Decomposing a Problem
for Parallel Execution

Pablo Halpern <pablo.g.halpern@intel.com> .
Parallel Programming Languages Architect, Intel Corporation

CppCon, 9 September 2014

‘® ® \ This work by Pablo Halpern is licensed under a Creative
Commons Attribution 4.0 International License.

mailto:pablo.g.halpern@intel.com
http://creativecommons.org/licenses/by/4.0/

Godal

Learn how to decompose a problem
so that it can be efficiently distributed
among multiple cores

Pablo Halpern, 2014 (CC BY 4.0)

Summary

® The star-counting problem

» A relatively easy problem

» Exposure 1o a number of important issues
®» The n-bodies problem

= A more involved problem

= With re-structuring, vields an elegant recursive solution
with good cache behavior

Pablo Halpern, 2014 (CC BY 4.0)

Principles of parallelization

= The main challenge is idenftifying tasks within the
program that minimally interact and, therefore,
are logically parallel.

» Parallelization can be fun — a combination of
discovery and invention, science and art.

» One tries to discover the parallelism inherent in an
algorithm or data structure.

» One then chooses or invents new algorithms,
refactors, simplifies, or approximates.

Pablo Halpern, 2014 (CC BY 4.0)

Parallelism is a graph-theoretical
property of an algorithm

(Dependencies are opposite control flow, e.g. C depends on B)

» A <Band A<F (A precedes B and F)
= B || F(Bisin parallel with F)
» K > G (Ksucceeds G) and
»K|H KIIBandK || C, etc.

Pablo Halpern, 2014 (CC BY 4.0)

C

IIk™ Plus as a teaching Language

int fib(int
{

-~

By e T
o) TR =

cilk sync;

return a + b;
e - : Asynchronous call must
} /I Implicit sync at end of function body complete before using a.

n)

2) return n;

cilk spawn fib(n - 1);

Execution is allowed to continue
e —"2)us

—————— while fib(n-1) is running.
[

-
cilk for (auto i = vec.begin(); i != vec.end(); ++1)
{ ;

// Do something ___—— Tlterations are allowed to
} // Implicit sync at end of cilk_for execute concurrently.

|

Pablo

Halpern, 2014 (CC BY 4.0)

Star-counting problem

® |[nfroduction to the problem
» Serial implementation
® Find the parallelism

®» Fix the race using atomic variable
® |mprove performance using reduction

Pablo Halpern, 2014 (CC BY 4.0)

Image

1S

IN th

Count the stars

Photo courtesy NASA

Pablo Halpern, 2014 (CC BY 4.0)

Serial implementation

long count_stars(const Image& img)
{
long count(9);
// Iterate over the pixels of the image
for (int x = 0; x < img.width(); ++x)
for (int y = 0; y < img.height(); ++y)
if (is_center_of star(img, x, y))
++count;
return count;
}

Parallelization usually starts with a working serial program

Disclaimer: This code is hypothetical. None of the variations of
count_stars in this presentation have been implemented and tested.

Pablo Halpern, 2014 (CC BY 4.0)

FInding the unexpressed parallelism

long count_stars(const Image& img)
{
long count(9);
// Iterate over the pixels of the image
for (int x = 0; x < img.width(); ++x)
for (int y = 0; y < img.height(); ++y)
if (is_center_of star(img, x, y)) ~

++count;
return count; Counting is independent but
} incrementing count is noft.

Completely
iIndependent

Loops are a good source of potentially-independent tasks.

Pablo Halpern, 2014 (CC BY 4.0)

Straight-forward loop parallelism

long count_stars(const Image& img)
{
long count(9);
// Iterate over the pixels of the image
cilk for (int x = 0; x < img.width(); ++x)
cilk for (int y = 0; y < img.height(); ++y)
if (is_center_of star(img, x, y))
++count;
return count;
) Parallel updates

Correctness problem: data race

Pablo Halpern, 2014 (CC BY 4.0)

One solution: atomic variables

long count_stars(const Image& img)
{
std::atomic<long> count(9);
// Iterate over the pixels of the image
cilk for (int x = 0; x < img.width(); ++x)
cilk for (int y = 0; y < img.height(); ++y)
if (is_center_of star(img, x, y))
++count;
return count;
}

Performance problem: Atomic variable contention

Pablo Halpern, 2014 (CC BY 4.0)

