
Decomposing a Problem

for Parallel Execution
Pablo Halpern <pablo.g.halpern@intel.com>
Parallel Programming Languages Architect, Intel Corporation

CppCon, 9 September 2014

This work by Pablo Halpern is licensed under a Creative

Commons Attribution 4.0 International License.

mailto:pablo.g.halpern@intel.com
http://creativecommons.org/licenses/by/4.0/

Goal

Learn how to decompose a problem

so that it can be efficiently distributed

among multiple cores

Pablo Halpern, 2014 (CC BY 4.0)

2

Summary

The star-counting problem

A relatively easy problem

Exposure to a number of important issues

The n-bodies problem

A more involved problem

With re-structuring, yields an elegant recursive solution

with good cache behavior

Pablo Halpern, 2014 (CC BY 4.0)

3

Principles of parallelization

The main challenge is identifying tasks within the
program that minimally interact and, therefore,
are logically parallel.

Parallelization can be fun – a combination of
discovery and invention, science and art.

One tries to discover the parallelism inherent in an
algorithm or data structure.

One then chooses or invents new algorithms,
refactors, simplifies, or approximates.

Pablo Halpern, 2014 (CC BY 4.0)

4

Parallelism is a graph-theoretical

property of an algorithm

Pablo Halpern, 2014 (CC BY 4.0)

5

(Dependencies are opposite control flow, e.g. C depends on B)

 A ≺ B and A ≺ F (A precedes B and F)

 B ∥ F (B is in parallel with F)

 K ≻ G (K succeeds G) and

 K ∥ H, K ∥ B and K ∥ C, etc.

A

B

F G

H

J K

I

E

C D

Cilk™ Plus as a teaching Language

Pablo Halpern, 2014 (CC BY 4.0)

6

int fib(int n)
{

if (n < 2) return n;

int a = cilk_spawn fib(n – 1);
int b = fib(n – 2);
cilk_sync;
return a + b;

} // Implicit sync at end of function body

cilk_for (auto i = vec.begin(); i != vec.end(); ++i)
{

// Do something
} // Implicit sync at end of cilk_for

Asynchronous call must
complete before using a.

Execution is allowed to continue
while fib(n-1) is running.

Iterations are allowed to
execute concurrently.

Star-counting problem

 Introduction to the problem

Serial implementation

Find the parallelism

Fix the race using atomic variable

 Improve performance using reduction

Pablo Halpern, 2014 (CC BY 4.0)

7

Count the stars in this image

Pablo Halpern, 2014 (CC BY 4.0)

8

Photo courtesy NASA

Serial implementation

Pablo Halpern, 2014 (CC BY 4.0)

9

long count_stars(const Image& img)
{

long count(0);
// Iterate over the pixels of the image
for (int x = 0; x < img.width(); ++x)

for (int y = 0; y < img.height(); ++y)
if (is_center_of_star(img, x, y))

++count;
return count;

}

Disclaimer: This code is hypothetical. None of the variations of
count_stars in this presentation have been implemented and tested.

Parallelization usually starts with a working serial program

Finding the unexpressed parallelism

Pablo Halpern, 2014 (CC BY 4.0)

10

long count_stars(const Image& img)
{

long count(0);
// Iterate over the pixels of the image
for (int x = 0; x < img.width(); ++x)

for (int y = 0; y < img.height(); ++y)
if (is_center_of_star(img, x, y))

++count;
return count;

}

Completely

independent

Counting is independent but

incrementing count is not.

Loops are a good source of potentially-independent tasks.

Straight-forward loop parallelism

Pablo Halpern, 2014 (CC BY 4.0)

11

long count_stars(const Image& img)
{

long count(0);
// Iterate over the pixels of the image
cilk_for (int x = 0; x < img.width(); ++x)

cilk_for (int y = 0; y < img.height(); ++y)
if (is_center_of_star(img, x, y))

++count;
return count;

}
Parallel updates

Correctness problem: data race

One solution: atomic variables

Pablo Halpern, 2014 (CC BY 4.0)

12

long count_stars(const Image& img)
{

std::atomic<long> count(0);
// Iterate over the pixels of the image
cilk_for (int x = 0; x < img.width(); ++x)

cilk_for (int y = 0; y < img.height(); ++y)
if (is_center_of_star(img, x, y))

++count;
return count;

}

Performance problem: Atomic variable contention

read latency for count

Cache Ping-Pong on atomic count

Pablo Halpern, 2014 (CC BY 4.0)

