 1;

}
class C {
public: virtual int foo(int x) { .. }
}i
void generateCallSite() {
int off = getVTableOffset(&C::£f00);
printf(“mov (%rdi), %rax\n”);
printf(“callg *0x%x(%rax)\n”, (int)off);
}

// Example output
mov (%$rdi), %rax
callg *0x8(%rax)

C++ virtual methods

template <typename MethPtr>
int getVTableOffset (MethPtr p) {
union U { MethPtr meth; inté64 t off; };
return ((U*)&p)->o0ff - 1;
}
void* getVirtMethAddr (void* obj, int off) {
return *(void**) (*(intptr t*)obj + off);
}
class C {
public: virtual int foo(int x) { .. }
i
void test(C* c) {
typedef int (*FuncPtr) (void*,int);
int64 t off = getVTableOffset(&C::fo00);
((FuncPtr)getVirtMethAddr(c, off))(c, 123);

/4
l4d

Website: hhvm.com
Facebook Page: facebook.com/hhvm
Github: github.com/facebook/hhvm

