
How	
 Facebook’s	
 HHVM	
 Uses	

C++	
 for	
 Fun	
 and	
 Profit	

	

September	
 8th,	
 2014	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Drew	
 Paroski	

What	
 is	
 HHVM?	

•  HHVM	
 =	
 HipHop	
 Virtual	
 Machine	

	

•  HHVM	
 is	
 a	
 new	
 open-­‐source	
 virtual	

machine	
 designed	
 to	
 execute	

programs	
 wriNen	
 in	
 PHP	
 or	
 Hack*	

	

	
 	
 	
 	
 	
 	
 *	
 Hack	
 is	
 a	
 new	
 language	
 that	
 evolved	
 from	
 PHP	
 which	

	
 	
 	
 	
 	
 	
 adds	
 a	
 bunch	
 of	
 useful	
 features	

What	
 is	
 HHVM?	

•  Uses	
 trace-­‐based	
 JIT	
 compilaSon	
 to	

deliver	
 superior	
 performance	
 while	

maintaining	
 the	
 flexibility	
 and	

producSvity	
 that	
 PHP	
 developers	
 are	

used	
 to	

	

•  Supports	
 virtually	
 all	
 of	
 the	
 PHP	
 5.6	

language	
 including	
 eval()	

1.	
 Namespaces	
 coming	
 soon!	

HHVM	
 at	
 Facebook	

•  A	
 lot	
 of	
 core	
 logic	
 for	
 a	
 wide	
 range	
 of	

Facebook’s	
 features	
 and	
 products	
 is	

wriNen	
 in	
 PHP/Hack	

	

•  HHVM	
 was	
 developed	
 to	
 deliver	
 beNer	

performance	
 for	
 Facebook’s	
 PHP/Hack	

code	
 base	

	

•  HHVM	
 evolved	
 from	
 a	
 PHP-­‐>C++	

transpiler	
 called	
 “HPHPc”	

Performance	

•  As	
 of	
 mid-­‐2014,	
 HHVM	
 (and	
 HPHPc	
 before	
 it)	

has	
 realized	
 a	
 ~10x	
 increase	
 in	
 throughput	
 and	

over	
 a	
 75%	
 reducSon	
 in	
 memory	
 usage	
 for	

facebook.com	
 compared	
 with	
 PHP	
 5.2	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 *	
 Notes:	

–  This	
 compares	
 HHVM	
 circa	
 2014	
 with	
 a	
 version	
 of	
 vanilla	
 PHP	
 from	
 2009	

–  These	
 figures	
 were	
 calculated	
 by	
 taking	
 mulSple	
 delta	
 measurements	
 over	

mulSple	
 years	
 and	
 sStching	
 them	
 together	
 –	
 direct	
 comparison	
 is	
 not	

possible	
 because	
 FB’s	
 codebase	
 is	
 no	
 longer	
 compaSble	
 with	
 vanilla	
 PHP	

–  HHVM/HPHPc	
 and	
 FB’s	
 codebase	
 have	
 co-­‐evolved	
 over	
 the	
 past	
 4	
 years;	

unSl	
 recently	
 HHVM	
 opSmizaSon	
 efforts	
 focused	
 solely	
 on	
 FB’s	
 codebase	

Facebook	
 Data	
 Center	

Performance	

•  The	
 performance	
 of	
 the	
 stock	
 php.net	

interpreter	
 has	
 notably	
 improved	
 in	

recent	
 years	

	

•  SSll,	
 HHVM	
 produces	
 a	
 boost	
 of	
 ~2x	

or	
 more	
 for	
 a	
 lot	
 of	
 PHP	
 applicaSons	

when	
 compared	
 with	
 PHP	
 5.5	
 with	

opcode	
 cache	

ProducSvity	

•  HHVM	
 supports	
 the	
 flexible	
 “edit,	
 save,	

run”	
 development	
 workflow	
 that	
 PHP	

developers	
 are	
 accustomed	
 to	

	

• When	
 a	
 PHP	
 source	
 file	
 gets	
 modified,	

HHVM	
 detects	
 that	
 the	
 file	
 changed	

and	
 recompiles	
 PHP	
 code	
 as	
 needed	

What	
 can	
 HHVM	
 run?	

•  facebook.com	

•  Symfony	

•  MediaWiki	

•  WordPress	

•  Laravel	

•  Magento	

•  Drupal	

•  And	
 dozens	
 more	
 of	
 the	
 most	
 popular	

PHP	
 frameworks	
 and	
 applicaSons	

	

How	
 does	
 HHVM	
 work?	

•  PHP	
 is	
 parsed	
 and	
 then	
 converted	
 into	

untyped	
 bytecode	
 and	
 metadata	

	

•  Basic	
 blocks	
 of	
 bytecode	
 (tracelets)	
 are	

analyzed	
 using	
 live	
 type	
 informaSon	

and	
 converted	
 to	
 a	
 typed	
 IR	

	

•  Typed	
 IR	
 is	
 then	
 opSmized	
 and	

converted	
 into	
 x64	
 machine	
 code	

Basic	
 CompilaSon	
 Pipeline	

parse	

codegen	

Bytecode	

	

emit	

Intermediate	

RepresentaSon	

analyze	

PHP	

Source	

Abstract	

Syntax	
 Tree	

	

	

	

	

CPU	

x64	

Machine	

Code	

Interpreter	

	

HHVM	

RunSme	

interpretaSon	

PHP	
 à	
 HHBC	
 compilaSon	

	
 1:	
 <?php	

	
 2:	
 $a	
 =	
 array("hello"	
 =>	
 "world");	

	
 3:	
 f($a,	
 42);	

	
 4:	
 f($a,	
 "hello");	

	
 5:	
 function	
 f($a,	
 $k)	
 {	

	
 6:	
 	
 	
 if	
 (!empty($a[$k]))	
 {	

	
 7:	
 	