13

++count

read latency for count

++count

read latency for count

++count

is_center_of_star

is_center_of_star

is_center_of_star

++count

read latency for count

++count

is_center_of_star

is_center_of_star

invalidate

invalidate

invalidate

invalidate

= count is in modifiable state in L1 cache

CPU 0 CPU 1

Better solution: reduction

Pablo Halpern, 2014 (CC BY 4.0)

14

long count_stars(const Image& img)
{

cilk::reducer<cilk::op_add<long>> count_r(0);
// Iterate over the pixels of the image
cilk_for (int x = 0; x < img.width(); ++x)

cilk_for (int y = 0; y < img.height(); ++y)
if (is_center_of_star(img, x, y))

++*count_r;
return count_r.get_value();

}

Pointer-like

interface.

Each concurrent access to the reducer sees a different
“view” of the variable. The parallel views are collapsed

into a single value at the end of the computation.

count += view0_count
+ view1_count

Reducer operation (conceptual)

Pablo Halpern, 2014 (CC BY 4.0)

15

++view0_count

++view0_count

++view0_count

is_center_of_star

is_center_of_star

is_center_of_star

++view1_count

++view1_count

is_center_of_star

is_center_of_star

CPU 0 CPU 1

view1_count ==
0 + 1 + 1

view0_count ==
0 + 1 + 1 + 1

count == (0 + 1 + 1 + 1) + (0 + 1 + 1)

= count is in modifiable state in L1 cache

The n-bodies problem

 Introduction to the problem

Basic implementation framework

Parallelize the parts with parallel loops

Try different approaches to mitigate data races

Restructure the code into an elegant recursive

algorithm with excellent cache locality

Pablo Halpern, 2014 (CC BY 4.0)

16

Gravity and planetary motion

Pablo Halpern, 2014 (CC BY 4.0)

17

m0

m1

m2

F

F

F
F

v
v

v

v

𝑣𝑖
′ = 𝑣𝑖 +

𝐹𝑖∆𝑡

𝑚𝑖

To compute position, x’ from

position x after time increment ∆𝑡:

𝑥𝑖
′ = 𝑥𝑖 + 𝑎𝑣𝑔(𝑣𝑖)∆𝑡

Perform computation for each i, j.
Repeat for each time step.

m3

𝐹𝑖 =

𝑗≠𝑖

𝑓𝑖𝑗

𝑓𝑖𝑗 =
𝐺𝑚𝑖𝑚𝑗

𝑑ij
2

A sample run of 4000 time steps

Pablo Halpern, 2014 (CC BY 4.0)

18

Note: this is not a real-time
animation. Still frames were

combined into an animated GIF

using an arbitrary frame rate of

10 fps, looped.

300 Bodies

New video frame for every

40 steps (total 100 frames)

General framework of n-bodies

Pablo Halpern, 2014 (CC BY 4.0)

19

Data structure and main loop

Pablo Halpern, 2014 (CC BY 4.0)

20

int main(int argc, char* argv[])
{

int nbodies = argc > 1 ? atoi(argv[1]) : 300;
int nframes = argc > 2 ? atoi(argv[1]) : 100;
Body *bodies = new Body[nbodies];
initialize_bodies(nbodies, bodies);

draw_frame(0, nbodies, bodies);
for (int frame_num = 1; frame_num < nframes;

++frame_num) {
for (int i = 0; i < steps_per_frame; ++i) {

calculate_forces(nbodies, bodies);
update_positions(nbodies, bodies);

}
draw_frame(frame_num, nbodies, bodies);

}

delete[] bodies;
}

struct Body {
double x; // x position
double y; // y position
double xv; // x velocity
double yv; // y velocity
double xf; // x force
double yf; // y force
double mass; // mass
double density; // density
Pixel pix; // color

};

Central computations

Pablo Halpern, 2014 (CC BY 4.0)

21

// Compute force, (*fx,*fy) on body bi exerted by body bj
void calculate_force(double *fx, double *fy,

const Body &bi, const Body &bj)
{

double dx = bj.x - bi.x;
double dy = bj.y - bi.y;
double dist2 = dx * dx + dy * dy; // distance squared

double dist = std::sqrt(dist2);
double f = bi.mass * bj.mass * GRAVITY / dist2;
*fx = f * dx / dist;
*fy = f * dy / dist;

