
Rebuilding Boost Date
Time for C++11/14

1

Jeff Garland
jeff@crystalclearsoftware.com

Alternate title:
!

C++11/14 Features for Building
Valuetype Classes - an exploration

2

What Will This Talk Achieve?
• Examination of C++11 & 14 features for building

ValueType classes

• Using boost date-time as an example

• Differences from c++98

• General discussion of considerations for
ValueType classes

• Preview of date-time v2
3

Background
• boost date-time (bdt)

• v1 put into boost in 1.29 in 2002

• used in many, many projects

• Good

• Simple to use and fairly powerful interface

• Fanatical error checking

• I/O

• Bad

• Fanatical error checking (it’s somewhat slow)

• Relatively hard to extend

• Many code base hacks for pre-2000 compilers (eg: g++2.9.8, vc6)

• Ugly

• I/O - facet based strftime based interfaces is relatively slow 4

//math
date weekend = weekstart + week(1);
date d2 = d1 + days(5);

//bdt v1
using namespace boost::gregorian;
date weekstart(2002,Feb,1); //obvious construction

//clock
date today = day_clock::local_day();
if (d2 >= today) {} //all the usual comparison operators
!

5

date-time & chrono
• BDT v1 the basis is elements in <chrono>

• but…c++11 was NOT ready for a full date-time library

• proposals were too late and immature (originally was
targeting TR2)

• date-time v1 is large enough that it’s hard to standardize

• committee was too busy

• it was all we could do to get chrono…at the time

• Excuses :)

6

C++11/14 Features Covered
• Design considerations for the ‘date’ class (mostly)

• Specifically c++11/14 feature considerations (language and library)

• final

• noexcept (error handling)

• move construction/assignment (R-values)

• constexpr

• member initialization

• enum types

• user defined literals

• template aliases

• std::to_string

• delegating constructors

• Also, general class considerations

• default construction

• templated construction / conversion 7

Time to Start Over!
!

Reconsider everything…

8

What’s easiest to use type in
C++?

• int!

• Want date to be as easy as an int

• BDT v1 date is close…but not quite

• as easy as int

• or as fast

• much closer to ‘double’…which is a nightmare, really

• date can never be as good as int but we can do better than
bdt v1

9

Properties of an Int
• Hard to break

• Never throws exceptions

• implicitly all functions are noexcept

• used in virtually ever program — mostly error free

• fast at almost everything

• now in c++11 good conversions from string

• What can go wrong with an int?

• fail to initialize (easy fix there)

• overflow on arithmetic

• signed versus unsigned compare (warnings)
10

Design Considerations
• Fast (er)

• Simple (r) consistent interface

• I/O, I/O, I/O

• Extensible, extensible, extensible

• Play nice with <chrono>

• Play nice with BDT v1 — if possible…

• Something that can be standardized…

11

C++11/14 Features 1 by 1

12

final

• c++11 supports keyword ‘final’

• In function context prevents derived classes
from overloading

• In class context makes derivation an error

13

date as final class
class date final {…..};
!
!
class mydate : public boost::date_time2::date { }

14

> g++-4.9 -std=c++11 test.cpp

!
test.cpp:18:7: error: cannot derive from ‘final’ base
‘boost::date_time2::date’ in derived type ‘mydate’
 class mydate : public boost::date_time2::date

final - the final word

• Ultimately no classes in boost date_time2 are
currently marked as final

• could prevent valid extension path — add
stateless function / constructor

• no std library types use final

15

//math
date weekend = weekstart + week(1);
date d2 = d1 + days(5);

//bdt v1
using namespace boost::gregorian;
date weekstart(2002,Feb,1); //obvious construction

//clock
date today = day_clock::local_day();
if (d2 >= today) {} //all the usual comparison operators
!

16

//US labor day holiday is first Monday in Sept
nth_day_of_the_week_in_month labor_day(nth_dow::first,Monday, Sep);
date d6 = labor_day.get_date(2004);

//input streaming
std::stringstream ss("2004-Jan-1");
ss >> d3;

//date generator functions
date d4 = next_weekday(d3, Sunday);

17

Do you see the problem?

• Too many ways to represent a date!

• And bdt v1 was inconsistent in it’s approach

18

It’s all about construction

• default constructors

• move constructors (c++11)

• noexcept and errors (c++11)

• member initialization (c++11)

• templated constructor

19

!
!

date d3;
d3 += days(2); //value?

20

It’s all about construction
default constructor

• Should there be a default constructor?

• initial answer was no in v1…

• std::map requires key to be default constructible

• some code clearly harder to write…

• What should it be?

• current date…slow, slow, slow — breaks performance assumption

• epoch - reasonable…answer for v2

• ‘not a date time’…answer for v1

21

you’re so special - a
diversion

• v1 had special values for date - nadt, neg_infinity, pos_infinity

• gone in v2

• advantages

• handy for the domain on occasion

• disadvantages

• requires addition of ~5 methods to date interface

• date’s aren’t ‘always valid’ - can’t reason about functions

• checking for these - aka special logic

• i/o is harder…

• makes ‘int’ into ‘double’

22

nadt == optional
• should be build optional into a low level value type?

• advantages

• don’t need the wrapper

• disadvantages

• burdens all applications with optional behavior

• even if not needed

• most don’t…

• complexity…again

23

!
!

date d3;
d3 += days(2); //v2 == epoch() + 2 days

24

It’s all about construction

move construction?
• Should there be a move constructor?

• value seems limited, however…

• best practice to include anyway

• can make it explicit in c++11

 /// Trivial move constructor
 date(date&&) noexcept = default;
!
 /// Trivial copy constructor
 date(const date&) noexcept = default;
!
 /// Trivial assignment
 date& operator=(const date&) noexcept = default;

25

It’s all about construction

Error Handling & NoExcept
• Problem: Sometimes you know your date it

good…sometimes you don’t

• Solution: checking versus non-checking
constructor

• Non checking variant is no-except for max
speed — use with trusted source

• Checking variant insures correctness

26

noexcept

• Performance boost for noexcept?