 	
 	
 	
 print	
 "hit:	
 ".$k."\n";	

	
 8:	
 	
 	
 	
 	
 return;	

	
 9:	
 	
 	
 }	
 else	
 {	

10:	
 	
 	
 	
 	
 print	
 "miss:	
 ".$k."\n";	

11:	
 	
 	
 	
 	
 return;	

12:	
 	
 	
 }	

13:	
 }	

	
 	
 	
 	
 0:	
 EmptyM	
 <L:0	
 EL:1>	

	
 	
 	
 13:	
 JmpNZ	
 23	
 (96)	

	

	
 	
 	
 18:	
 String	
 "hit:	
 "	

	
 	
 	
 23:	
 String	
 "\n"	

	
 	
 	
 28:	
 CGetL2	
 1	

	
 	
 	
 30:	
 Concat	

	
 	
 	
 31:	
 Concat	

	
 	
 	
 32:	
 Print	

	
 	
 	
 33:	
 PopC	

	
 	
 	
 34:	
 Null	

	
 	
 	
 35:	
 RetC	

	

	
 	
 	
 36:	
 String	
 "miss:	
 "	

	
 	
 	
 41:	
 String	
 "\n"	

	
 	
 	
 46:	
 CGetL2	
 1	

	
 	
 	
 48:	
 Concat	

	
 	
 	
 49:	
 Concat	

	
 	
 	
 50:	
 Print	

	
 	
 	
 51:	
 PopC	

	
 	
 	
 52:	
 Null	

	
 	
 	
 53:	
 RetC	

Tracelets	

•  HHVM’s	
 JIT	
 compiler	
 translates	
 small	
 amounts	

of	
 bytecode	
 at	
 a	
 Sme,	
 using	
 run	
 Sme	
 type	

informaSon	
 to	
 drive	
 predicSons	
 and	
 generate	

type-­‐specialized	
 machine	
 code:	

CGetL 0!
String “x”!
Concat!
CGetL 1!
Eq !
JmpZ 22 !

Local 0 is
type integer  
 
Local 1 is
type string!

Prologue  
(type guards)!

Machine code to
perform actual work!

Epilogue (jump to
the next tracelet)!

Bytecode	
 Live	
 type	

info	

Type-­‐specialized	

translaSon	

TranslaSon	
 example	

function	
 f($a,	
 $k)	
 {	

	
 	
 if	
 (!empty($a[$k]))	
 {	

	
 	
 	
 	
 echo	
 "hit	
 $k\n";	

	
 	
 	
 	
 return;	

	
 	
 }	
 else	
 {	

	
 	
 	
 	
 echo	
 "miss	
 $k\n";	

	
 	
 	
 	
 return;	

	
 	
 }	

}	

TranslaSon	
 example	

if	
 (!empty($a[$k])	

$a:	
 array	

$k:	
 integer	

Translate	

Retranslate	

Translate	

function	
 f($a,	
 $k)	
 {	

	
 	
 if	
 (!empty($a[$k]))	
 {	

	
 	
 	
 	
 echo	
 "hit	
 $k\n";	

	
 	
 	
 	
 return;	

	
 	
 }	
 else	
 {	

	
 	
 	
 	
 echo	
 "miss	
 $k\n";	

	
 	
 	
 	
 return;	

	
 	
 }	

}	

TranslaSon	
 example	

if	
 (!empty($a[$k])	

$a:	
 array	

$k:	
 integer	

echo	
 “miss	
 $k\n”;	

return;	

$k:	
 integer	

Translate	

Retranslate	

function	
 f($a,	
 $k)	
 {	

	
 	
 if	
 (!empty($a[$k]))	
 {	

	
 	
 	
 	
 echo	
 "hit	
 $k\n";	

	
 	
 	
 	
 return;	

	
 	
 }	
 else	
 {	

	
 	
 	
 	
 echo	
 "miss	
 $k\n";	

	
 	
 	
 	
 return;	

	
 	
 }	

}	

Retranslate	

TranslaSon	
 example	

if	
 (!empty($a[$k])	

$a:	
 array	

$k:	
 integer	

if	
 (!empty($a[$k])	

$a:	
 array	

$k:	
 string	

echo	
 “miss	
 $k\n”;	

return;	

$k:	
 integer	

Translate	
 Translate	

Retranslate	

Translate	

function	
 f($a,	
 $k)	
 {	

	
 	
 if	
 (!empty($a[$k]))	
 {	

	
 	
 	
 	
 echo	
 "hit	
 $k\n";	

	
 	
 	
 	
 return;	

	
 	
 }	
 else	
 {	

	
 	
 	
 	
 echo	
 "miss	
 $k\n";	

	
 	
 	
 	
 return;	

	
 	
 }	

}	

Retranslate	

TranslaSon	
 example	

if	
 (!empty($a[$k])	

$a:	
 array	

$k:	
 integer	

if	
 (!empty($a[$k])	

$a:	
 array	

$k:	
 string	

echo	
 “miss	
 $k\n”;	

return;	

$k:	
 integer	

echo	
 “hit	
 $k\n”;	

return;	

$k:	
 string	

Translate	
 Translate	

Retranslate	

function	
 f($a,	
 $k)	
 {	

	
 	
 if	
 (!empty($a[$k]))	
 {	

	
 	
 	
 	
 echo	
 "hit	
 $k\n";	

	
 	
 	
 	
 return;	

	
 	
 }	
 else	
 {	

	
 	
 	
 	
 echo	
 "miss	
 $k\n";	

	
 	
 	
 	
 return;	

	
 	
 }	

}	

Retranslate	
 Retranslate	

Another	
 translaSon	
 example	

$n	
 =	
 3	
 *	
 $n	
 +	
 1;	

...	