}

𝑓𝑖𝑗 =
𝐺𝑚𝑖𝑚𝑗

𝑑ij
2

// Add force, (fx,fy) to body b
void add_force(Body* b, double fx, double fy)
{

b->xf += fx;
b->yf += fy;

}
𝐹𝑖 =

𝑗≠𝑖

𝑓𝑖𝑗

Updating positions in parallel
The easier problem

Pablo Halpern, 2014 (CC BY 4.0)

22

Updating positions – serial

Pablo Halpern, 2014 (CC BY 4.0)

23

void update_positions(int nbodies, Body *bodies)
{

for (int i = 0; i < nbodies; ++i) {
// initial velocity
double xv0 = bodies[i].xv;
double yv0 = bodies[i].yv;
// update velocity based on forces
bodies[i].xv += TIME_QUANTUM * bodies[i].xf / bodies[i].mass;
bodies[i].yv += TIME_QUANTUM * bodies[i].yf / bodies[i].mass;
// clear forces for next iteration
bodies[i].xf = 0.0;
bodies[i].yf = 0.0;
// update position based on average velocity
bodies[i].x += TIME_QUANTUM * (xv0 + bodies[i].xv)/2.0;
bodies[i].y += TIME_QUANTUM * (yv0 + bodies[i].yv)/2.0;

}
}

𝑣𝑖
′ = 𝑣𝑖 +

𝐹𝑖∆𝑡

𝑚𝑖

𝑥𝑖
′ = 𝑥𝑖 + 𝑎𝑣𝑔(𝑣𝑖)∆𝑡

Updating positions – parallel

Pablo Halpern, 2014 (CC BY 4.0)

24

void update_positions(int nbodies, Body *bodies)
{

cilk_for (int i = 0; i < nbodies; ++i) {
// initial velocity
double xv0 = bodies[i].xv;
double yv0 = bodies[i].yv;
// update velocity based on forces
bodies[i].xv += TIME_QUANTUM * bodies[i].xf / bodies[i].mass;
bodies[i].yv += TIME_QUANTUM * bodies[i].yf / bodies[i].mass;
// clear forces for next iteration
bodies[i].xf = 0.0;
bodies[i].yf = 0.0;
// update position based on average velocity
bodies[i].x += TIME_QUANTUM * (xv0 + bodies[i].xv)/2.0;
bodies[i].y += TIME_QUANTUM * (yv0 + bodies[i].yv)/2.0;

}
}

tbb::parallel_for(0, nbodies, [&](int i){
…

});

#pragma omp parallel for
for (int i = 0; i < nbodies ++i)
{

…
}

 Done!

Calculating forces in parallel
The harder problem

Pablo Halpern, 2014 (CC BY 4.0)

25

Calculating forces – naïve serial

Pablo Halpern, 2014 (CC BY 4.0)

26

void calculate_forces(int nbodies, Body *bodies) {
for (int i = 0; i < nbodies; ++i) {

for (int j = 0; j < nbodies; ++j) {
// update the force vector on bodies[i] exerted
// by bodies[j].
if (i == j) continue;

double fx, fy;
calculate_force(&fx, &fy, bodies[i], bodies[j]);
add_force(&bodies[i], fx, fy);

}
}

}

n(n – 1) applications of calculate_force()

Calculating forces – half the work

Pablo Halpern, 2014 (CC BY 4.0)

27

void calculate_forces(int nbodies, Body *bodies) {
for (int i = 0; i < nbodies; ++i) {

for (int j = i + 1; j < nbodies; ++j) {
// update the force vector on bodies[i] exerted
// by bodies[j].

double fx, fy;
calculate_force(&fx, &fy, bodies[i], bodies[j]);
add_force(&bodies[i], fx, fy);
add_force(&bodies[j], -fx, -fy);

}
}

}

n(n – 1)/2 applications of calculate_force()

Graphical representation of iteration

space

Pablo Halpern, 2014 (CC BY 4.0)

28

j > i

j

i

0

0

n

n

Calculating forces – naïve parallel

Pablo Halpern, 2014 (CC BY 4.0)

29

void calculate_forces(int nbodies, Body *bodies) {
cilk_for (int i = 0; i < nbodies; ++i) {

for (int j = i + 1; j < nbodies; ++j) {
// update the force vector on bodies[i] exerted
// by bodies[j].

double fx, fy;
calculate_force(&fx, &fy, bodies[i], bodies[j]);
add_force(&bodies[i], fx, fy);
add_force(&bodies[j], -fx, -fy);

}
}

}

parallel application of calculate_force() and add_force()

A look at the parallel execution

Pablo Halpern, 2014 (CC BY 4.0)

30

calculate_force(0,1)

add_force(0)

add_force(1)

calculate_force(0,2)

add_force(0)

add_force(2)

calculate_force(1,2)

add_force(1)

add_force(2)

calculate_force(1,3)

add_force(1)

add_force(3)

i = 0 i = 1 i = 2

j = i + 1

j = i + 2

etc…

Race!