Cache Ping-Pong on atomic count

CPUO

is _center_of star

invalidate < ‘

CPU 1

is _center_of star

++count

is center_of star

read latency for count

read latency for count

++count

is _center_of star

read latency for count

++count

invalidate
<
++count
invalidate . is center_of star
. . read latency for count
invalidate
<
‘“ ++count

Pablo Halpern, 2014 (CC BY 4.0)

= count is in modifiable state in L1 cache

Better solution: reduction

long count_stars(const Image& img)

{

cilk: :reducer<cilk::op_add<long>> count r(0);
// Iterate over the pixels of the image
cilk for (int x = 0; x < img.width(); ++x)
cilk for (int y = 0; y < img.height(); ++y)
if (is_center_of star(img, x, y))

++*count_r; . .
return count_r.get_value(); Pointer-like
} inferface.

Each concurrent access to the reducer sees a different
“view" of the variable. The parallel views are collapsed
into a single value at the end of the computation.

Pablo Halpern, 2014 (CC BY 4.0)

Reducer operation (conceptual)

CPUO CPU 1

is _center_of star

is _center_of star

++viewd@ count
is _center_of star ++viewl count

is center_of star

[viewl_count ==]
O +1 + 1
—— <
[view@_count ==]
O +1+1+1
++viewd count —

count += view@ count
+ viewl count <[count == (@ + 1 +1+1) + (06 +1+ 1)]

++viewd@ count

is center_of star ++viewl count

m = count is in modifiable state in L1 cache

Pablo Halpern, 2014 (CC BY 4.0)

The n-bodies problem

® |[nfroduction to the problem

® Basic implementation framework

» Parallelize the parts with parallel loops

» Try different approaches to mitigate data races

» Restructure the code info an elegant recursive
algorithm with excellent cache locality

Pablo Halpern, 2014 (CC BY 4.0)

Gravity and planetary moftion

To compute position, x' from
position x after tfime increment At:

xi + avg(vi)At

Perform computation for each i j.
Repeat for each time step.

Pablo Halpern, 2014 (CC BY 4.0)

A sample run of 4000 fime steps

*ee v @ >y . * i v e !
RS MR 300 Bodies
-.-+” +* L . e v + &
¢ * ”» . * .
. o~ 2 e 0% %0 ® o 0 New video frame for every
ot e - L T s _op 0
C e 5 ° o « 40 steps (total 100 frames)
. e & . ¢ * ¢ & * o
L '. [] + * o ;*.. . * ™ ‘.
¢ + L * ¢.
L] + o Py ﬁ‘: .
4 o * @ *
& > * .
. * * .. .".*’ .
* + * ~ g
: i " * L . * t: * A +*
* “ ‘
L & &
& L] F . * * .‘
+ ' ... & ‘. » ?‘ B
+ + . . * .‘ 7 ‘. * * »
*
< Yoot S, e . Note: this is not a real-time
* o R . .

I . ., . * e® 4% % animation. Still frames were
. e e ¢ s * . %« ' combinedinto an animated GIF
* o ? R S using an arbitrary frame rate of

A Fog o . ot . 10 fps, looped.

Pablo Halpern, 2014 (CC BY 4.0)

General framework of n-bodies

Pablo Halpern, 2014 (CC BY 4.0)

Data structure and main loop

int main(int argc, char* argv[])

struct Body {
double x; // X position
double vy; // y position
double xv; // X velocity
double yv; // y velocity
double xf; // x force
double yf; // y force
double mass; // mass
double density; // density
Pixel pix; /94 color

{
int nbodies = argc > 1 ? atoi(argv[1l]) : 300;
int nframes = argc > 2 ? atoi(argv[1l]) : 100;
Body *bodies = new Body[nbodies];
initialize bodies(nbodies, bodies);
draw_frame(0, nbodies, bodies);
for (int frame _num = 1; frame num < nframes;
++frame_num) {
for (int i = @; i < steps_per_frame; ++i) {
calculate forces(nbodies, bodies);
update_positions(nbodies, bodies);
}
draw_frame(frame_num, nbodies, bodies);
}
delete[] bodies;
}

Pablo Halpern, 2014 (CC BY 4.0)

Cenftral computations

// Compute force, (*fx, *fy) on body b1 exerted by body bj
void calculate force(double *fx, double *fy,
const Body &bi, const Body &bj)