Int	
 3	

CGetL	
 0	

Mul	

Int	
 1	

Add	

SetL	
 0	

PopC	

...	

cmpl	
 	
 	
 $0xa,-­‐0x8(%rbp)	

jne	
 	
 	
 	
 __retranslate	

mov	
 	
 	
 	
 -­‐0x10(%rbp),%rax	

mov	
 	
 	
 	
 %rax,%rcx	

shl	
 	
 	
 	
 %rcx	

add	
 	
 	
 	
 %rcx,%rax	

mov	
 	
 	
 	
 $0x1,%r13d	

add	
 	
 	
 	
 %rax,%r13	

...	

HHVM’s	
 ExecuSon	
 Model	

•  HHVM	
 models	
 the	
 flow	
 of	
 execuSon	

using	
 a	
 stack	
 of	
 frames	
 referred	
 to	
 as	

the	
 call	
 stack	

•  Each	
 frame	
 represents	
 a	
 funcSon	

invocaSon	

•  VM	
 frames	
 correspond	
 to	
 PHP	
 funcSon	

invocaSons	
 (shown	
 in	
 purple)	

•  C++	
 frames	
 correspond	
 to	
 C++	
 funcSon	

invocaSons	
 (shown	
 in	
 blue)	

myprogram.php	

enterTCHelper	

foo	

bar	

main	

HHVM’s	
 ExecuSon	
 Model	

•  HHVM	
 models	
 the	
 flow	
 of	
 execuSon	

using	
 a	
 stack	
 of	
 frames	
 referred	
 to	
 as	

the	
 call	
 stack	

•  Each	
 frame	
 represents	
 a	
 funcSon	

invocaSon	

•  VM	
 frames	
 correspond	
 to	
 PHP	
 funcSon	

invocaSons	
 (shown	
 in	
 purple)	

•  C++	
 frames	
 correspond	
 to	
 C++	
 funcSon	

invocaSons	
 (shown	
 in	
 blue)	

•  PHP	
 code	
 can	
 call	
 into	
 C++	
 code	

f_array_map	

myprogram.php	

enterTCHelper	

foo	

bar	

main	

HHVM’s	
 ExecuSon	
 Model	

•  HHVM	
 models	
 the	
 flow	
 of	
 execuSon	

using	
 a	
 stack	
 of	
 frames	
 referred	
 to	
 as	

the	
 call	
 stack	

•  Each	
 frame	
 represents	
 a	
 funcSon	

invocaSon	

•  VM	
 frames	
 correspond	
 to	
 PHP	
 funcSon	

invocaSons	
 (shown	
 in	
 purple)	

•  C++	
 frames	
 correspond	
 to	
 C++	
 funcSon	

invocaSons	
 (shown	
 in	
 blue)	

•  PHP	
 code	
 can	
 call	
 into	
 C++	
 code	

•  C++	
 code	
 can	
 call	
 back	
 into	
 PHP	
 code	

enterTCHelper	

biz	

f_array_map	

myprogram.php	

enterTCHelper	

foo	

bar	

main	

Why	
 was	
 C++	
 a	
 good	
 choice	

for	
 building	
 HHVM?	

Why	
 was	
 C++	
 a	
 good	
 choice	

for	
 building	
 HHVM?	

•  C++	
 hits	
 a	
 sweet	
 spot	

–  Superb	
 control	
 and	
 performance	
 on	
 one	
 end	

–  Convenience,	
 maintainability,	
 and	
 safety	
 on	
 the	
 other	

– Gives	
 the	
 programmer	
 fine-­‐grained	
 control	
 to	
 choose	

between	
 these	
 compeSng	
 concerns	
 as	
 desired	
 in	

different	
 parts	
 of	
 the	
 codebase	

	
 	
 	
 	
 	
 	
 	
 	
 Convenience	
 /	

Maintainability	
 /	
 Safety	

	
 	
 	
 Control	
 /	

Performance	

Why	
 was	
 C++	
 a	
 good	
 choice	

for	
 building	
 HHVM?	

•  Performance	
 is	
 equal	
 or	
 beNer	
 than	
 any	

other	
 language	
 (aside	
 from	
 assembly)	

	

•  Gives	
 the	
 programmer	
 an	
 incredible	

amount	
 of	
 freedom	
 and	
 control:	

– Manual	
 memory	
 management	

– Unsafe	
 casSng,	
 field	
 size,	
 and	
 layout	

– Flexible,	
 light-­‐weight	
 interop	
 with	
 assembly	

and	
 machine	
 code	

•  C++	
 offers	
 many	
 convenient	
 features	

that	
 can	
 be	
 used	
 as	
 liNle	
 or	
 as	
 much	
 as	

desired	

	

– Virtual	
 methods	

– MulSple	
 inheritance	

– reinterpret_cast	
 vs.	
 dynamic_cast	

– Plain	
 old	
 data	
 vs.	
 constructors/destructors	

– Raw	
 pointers	
 vs.	
 references	
 vs.	
 smart	
 pointers	

– Stack	
 allocaSon	
 vs.	
 malloc	
 vs.	
 new	

– Templates	
 and	
 macros	

Why	
 was	
 C++	
 a	
 good	
 choice	

for	
 building	
 HHVM?	

Templates	

•  Templates	
 are	
 great	
 for	
 maintainability	

	

•  More	
 hygienic	
 than	
 preprocessor	
 macros	

	

•  For	
 HHVM,	
 templates	
 were	
 parScularly	

useful	
 for	
 criScal	
 parts	
 of	
 the	
 engine	

where	
 we	
 wanted	
 the	
 compiler	
 to	
 do	
 as	

much	
 inlining	
 as	
 possible	
 to	
 improve	
 perf	

Templates	

template <bool b>!
void foo(..) {!
 if (b) {!
 bar();!
 }!
 ..!
}!
!
!
!
!
call 0x4005a0 <bar>!

void foo(bool b, ..) {!
 if (b) {!
 bar();!
 }!
 ..!
}!
!
!
!
!
!
test %rdi, %rdi!
jz L1!
call 0x4005a0 <bar>!
L1:!