“Obvious solution”: embed a mutex

Pablo Halpern, 2014 (CC BY 4.0)

31

struct Body {
…
SmallMutex mutex; // Maybe a spin lock?

};

{
std::lock_guard<SmallMutex> g(bodies[i].mutex);
add_force(&bodies[i], fx, fy);

}
{

std::lock_guard<SmallMutex> g(bodies[j].mutex);
add_force(&bodies[j], -fx, -fy);

}

Alternative “solution”: hashed mutexes

Pablo Halpern, 2014 (CC BY 4.0)

32

struct Body {
…
static std::mutex mutex_array[64];
std::mutex& mutex() {

size_t hash = size_t(this) / sizeof(Body);
return mutex_array[hash % 64];

}
}; {

std::lock_guard<std::mutex> g(bodies[i].mutex());
add_force(&bodies[i], fx, fy);

}
{

std::lock_guard<std::mutex> g(bodies[j].mutex());
add_force(&bodies[j], -fx, -fy);

}

What about atomics?

Pablo Halpern, 2014 (CC BY 4.0)

33

struct Body {
…
std::atomic<double> xf; // x force
std::atomic<double> yf; // y force
…

}; // Add force, (fx,fy) to body b
void add_force(Body* b, double fx, double fy)
{

b->xf += fx;
b->yf += fy;

}
x No atomic

increment for floats

// Add force, (fx,fy) to body b
void add_force(Body* b, double fx, double fy)
{

double oxf = b->xf, oyf = b->yf;
while (b->xf.compare_exchange_weak(oxf, oxf + fx)) {}
while (b->yf.compare_exchange_weak(oyf, oyf + fy)) {}

}

possible

contention

Counterintuitive: double the work?

Pablo Halpern, 2014 (CC BY 4.0)

34

void calculate_forces(int nbodies, Body *bodies) {
cilk_for (int i = 0; i < nbodies; ++i) {

for (int j = 0; j < nbodies; ++j) {
// update the force vector on bodies[i] exerted
// by bodies[j].
if (i != j) {

double fx, fy;
calculate_force(&fx, &fy, bodies[i], bodies[j]);
add_force(&bodies[i], fx, fy);

}
}

}
}

n(n – 1) applications of calculate_force(), again!

An elegant, cache-friendly

approach
Introduction to cache-oblivious algorithms

Pablo Halpern, 2014 (CC BY 4.0)

35

The problem of poor cache locality

Pablo Halpern, 2014 (CC BY 4.0)

36

for (int i = 0; i < nbodies; ++i)
for (int j = 0; j < nbodies; ++j)

…

0 1 2 3 … 1000 1001 1002 …

bodies array

0
1
2

1001

3
…

1000

Evict!

1002

next i

0

Cache locality is important for

parallelism

Pablo Halpern, 2014 (CC BY 4.0)

37

Memory bandwidth limitations:

Single core: bad.

Multicore: worse!

2-D Tiling to improve cache locality
A brief reprise of count_stars

Pablo Halpern, 2014 (CC BY 4.0)

38

Photo courtesy NASA

constexpr int tile_size = 16;
cilk_for (int x_tile = 0; x_tile < img.width();

x_tile += tile_size)
cilk_for (int y_tile = 0; y < img.height();

y_tile += tile_size)
serial_count_stars(img, x_tile, tile_size,

y_tile, tile_size);

Can we tile the n-bodies problem, and

return to the triangular computation?

Pablo Halpern, 2014 (CC BY 4.0)

39

j

0

0

n

n
i

Same range of

i values; not

independent

Tiles cannot all be

processed in parallel.

Yes, but not the same

way as for count_stars

Cache-oblivious recursive tiling

Pablo Halpern, 2014 (CC BY 4.0)

40

j

i

0

0

n

n

m

m

For two tiles to be computed in parallel,

the i range of one must not overlap

either the i or j range of the other.