{
double dx = bj.x - bi.x;
double dy = bj.y - bi.y;
double dist2 = dx * dx + dy * dy; // distance squared
deuble distr=8std. " sgrtdast2 “)g
double f = bi.mass * bj.mass * GRAVITY / dist2;
X, =i ® dxivs dists
FEy A= A dy A dir st

h // Add force, (fx, fy) to body b
void add force(Body* b, double fx, double fy)

{

b->xf += fXx;
b->yf += fy;

Pablo Halpern, 2014 (CC BY 4.0)

Updating positions in parallel

The easier problem

Pablo Halpern, 2014 (CC BY 4.0)

Updating positions — serial

void update positions(int nbodies, Body *bodies)

{

for (int 1 = 0; i < nbodies; ++i) {

// initial velocity

double xv@ = bodies[i].xv;

double yv@ = bodies[i].yv;

// update velocity based on forces
bodies[i].xv += TIME_QUANTUM * bodies[i].xf / bodies[i].mass;
bodies[i].yv += TIME_QUANTUM * bodies[i].yf / bodies[i].mass;
// clear forces for next iteration
batlies @) 2i*=%0 .05

bodies[i].yf = 0.0; x;! = xi + avg(vi)At
// update position based on average velocity
bodies[i].x += TIME_QUANTUM * (xv@ + bodies[i].xv)/2.0;
bodies[i].y += TIME_QUANTUM * (yv@ + bodies[i].yv)/2.0;

Pablo Halpern, 2014 (CC BY 4.0)

Updating positions — parallel

void update positions(int nbodies, Body *bodies)

{ [¥] bone
G IRl o RE G S =0 SR boUiasSEtT M 4 Done!
// initial velocjitv

double xv@ = bodj tbb::parallel for(@, nbodies, [&](int i){
double yv@ = bod: o
// update velocii});

bodies[i].xv += #pragma omp parallel for
bodies[i].yv += TIME_QUANT for (int i = @; i < nbodies ++1i)
// clear forces for next i1 - : : :

batlies @) 2i*=%0 .05
bodies[i].yf = 0.0; }

// update position based on average velocity
bodies[i].x += TIME_QUANTUM * (xv@ + bodies[i].xv)/2.0;
bodies[i].y += TIME_QUANTUM * (yv@ + bodies[i].yv)/2.0;

Pablo Halpern, 2014 (CC BY 4.0)

Calculating forces in parallel

The harder problem

Pablo Halpern, 2014 (CC BY 4.0)

Calculating forces — naive serial

void calculate forces(int nbodies, Body *bodies) {
fiar "INt Qe <Y hbodd s ;' 1
iEoRSE0T Rites] M=l Oee 5% Gelitb Odiite s SERE g i
// update the force vector on bodies[i] exerted
// by bodies[j].
I (i — I Eunl e

double fx, fy;
calculate force(&fx, &fy, bodies[i], bodies[j]);
add_force(&bodies[i], fx, fy);

n(n — 1) applications of calculate_force()

Pablo Halpern, 2014 (CC BY 4.0)

Calculating forces — half the work

void calculate forces(int nbodies, Body *bodies) {
fiar "INt Qe <Y hbodd s ;' 1
for (int j =1 + 1; j < nbodies; ++j) {
// update the force vector on bodies[i] exerted
// by bodies[j].

double fx, fy;

calculate force(&fx, &fy, bodies[i], bodies[j]);
add_force(&bodies[i], fx, fy);
add_force(&bodies[j], -fx, -fy);

n(n—1)/2 applications of calculate_force()

Pablo Halpern, 2014 (CC BY 4.0)

Graphical representation of iteration
space

Pablo Halpern, 2014 (CC BY 4.0)

Calculating forces — naive parallel

void calculate forces(int nbodies, Body *bodies) {
Gi. 'k For " Cintl" =04 15 fibodTes i gl
for (int j = 1 + 1; j < nbodies; ++j) {
// update the force vector on bodies[i] exerted
// by bodies[j].

double fx, fy;

calculate force(&fx, &fy, bodies[i], bodies[j]);
add_force(&bodies[i], fx, fy);
add_force(&bodies[j], -fx, -fy);

}

parallel application of calculate force() and add_force()

Pablo Halpern, 2014 (CC BY 4.0)

A look at the parallel execution

calculate_force(0,1) calculate_force(1,2)
=i+ 1 add_force(0) add forcc (1)
add_force: (1) . add_force(2)
calculate_force(0,2) cuiculate_force(1,3)
j=i1+2 add_force(0) add_force (1)

add_force(2) add_force(3)

|
| |
v v

Pablo Halpern, 2014 (CC BY 4.0)

Race!]

etc...