•  EliminaSng	
 branches:	

Templates	

template <class T>!
void foo(..) {!
 int x = T::staticMeth();!
 ..!
}!
!
!
!
!
call 0x400780 <Foo::staticMeth>!

void foo(int(*fn)(), ..)
{!
 int x = fn();!
 ..!
}!
!
!
!
!
call *%rdi!

•  Reducing	
 indirecSon:	

C++11’s	
 Lambdas	

•  Lambdas	
 are	
 useful	
 because	
 the	
 help	

keep	
 related	
 pieces	
 of	
 logic	
 together	
 in	

one	
 place	

•  For	
 HHVM,	
 we	
 typically	
 use	
 reference	

capture	
 (i.e.	
 “[&]”)	
 and	
 we’re	
 careful	

about	
 making	
 sure	
 lambdas	
 do	
 not	

outlive	
 the	
 captured	
 variables	
 on	
 the	

stack	

C++11’s	
 Lambdas	

	

void CodeGenerator::cgCountArray(IRInstruction* inst) {!
 ...!
 ifThenElse(vmain(), vcold(), CC_Z,!
 [&](Vout& v) {!
 cgCallNative(v, inst);!
 },!
 [&](Vout& v) {!
 v << loadl{baseReg[ArrayData::offsetofSize()],!
 dstReg};!
 }!
);!
 ...!
}!
	

X	
 Macros	

•  C++’s	
 preprocessor	
 is	
 unhygienic,	
 but	
 it	

is	
 extremely	
 powerful	
 and	
 it	
 can	
 be	
 very	

useful	

•  The	
 X	
 Macro	
 technique	
 can	
 help	
 with	

maintainability	
 if	
 used	
 judiciously	

•  HHVM’s	
 bytecode	
 definiSons	
 use	
 the	

X	
 Macro	
 technique	
 to	
 make	
 it	
 easy	
 to	

add,	
 remove,	
 or	
 modify	
 bytecode	

instrucSons	

X	
 Macros	

#define OPCODES \!
 O(PopC, NA, ONE(CV), NOV, NF) \!
 O(PopV, NA, ONE(VV), NOV NF) \!
 O(CGetL, ONE(LA), NOV, ONE(CV), NF) \!
 O(Add, NA, TWO(CV,CV), ONE(CV), NF) \!
 ..  
!
enum class Op : uint8_t {!
#define O(name, ...) name,!
 OPCODES!
#undef O!
};!
!

X	
 Macros	

#define OPCODES \!
 O(PopC, NA, ONE(CV), NOV, NF) \!
 O(PopV, NA, ONE(VV), NOV NF) \!
 O(CGetL, ONE(LA), NOV, ONE(CV), NF) \!
 O(Add, NA, TWO(CV,CV), ONE(CV), NF) \!
 ..!
#define PUSH_NOV /* nop */!
#define PUSH_ONE(t) PUSH_##t!
#define PUSH_TWO(t1, t2) PUSH_##t2; PUSH_##t1!
#define PUSH_CV ..!
#define PUSH_VV ..!
..!
#define O(name, imm, push, pop, flags) \!
 .. PUSH_##push ..!
OPCODES!
#undef O!
#undef PUSH_NOV  
..!

•  Unions	
 are	
 super	
 useful	
 when	
 dealing	

with	
 dynamically-­‐typed	
 values	

	

•  Unions	
 can	
 also	
 be	
 used	
 to	
 reduce	
 the	

size	
 of	
 structs	
 that	
 have	
 mutually	

exclusive	
 fields	

	

•  Ability	
 to	
 control	
 field	
 size	
 also	
 comes	
 in	

handy:	

–  	
 8-­‐bit,	
 16-­‐bit,	
 32-­‐bit,	
 or	
 64-­‐bit	
 integers	

Unions	
 and	
 field	
 size	

struct TypedValue {!
 union {!
 int64_t num;!
 double dbl;!
 StringData* pstr;!
 ArrayData* parr;!
 ObjectData* pobj;!
 ResourceData* pres;!
 Class* pcls;!
 RefData* pref;!
 } m_data;!
 DataType m_type;!
 AuxUnion m_aux;!
};!

TypedValue	
 union	

enum DataType : int8_t {!
 KindOfClass = -13,!
 KindOfUninit = 0x00,!
 KindOfNull = 0x08,!
 KindOfBoolean = 0x09,!
 KindOfInt64 = 0x0a,!
 KindOfDouble = 0x0b,!
 KindOfString = 0x14,!
 KindOfArray = 0x20,!
 KindOfObject = 0x30,!
 KindOfResource = 0x40,!
 KindOfRef = 0x50,!
 ..!
};!