The triangles are in parallel with each

other.

Neither triangle is in parallel with the

rectangle.

The next level of recursion

Pablo Halpern, 2014 (CC BY 4.0)

41

Each triangle can be recursively

subdivided the same way, yielding the

same parallelism at the next level.

Each rectangle can also be subdivided

into four rectangles.

The rectangles marked A are in parallel

with each other. The rectangles marked

B are in parallel with each other (but not

with the A rectangles).

j

i

0

0

n

n

m

m

A

AB

B

Cache-oblivious n-bodies algorithm

Pablo Halpern, 2014 (CC BY 4.0)

42

void calculate_forces(int nbodies, Body *bodies)
{

triangle(0, nbodies, bodies);
}

// traverse the triangle n0 <= i <= j < n1
void triangle(int n0, int n1, Body *bodies)
{

int dn = n1 - n0;
if (dn > 1) {

int nm = n0 + dn / 2;
cilk_spawn triangle(n0, nm, bodies);
triangle(nm, n1, bodies);
cilk_sync;
rect(n0, nm, nm, n1, bodies);

}
}

j

i

0
0

n

n

m

m

Cache-oblivious n-bodies algorithm
(continued)

Pablo Halpern, 2014 (CC BY 4.0)

43

// traverse the rectangle i0 <= i < i1, j0 <= j < j1
void rect(int i0, int i1, int j0, int j1, Body *bodies) {

int di = i1 - i0, dj = j1 - j0;
if (di > 1 && dj > 1) {

int im = i0 + di / 2, jm = j0 + dj / 2;
cilk_spawn rect(i0, im, j0, jm, bodies); // A
rect(im, i1, jm, j1, bodies); // A
cilk_sync;
cilk_spawn rect(i0, im, jm, j1, bodies); // B
rect(im, i1, j0, jm, bodies); // B
cilk_sync;

} else if (di > 0 && dj > 0) {
double fx, fy;
calculate_force(&fx, &fy, bodies[i0], bodies[j0]);
add_force(&bodies[i], fx, fy);
add_force(&bodies[j], -fx, -fy);

}
}

0
0

n

n

m

m

A

AB

B

Coarsening to reduce overhead

Pablo Halpern, 2014 (CC BY 4.0)

44

// traverse the rectangle i0 <= i < i1, j0 <= j < j1
void rect(int i0, int i1, int j0, int j1, Body *bodies) {

int di = i1 - i0, dj = j1 - j0;
constexpr int threshold = 16;
if (di > threshold && dj > threshold) {

int im = i0 + di / 2, jm = j0 + dj / 2;
cilk_spawn rect(i0, im, j0, jm, bodies); // A
rect(im, i1, jm, j1, bodies); // A
cilk_sync;
cilk_spawn rect(i0, im, jm, j1, bodies); // B
rect(im, i1, j0, jm, bodies); // B
cilk_sync;

} else
for (int i = i0; i < i1; ++i)

for (int j = j0; j < j1; ++j) {
double fx, fy;
calculate_force(&fx, &fy, bodies[i], bodies[j]);
add_force(&bodies[i], fx, fy);
add_force(&bodies[j], -fx, -fy);

}
}

recursive spawn is

cheap, but not free

Serial loop is faster than

recursion a the leaves.

Could we do more?

The last version is fast and parallel, but you can
almost always do more!

The data structure for array-of-bodies is ill-suited
for vectorization. This can and should be the
topic of a whole talk at a future CppCon.

Measure, measure, measure!

Using performance-analysis tools, we might find other
bottlenecks.

Some of our logically-reasoned speed-ups might not
work in practice on real hardware.

Pablo Halpern, 2014 (CC BY 4.0)

45

Summary

Parallelism requires decomposing a problem

into independent parts.

Some creativity is required for all but the simplest

algorithms.

Even a correct parallel program can suffer from

negative cache effects and contention.

Measure and iterate!

Pablo Halpern, 2014 (CC BY 4.0)

46

More Information

A cute technique for avoiding certain race

conditions, Matteo Frigo, 2009,

https://software.intel.com/en-us/articles/a-cute-

technique-for-avoiding-certain-race-conditions

Pablo Halpern, 2014 (CC BY 4.0)

47

https://software.intel.com/en-us/articles/a-cute-technique-for-avoiding-certain-race-conditions

Thank You!