“Obvious solution™: embed a mutex

struct Body {

SmallMutex mutex; // Maybe a spin lock?

}s

{
std: :lock_guard<SmallMutex> g(bodies[i].mutex);
add_force(&bodies[i], fx, fy);

}

{
std: :lock _guard<SmallMutex> g(bodies[j].mutex);
add_force(&bodies[j], -fx, -fy);

}

Pablo Halpern, 2014 (CC BY 4.0)

Alternative “solution™: hashed mutexes

struct Body {

static std::mutex mutex_array[64];

std: :mutex& mutex() {
size t hash = size t(this) / sizeof(Body);
return mutex_array[hash % 64];

}s5 {

std::lock _guard<std::mutex> g(bodies[i].mutex());
add_force(&bodies[i], fx, fy);

}

{
std: :lock guard<std::mutex> g(bodies[j].mutex());
add_force(&bodies[j], -fx, -fy);

}

Pablo Halpern, 2014 (CC BY 4.0)

What about atomicse

struct Body {

std: :atomic<double> xf; // x force

std: :atomic<double> yf; // y force
T // Add force, (fx, fy) to body b
void add_force(Body* b, double fx, double fy)
{
b->xf +X><; No atomic
b->yf +7# \y; increment for floats
)

// Add force, (fx, fy) to body b
void add force(Body* b, double fx, double fy)

{

possible double oxf = b->xf, oyf = b->yf;
contention while (b->xf.compare _exchange weak(oxf, oxf + fx)) {}

while (b->yf.compare_exchange weak(oyf, oyf + fy)) {}
}

Pablo Halpern, 2014 (CC BY 4.0)

Counterintuitive: double the work?

void calculate forces(int nbodies, Body *bodies) {
Gi. 'k For " Cintl" =04 15 fibodTes i gl
for (int j = 0; j < nbodies; ++j) {
// update the force vector on bodies[i] exerted
// by bodies[j].
ISl " SEE

double fx, fy;
calculate force(&fx, &fy, bodies[i], bodies[j]);

add_force(&bodies[i], fx, fy);

n(n — 1) applications of calculate _force(), again!

Pablo Halpern, 2014 (CC BY 4.0)

An elegant, cache-friendly
approach

Intfroduction to cache-oblivious algorithms

Pablo Halpern, 2014 (CC BY 4.0)

'he problem of poor cache locality

for (int 1 = @; i < nbodies; ++i)
for (int j = @; j < nbodies; ++j)

next i

0] 2 3 .. 1000 | 1001 | 1002
bodies array

Pablo Halpern, 2014 (CC BY 4.0)

Cache locality is important for
parallelism

Memory bandwidth limitations:
Single core: bad
Multicore: worsel

4.

Pablo Halpern, 2014 (CC BY 4.0)

2-D Tiling to improve cache locality
A brief reprise of count_stars

a4 .
g ’.;'.-‘.-'-',. s

8 constexpr int tile size = 16;
Sk ;ﬁ:cilk_for ¢S tisle " =8 GE W dilie "< S Tmg Wi dih’(");
AT X_tile += tile size)
cilkisfont(intlay «Talen= @5y < simgiheadighit ()
y tile += tile_size)
serial count stars(img, x_tile, tile size,
y tile, tile size);

Photo courtesy NASA

Pablo Halpern, 2014 (CC BY 4.0)

Can we tile the n-bodies problem, and
return to the friangular computatione

~ Yes, but not the same . .
way as for count_stars

4
4
"/
/ ;
Same range of / ’
j

I values:; not

independent

Tiles cannot all be o
processed in parallel. |of

Pablo Halpern, 2014 (CC BY 4.0)

Cache-oblivious recursive tiling

Pablo Halpern, 2014 (CC BY 4.0)

For two tiles to be computed in parallel,
the i range of one must not overlap
either the i or jrange of the other.