•  C++	
 allows	
 for	
 unsafe	
 casts	
 between	

integers	
 and	
 different	
 pointer	
 types	

•  The	
 implementaSon	
 of	
 malloc	
 used	

by	
 HHVM	
 always	
 returns	
 chunks	
 of	

memory	
 aligned	
 to	
 8-­‐byte	
 boundaries	

•  Unsafe	
 casts	
 and	
 bit	
 masking	
 can	
 be	

used	
 to	
 steal	
 the	
 low	
 bits	
 of	
 pointers	

Unsafe	
 casts	
 and	
 bit-­‐stealing	

AcSvaSon	
 Records	

•  HHVM’s	
 ActRec	
 struct	
 is	
 used	
 as	
 the	

header	
 for	
 each	
 VM	
 frame	

•  ActRecs	
 store	
 essenSal	
 informaSon	

about	
 the	
 PHP	
 funcSon	
 invocaSon,	
 such	

as:	

–  The	
 name	
 and	
 other	
 metadata	
 pertaining	

to	
 the	
 current	
 funcSon	

–  Where	
 to	
 jump	
 to	
 when	
 the	
 funcSon	

returns	

–  Necessary	
 bookkeeping	
 to	
 support	
 geung	

a	
 PHP	
 backtrace	
 (i.e.	
 debug_backtrace())	

enterTCHelper	

biz	

f_array_map	

myprogram.php	

enterTCHelper	

foo	

bar	

main	

struct ActRec {!
 ActRec* m_savedFp;!
 uint64_t m_savedRip;!
 Func* m_func;!
 uint32_t m_soff;!
 uint32_t m_numArgsAndFlags;!
 union {!
 ObjectData* m_this;!
 Class* m_cls;!
 };!
 union {!
 VarEnv* m_varEnv;!
 ExtraArgs* m_extraArgs;!
 StringData* m_invName;!
 };!
};!

Bit-­‐stealing	
 with	
 ActRecs	

Saved	
 RIP	

Bytecode	

offset	

#	
 args	
 /	

flags	

Saved	
 FP 	
 	

Func	

“this”	
 pointer	
 /	

late-­‐bound	
 class	

VarEnv	
 /	
 ExtraArgs	
 /	

InvName	

struct ActRec {!
 ActRec* m_savedFp;!
 uint64_t m_savedRip;!
 Func* m_func;!
 uint32_t m_soff;!
 uint32_t m_numArgsAndFlags;!
 union {!
 ObjectData* m_this;!
 Class* m_cls;!
 };!
 union {!
 VarEnv* m_varEnv;!
 ExtraArgs* m_extraArgs;!
 StringData* m_invName;!
 };!
};!

Bit-­‐stealing	
 with	
 ActRecs	

Saved	
 RIP	

Bytecode	

offset	

#	
 args	
 /	

flags	

Saved	
 FP 	
 	

Func	

“this”	
 pointer	
 /	

late-­‐bound	
 class	

VarEnv	
 /	
 ExtraArgs	
 /	

InvName	

•  For	
 unions	
 of	
 pointers,	
 we	
 steal	
 the	
 low	

bit(s)	
 and	
 use	
 it	
 as	
 a	
 tag	
 to	
 disambiguate	

	

 bool hasThis() const {!
 return m_this && !((intptr_t)m_this & 1);!
 }!
 ObjectData* getThis() {!
 return m_this;!
 }!
 void setThis(ObjectData* val) {!
 m_this = val;!
 }!
 bool hasClass() {!
 return (intptr_t)m_cls & 1;!
 }!
 Class* getClass() {!
 return (Class*)((intptr_t)m_cls & 1);!
 }!
 void setClass(Class* val) {!
 m_cls = (Class*)((intptr_t)val | 1);!
 }!

Bit-­‐stealing	
 with	
 ActRecs	

struct ActRec {!
 ActRec* m_savedFp;!
 uint64_t m_savedRip;!
 Func* m_func;!
 uint32_t m_soff;!
 uint32_t m_numArgsAndFlags;!
 union {!
 ObjectData* m_this;!
 Class* m_cls;!
 };!
 union {!
 VarEnv* m_varEnv;!
 ExtraArgs* m_extraArgs;!
 StringData* m_invName;!
 };!
};!

Bit-­‐stealing	
 with	
 ActRecs	

Saved	
 RIP	

Bytecode	

offset	

#	
 args	
 /	

flags	

Saved	
 FP 	
 	

Func	

“this”	
 pointer	
 /	

late-­‐bound	
 class	

VarEnv	
 /	
 ExtraArgs	
 /	

InvName	

•  For	
 m_numArgsAndFlags,	
 we	
 steal	
 the	

high	
 bit(s)	
 for	
 flags	

	

 int32_t numArgs() {!
 return m_numArgsAndFlags & 0x7fffffff;!
 }!
 bool isCtorFrame() {!
 return m_numArgsAndFlags & (1 << 31);!
 }!
 void initNumArgs(uint32_t numArgs) {!
 assert(!(numArgs & (1 << 31)));!
 m_numArgsAndFlags = numArgs;!
 }!
 void initNumArgsCtorFrame(uint32_t numArgs) {!
 assert(!(numArgs & (1 << 31)));!
 m_numArgsAndFlags = numArgs | (1 << 31);!
 }!

Bit-­‐stealing	
 with	
 ActRecs	

Profiling	

•  The	
 C++	
 ecosystem	
 has	
 lots	
 of	
 mature	

tools	
 for	
 profiling	

•  Linux’s	
 perf	
 tool	
 is	
 awesome	

– Uses	
 a	
 sampling	
 technique	
 to	
 determine	

which	
 funcSons	
 a	
 program	
 spends	
 the	
 most	

CPU	
 Sme	
 on	

– Keeps	
 track	
 of	
 the	
 full	
 call	
 stack	
 for	
 each	

sample	

Profiling	

•  On	
 x64,	
 Linux’s	
 perf	
 tool	
 works	
 by	
 using	

the	
 rbp-­‐chain	
 to	
 walk	
 the	
 call	
 stack	

•  C++	
 code	
 needs	
 be	
 compiled	
 with	
 frame	

pointers	
 (i.e.	
 -fno-omit-frame-pointer)	

CPU	
 	

rip	
 rbp	

	
 	
 	
 	
 	
 	
 Memory	
 	
 	
 	
 	
 	
 	
 x64	
 code	

...	

...	

...	

...	

...	

Profiling	

•  ActRec	
 is	
 designed	

so	
 the	
 first	
 16	
 bytes	

has	
 the	
 same	
 layout	

as	
 C++	
 frames	

•  HHVM	
 sets	
 up	
 VM	

frames	
 so	
 that	
 they	

are	
 parScipate	
 in	
 the	
 rbp-­‐chain	

•  This	
 makes	
 it	
 possible	
 to	
 profile	
 PHP	

programs	
 running	
 under	
 HHVM	
 using	

Linux’s	
 perf	
 tool	

Saved	
 RIP	

Bytecode	

offset	

#	
 args	
 /	

flags	

Saved	
 FP 	
 	

Func	

This	
 /	
 Cls	
 VarEnv	
 /	
 ExtraArgs	
 /	

InvName	

•  setjmp	
 /	
 longjmp	
 can	
 be	
 useful	
 when	

implemenSng	
 excepSon	
 handling	
 for	
 a	

VM	

•  HHVM’s	
 iniSal	
 EH	
 implementaSon	
 used	

setjmp	
 and	
 longjmp	
 to	
 skip	
 over	
 the	

enterTCHelper	
 trampoline	
 and	
 VM	

frames	
 when	
 an	
 excepSon	
 was	
 thrown	

– This	
 scheme	
 was	
 a	
 bit	
 clunky	
 but	
 it	
 got	

HHVM’s	
 EH	
 system	
 up	
 and	
 running	
 quickly	

ExcepSon	
 handling	
 /	
 unwinding	

•  Later,	
 HHVM	
 switched	
 over	
 to	
 using	
 g++’s	

__register_frame()	
 funcSon	
 to	
 integrate	

with	
 the	
 C++	
 runSme’s	
 excepSon	
 unwinding	

system	
 by	
 registering	
 a	
 “personality	
 rouSne”	

	

 _Unwind_Reason_Code!
 tc_unwind_personality(!
 int version,!
 _Unwind_Action actions,!
 uint64_t exceptionClass,!
 _Unwind_Exception* exceptionObj,!
 _Unwind_Context* context!
);!

ExcepSon	
 handling	
 /	
 unwinding	

•  On	
 x64	
 and	
 other	
 popular	
 playorms,	

C++	
 has	
 a	
 well-­‐defined	
 ABI	
 for	

funcSon	
 calls	

•  GeneraSng	
 calls	
 from	
 machine	
 code	

to	
 C++	
 funcSons	
 is	
 light-­‐weight	
 and	

easy*	

	

*	
 Provided	
 that	
 parameters	
 are	
 pointers	
 or	
 primiSve	
 types	
 and	
 virtual	

methods	
 are	
 not	
 involved	

C++	
 /	
 machine	
 code	
 interop	

•  Making	
 C++	
 call	
 into	
 machine	
 code	
 is	
 also	

relaSvely	
 simple	

•  C++	
 allows	
 the	
 programmer	
 to	
 take	
 a	

void*	
 that	
 points	
 to	
 machine	
 code	
 and	

cast	
 it	
 to	
 a	
 funcSon	
 pointer	
 and	
 invoke	
 it:	

!

 void* p = getMachineCodeAddress();!
 typedef int(*FuncPtr)(int);!
 FuncPtr fn = (FuncPtr)p;!
 int result = fn(123);!

C++	
 /	
 machine	
 code	
 interop	

// Parameters: rdi, rsi, rdx, rcx, r8!
extern "C" void!
enterTCHelper(Cell* sp, ActRec* fp,!
 TCA start, TReqInfo* info,!
 void* tlBase);!
!
inline void!
enterTC(TCA start, TReqInfo& info) {!
 asm volatile("" : : :!
 "rbx", "r12", "r13", "r14", "r15");!
 auto& regs = vmRegsUnsafe();!
 enterTCHelper(regs.stkTop(), regs.fp,!
 start, &info, tl_base());!
 asm volatile("" : : : !
 "rbx", "r12", "r13", "r14", "r15");!
}!

 enterTCHelper:!
 push %rbp!
 push %rcx!
 mov %rdi,%rbx!
 mov %r8,%r12!
 mov %rsi,%rbp!
 call *%rdx!
 pop %rbx!
 mov %rdi,0x0(%rbx)!
 mov %rsi,0x8(%rbx)!
 ...!
 pop %rbp!
 ret!

enterTCHelper	
 example	

Manual	
 Memory	
 Management	

•  C++	
 gives	
 the	
 programmer	
 freedom	
 to	

manually	
 manage	
 memory;	
 this	
 was	

essenSal	
 for	
 HHVM	

	

•  High	
 compaSbility	
 with	
 the	
 php.net	

interpreter	
 was	
 important;	
 given	
 PHP’s	

semanScs,	
 refcounSng	
 was	
 less	
 risky	

– Thus	
 tracing	
 GC	
 was	
 not	
 an	
 aNracSve	
 opSon	

at	
 the	
 outset	

NaSve	
 allocaSon	

•  C++	
 provides	
 an	
 easy	
 and	

light-­‐weight	
 means	
 for	
 the	

programmer	
 to	
 choose	

which	
 implementaSon	
 of	

malloc	
 they	
 want	
 to	
 use	

	

•  HHVM	
 uses	
 jemalloc	
 to	
 handle	
 calls	

to	
 malloc	
 APIs	
 such	
 as	
 malloc(),	

free(),	
 calloc(),	
 etc.	

jemalloc	

jemalloc	

•  jemalloc	
 is	
 a	
 world-­‐class	

concurrent	
 memory	
 allocator	

used	
 by	
 the	
 FreeBSD	
 operaSng	

system,	
 Firefox,	
 and	
 many	
 other	

sozware	
 projects	

	