The triangles are in parallel with each
other.

Neither triangle is in parallel with the
rectangle.

The next level of recursion

Pablo Halpern, 2014 (CC BY 4.0)

Each triangle can be recursively
subdivided the same way, yielding the
same parallelism at the next level.

Each rectangle can also be subdivided
into four rectangles.

The rectangles marked A are in parallel
with each other. The rectangles marked
B are in parallel with each other (but not
with the A rectangles).

Cache-oblivious n-bodies algorithm

void calculate_forces(int nbodies, Body *bodies)

{

triangle(@, nbodies, bodies);

// traverse the triangle n@ <= i <= j < nl
void triangle(int n@, int nl, Body *bodies)

B il
4 Tmitedn =inles4no;

’ aly1 L e 7 a1))

/ int nm = n@ + dn / 2;
cilk spawn triangle(n@, nm, bodies);
triangle(nm, nl, bodies);
cilk sync;
rect(n@, nm, nm, nl, bodies);

m n }

Pablo Halpern, 2014 (CC BY 4.0)

Cache-oblivious n-bodies algorithm
(continued)

// traverse the rectangle i@ <= i < i1, JjO <= j < jl
vioid Re'C Tl MM, - ST Iy i a6, Nt YN RBotdy T M bediasik.{
int di =il =-10,:dj =-jl1 % j6;

g v R T T T g LR
int im = 10 +-di "/ 2, gm_=-j8 + dj /1 2;
cilk spawn rect(i@, im, jO, jm, bodies); // A
rect(im, il, jm, j1, bodies); Yol
cilk _sync;
cilICEspawn: Rect (405" ik Ik il rabodiesh =L/ %B
rect(im, il, jO, jm, bodies); // B
cilk _sync;

} else if (di > @0 && dj > 9) {
double fx, fy;

calculate force(&fx, &fy, bodies[i@], bodies[jO]);
add_force(&bodies[i], fx, fy);
add_force(&bodies[j], -fx, -fy);

¥

Pablo Halpern, 2014 (CC BY 4.0)

Coarsening to reduce overhead

// traverse the rectangle i@ <= i < i1, JjO <= j < jl
vioid srect (Gl mE MR - ST Iy a0 TN YN sBody T bod e sk {
it =i 1 e Bnin dijs =8) 1% Y08
constexpr int threshold = 16;

if (di > threshold && dj > threshold) {
int im = i® + di / 2, jm = jO + dj / 2;

cilk_spawn rect(i®, im, j@, jm, bodies); // A recursive spawn is

r‘gct(im, il, jm, jl, bodies); A cheop, but not free

cilk_sync;

cilk_spawn rect(i®, im, jm, jl, bodies); // B

rect(im, il, jO, jm, bodies); 77MB

cilk_sync;

} else : :

for (int i = i@; i < il; ++i) Serial loop is faster than

FORMET N S ¢ T0 TNIE. <m0t S recursion a the leaves.

double fx, fy;

calculate force(&fx, &fy, bodies[i], bodies[j]);
add_force(&bodies[i], fx, fy);
add_force(&bodies[j], -fx, -fy);

}

Pablo Halpern, 2014 (CC BY 4.0)

Could we do more®@

® The |ast version Is fast and parallel, but you can
almost always do more!

®» The data structure for array-of-bodies is ill-suited
for vectorization. This can and should be the
topic of a whole talk at a future CppCon.

®» Measure, measure, measure!

» Using performance-analysis tools, we might find other
bottlenecks.

» Some of our logically-reasoned speed-ups might not
work in practice on real hardware.

Pablo Halpern, 2014 (CC BY 4.0)

Summary

» Parallelism requires decomposing a problem
INfo independent parts.

®» Some creativity is required for all but the simplest
algorithms.

® Fven a correct parallel program can suffer from
negative cache effects and contention.

» Measure and iteratel

Pablo Halpern, 2014 (CC BY 4.0)

More Information

®» A cute fechnique for avoiding certain race
conditions, Matteo Frigo, 2009,
https://software.intel.com/en-us/articles/a-cute-
technigue-for-avoiding-certain-race-conditions

Pablo Halpern, 2014 (CC BY 4.0)

https://software.intel.com/en-us/articles/a-cute-technique-for-avoiding-certain-race-conditions

Thank Youl!