•  Very	
 efficient	
 both	
 for	
 single-­‐	
 and	
 mulS-­‐
threaded	
 programs	

– ParScularly	
 good	
 at	
 minimizing	
 fragmentaSon	

for	
 long-­‐running	
 processes	

jemalloc	

jemalloc	

•  HHVM	
 takes	
 advantage	
 of	
 jemalloc-­‐specific	

APIs	
 that	
 aren’t	
 part	
 of	
 the	
 standard	
 malloc	

interface	

•  Some	
 features	
 were	
 added	
 to	
 jemalloc	
 to	

specifically	
 to	
 help	
 out	
 HHVM	

–  jemalloc’s	
 mallocx()	
 and	
 allocm()	
 APIs	
 were	

updated	
 to	
 support	
 allocaSng	
 memory	
 with	
 “low”	

addresses	
 that	
 can	
 fit	
 within	
 32	
 bits	

–  Sophisicated	
 heap	
 profiling	
 funcSonality	
 was	
 added	

to	
 jemalloc	
 to	
 aid	
 with	
 invesSgaSng	
 how	
 to	
 improve	

HHVM’s	
 performance	

Low	
 addresses	

•  AllocaSng	
 memory	
 with	
 low	
 addresses	

helps	
 make	
 HHVM’s	
 data	
 structures	

smaller	
 and	
 helps	
 with	
 generaSng	
 more	

more	
 efficient	
 machine	
 code	

	

 struct LowClassPtr {!
 int32_t m_raw;!
 Class* get() {!
 return reinterpret_cast<Class*>(m_raw);!
 }!
 void set(Class* c) {!
 m_raw = reinterpret_cast<int32_t>(c);!
 }!
 };!

Low	
 addresses	

 movl $0x7671a20, -0x20(%rbx)!
!

 [c7 43 e0 20 1a 67 07]!
!

 7 bytes total!
!
!
!
 movabs $0x7fffe8408000, %rax!
 mov %rax, -0x20(%rbx)!
!

 [48 b8 00 80 40 e8 ff 7f 00 00 48 89 43 e0]!
!

 14 bytes total!

Memory	
 Management	
 for	
 PHP	

•  The	
 PHP	
 language	
 requires	
 that	
 engines	

provide	
 some	
 form	
 of	
 automaSc	
 memory	

management	
 for	
 programs	
 wriNen	
 in	
 PHP	

	

•  PHP	
 models	
 concurrency	
 using	
 separate	

requests	

	

•  Each	
 request	
 has	
 its	
 own	
 disSnct	
 heap,	
 and	

at	
 the	
 end	
 of	
 a	
 request	
 the	
 enSre	
 heap	
 dies	

	

•  A	
 given	
 request	
 cannot	
 directly	
 access	
 the	

heap	
 of	
 another	
 request	

HHVM’s	
 request	
 allocator	

•  HHVM	
 implements	
 its	
 own	
 custom	

request	
 allocator	

	

– 	
 Maintains	
 separate	
 isolated	
 heap	
 for	
 each	
 	

	
 request;	
 this	
 means	
 refcounSng	
 doesn’t	
 	

	
 need	
 to	
 use	
 atomic	
 inc/dec	

– 	
 OpSmizes	
 reclamaSon	
 at	
 the	
 end	
 of	
 	

	
 the	
 request	

– 	
 Avoids	
 some	
 of	
 the	
 overheads	
 of	
 malloc	

– 	
 Controlling	
 the	
 allocator	
 implementaSon	
 	

	
 makes	
 it	
 easier	
 to	
 opSmize	
 how	
 JIT’d	
 code	

	
 interacts	
 with	
 the	
 allocator	

Huge	
 pages	

•  Manual	
 memory	
 management	
 also	
 made	

it	
 possible	
 for	
 HHVM	
 to	
 take	
 advantage	
 of	

madvise()’s	
 MADV_HUGEPAGE	
 feature	

which	
 takes	
 advantage	
 of	
 larger	
 page	

sizes	
 supported	
 by	
 the	
 TLB	
 hardware	

– By	
 using	
 fewer	
 iTLB	
 entries	
 we	
 were	
 able	
 to	

significantly	
 reduce	
 iTLB	
 misses,	
 which	
 gave	

us	
 a	
 nice	
 boost	
 for	
 larger	
 PHP	
 codebases	

Obstacles	

•  There	
 were	
 some	
 features	
 of	
 C++	

that	
 posed	
 challenges	
 for	
 us	
 when	

building	
 HHVM	

	

•  For	
 most	
 of	
 these	
 obstacles	
 there	

was	
 a	
 way	
 to	
 hack	
 around	
 them,	

which	
 is	
 a	
 testament	
 to	
 C++’s	
 power	

and	
 flexibility	

Unions	
 and	
 non-­‐POD	
 types	

•  Before	
 C++11,	
 unions	
 could	
 only	
 work	

with	
 “plain	
 old	
 data”	
 (POD)	
 types	

	

•  For	
 HHVM,	
 we	
 wanted	
 to	
 reuse	
 parts	
 of	

HPHPc’s	
 runSme	
 that	
 dealt	
 with	
 iteraSng	

over	
 PHP	
 arrays,	
 but	
 we	
 encountered	
 a	

problem	
 where	
 we	
 needed	
 to	
 make	
 a	

union	
 of	
 non-­‐POD	
 types	

Unions	
 and	
 non-­‐POD	
 types	

struct Iter {!
 bool init(TypedValue* c) {!
 new (&arr()) ArrayIter(c);!
 }!
 bool minit(TypedValue* v) {!
 new (&marr()) MArrayIter(v);!
 }!
 void free() { arr().~ArrayIter(); }!
 void mfree() { marr().~MArrayIter(); }!
 ArrayIter& arr() { return *(ArrayIter*)m_u; }!
 MArrayIter& marr() { return *(MArrayIter*)m_u; }!
 char m_u[MAX(sizeof(ArrayIter),!
 sizeof(MArrayIter))];!
} __attribute__ ((aligned(16)));!

C++11’s	
 Unrestricted	
 Unions	

struct Iter {!
 bool init(TypedValue* c) {!
 new (&m_u.arr) ArrayIter(c);!
 }!
 bool minit(TypedValue* v) {!
 new (&m_u.marr) ArrayIter(v);!
 }!
 void free() { m_u.arr.~ArrayIter(); }!
 void mfree() { m_u.marr.~MArrayIter(); }!
 union Data {!
 ArrayIter arr;!
 MArrayIter marr;!
 } m_u;!
}!

Unnecessary	
 refcounSng	

with	
 smart	
 pointers	

•  Before	
 move	
 constructors	
 and	
 rvalues	
 were	

introduced	
 in	
 C++11,	
 smart	
 pointers	
 would	

ozen	
 do	
 unnecessary	
 refcounSng:	

	

 class Variant {!
 Variant(String s) { .. }!
 };!
 class String {!
 ..!
 };!
 String foo() { .. }!
!
!
 Variant v(foo());!
 ..!

Avoiding	
 unnecessary	
 refcounSng	

•  Prior	
 to	
 C++11,	
 we	
 did	
 some	
 awkward	
 dances	
 to	

avoid	
 unnecessary	
 refcounSng:	

	

 class Variant {!
 enum NoInc { noInc = 0 };!
 Variant(StringData* s, NoInc) { .. }!
 };!
 class String {!
 StringData* detach() {!
 auto p = m_data;!
 m_data = nullptr;!
 return p;!
 }!
 };!
 String foo() { .. }!
!
 Variant v(foo().detach(), Variant::noInc);!
 ..!

C++11’s	
 Move	
 Constructors	

•  Move	
 constructors	
 made	
 it	
 a	
 lot	
 easier	
 to	

avoid	
 unnecessary	
 refcounSng	
 with	
 smart	

pointers:	

	

 class Variant {!
 Variant(String&& s) { .. s.detach() .. }!
 };!
 class String {!
 StringData* detach() {!
 auto p = m_data;!
 m_data = nullptr;!
 return p;!
 }!
 };!
 String foo() { .. }!
!
 Variant v(foo());!
 ..!

C++	
 instance	
 methods	

•  GeneraSng	
 machine	
 code	
 that	
 calls	
 into	

a	
 non-­‐virtual	
 C++	
 instance	
 method	
 was	
 a	

bit	
 difficult	

– Geung	
 at	
 the	
 machine	
 code	
 address	
 for	
 the	

method	
 not	
 straight-­‐forward	

	

•  For	
 HHVM,	
 we	
 wanted	
 to	
 reuse	
 some	

exisSng	
 parts	
 of	
 HPHPc’s	
 runSme	
 that	

used	
 non-­‐virtual	
 C++	
 instance	
 methods	

	

•  We	
 found	
 a	
 way	
 to	
 make	
 it	
 work	
 for	
 g++	

C++	
 instance	
 methods	

template <typename MethPtr>!
void* getMethodPtr(MethPtr p) {!
 union U { MethPtr meth; void* ptr; };!
 return ((U*)&p)->ptr;!
}!
class C {!
 public: int foo(int x) { .. }!
};!
void generateCallSite() {!
 void* addr = getMethodPtr(&C::foo);!
 printf(“callq 0x%x\n”, addr);!
}!
!

// Example output!
callq 0x400570!

C++	
 instance	
 methods	

template <typename MethPtr>!
void* getMethodPtr(MethPtr p) {!
 union U { MethPtr meth; void* ptr; };!
 return ((U*)&p)->ptr;!
}!
class C {!
 public: int foo(int x) { .. }!
};!
void test(C* c) {!
 typedef int (*FuncPtr)(void*,int);!
 void* addr = getMethodPtr(&C::foo);!
 ((FuncPtr)addr)(c, 123);!
}!

C++	
 virtual	
 methods	

•  GeneraSng	
 machine	
 code	
 that	
 calls	
 into	

a	
 C++	
 virtual	
 method	
 was	
 tricky	

	

• We	
 found	
 a	
 way	
 to	
 make	
 it	
 work	
 for	
 g++	

	

•  For	
 HHVM,	
 we	
 wanted	
 to	
 reuse	
 some	

exisSng	
 parts	
 of	
 HPHPc’s	
 runSme	
 that	

used	
 C++	
 virtual	
 methods	

C++	
 virtual	
 methods	

template <typename MethPtr>!
int getVTableOffset(MethPtr p) {!
 union U { MethPtr meth; int64_t off; };!
 return ((U*)&p)->off - 1;!
}!
class C {!
 public: virtual int foo(int x) { .. }!
};!
void generateCallSite() {!
 int off = getVTableOffset(&C::foo);!
 printf(“mov (%rdi), %rax\n”);!
 printf(“callq *0x%x(%rax)\n”, (int)off);!
}!
!

// Example output!
mov (%rdi), %rax!
callq *0x8(%rax)!

C++	
 virtual	
 methods	

template <typename MethPtr>!
int getVTableOffset(MethPtr p) {!
 union U { MethPtr meth; int64_t off; };!
 return ((U*)&p)->off - 1;!
}!
void* getVirtMethAddr(void* obj, int off) {!
 return *(void**)(*(intptr_t*)obj + off);!
}  
class C {!
 public: virtual int foo(int x) { .. }!
};!
void test(C* c) {!
 typedef int (*FuncPtr)(void*,int);!
 int64_t off = getVTableOffset(&C::foo);!
 ((FuncPtr)getVirtMethAddr(c, off))(c, 123);!
}!

Questions?
Website:	

Facebook	
 Page:	

Github:	

hhvm.com	

facebook.com/hhvm	

github.com/facebook/hhvm	