• Unable to discern any at this point…

• Lack of time & cleverness likely…

27

date(const year_month_day& ymd) noexcept;
date(const year_month_day& ymd, checking check);

It’s all about construction

member initialization
• Allows class/struct data members to be explicitly

initialized

28

29

 //user code…
 iso_week_number wn;

 //library code…
 struct iso_week_number {
 /** Construct to invalid state */
 iso_week_number() noexcept = default;
!
 …
!
 uint16_t year = 10001;
 uint8_t week_no=54; ///<use iso week numbering
 uint8_t day_in_week=8; ///<1==monday...7==sunday

Date - How do I represent
thee?

• Strings — a gazillion variations

• localization anyone?

• iso

• month, day, year

• iso week number and day in week

• Calculated

• third sunday in feb of 2014

• last sunday in mar of 2014

• sunday of week 5 in 2014

• modified julian day &
julian day

• time_t and tm

• mayan calendar?

• klingon calendar?

30

It’s all about construction

templated construction

• Really, I don’t know how you’re going to
represent a date…seriously, I don’t…

31

std::tm

32

 //v2
 tm t;
 t.tm_year = 113;//2013
 t.tm_mon = 11; //Dec
 t.tm_mday = 30;
 date d(t);

//v1
tm d_tm;
d_tm.tm_year = 105;
d_tm.tm_mon = 0;
d_tm.tm_mday = 1;
date d = date_from_tm(d_tm);

std::tuple & chrono

33

//v2 only — can’t write in v1
std::tuple<int, int, int> t_ymd(1900, 1, 1);
date d(t_ymd);

using namespace std::chrono;
system_clock::time_point tp = system_clock::now();
date d(tp); //v2 only

 //calculated dates
 day_of_week dow(First, Wed, Jan, 2013);
 date d(dow);
!
 date d(day_of_year(2014, 1)); //jan 1, 2014
!

!

34

!
 //v2 api
 using namespace boost::date_time2;
 date d(2012, 1, 1);
 year_month_day ymd(2012, 1, 1);
 date d2(ymd);
!
 date d1(year_month_day(“20140401T000000”), ISO);
!
 date d2(year_month_day(“2014-04-01”));
 date d1(year_month_day(“2004-10-01"));
 date d2(year_month_day("2004/10/01"));

 closest_day_of_week pdw(Sun, Before, 2013, May, 17);
 date d(pdw);

35

 //bridge from bdt v1
 boost::gregorian::date bd(1900, 1, 1);
 date d(bd);
!
 boost::posix_time::ptime pt(bd);
 date d2(bd);

 iso_week_number wn1(“2014-W01-2");
 date d1(wn1);
!
 iso_week_number wn2("2014", "W1", “2");
 date d2(wn2);
!
 iso_week_number wn3(2014, 1, 5);
 date d3(wn3); //2014-Jan-3

How is it done?
• Templated constructor

• Specializations for different types

• Allows users to add new representation — all construction is
the same

• Alternative

• Construct everything using make_date function

• Users can provide their own

• Feels odd for date…

36

Under the Hood
 //declaration…
 template<typename T>
 explicit date(const T& t) noexcept;

 /// Template specialization to construct a date from a chrono::system_clock::time_point
 template<>
 date::date<std::chrono::system_clock::time_point>(const std::chrono::system_clock::time_point& tp) noexcept

 {
 using namespace std::chrono;
 std::time_t tt = system_clock::to_time_t(tp);
 from_time_t(tt);
 }

37

User Defined Literals

• C+11 allows creation of user defined literal

• Convert a literal in code to a type

• C++14 has pre-defined values for chrono

38

user defined literal example

39

hours h(1); //traditional
auto ns = 1h + 20us; //ns type == chrono::nanoseconds
std::cout << ns.count() << std::endl;

#include <chrono>
#include <iostream>
using namespace std::chrono;
using namespace std::literals::chrono_literals;

Nice, but…
• Standard limits user defined literals

• must include underscore

• _w for week?

• Types are limited…

• Easy to implement?

40

snippet of chrono ‘h’
operator

41

 constexpr chrono::duration<long double, ratio<3600,1>>
 operator""h(long double __hours)
 { return chrono::duration<long double, ratio<3600,1>>{__hours}; }
!
 template <char... _Digits>
 constexpr typename
 __select_type::_Select_type<__select_int::_Select_int<_Digits...>::value,
 chrono::hours>::type
 operator""h()
 {
 return __select_type::_Select_type<
 __select_int::_Select_int<_Digits...>::value,
 chrono::hours>::value;
 }

what’s wrong with this?

42

constexpr boost::date_time2::days operator""_d(short d)
{
 return boost::date_time2::days(d);
}

g++-4.9 -I ../bdt2 -std=c++14 test.cpp
test.cpp:22:45: error: ‘boost::gregorian::days boost::date_time2::literals::operator""_d(short int)’ has invalid
argument list
 boost::date_time2::days operator""_d(short d)
 ^

still no joy…

43

constexpr days operator”"_d(unsigned long long d)
{
 return days(d);
}

error…!
!
boost::date_time2::days’ is not an aggregate, does not have a trivial
default constructor, and has no constexpr constructor that is not a copy
or move constructor

Remove the constexpr for
now

44

constexpr days operator”"_d(unsigned long long d)
{
 return days(d);
}

• question: is it worth it to be able to write?

auto d = 1_d + 2_w; //15 days

date d {2014, 1, 1};

d+= 1_w;

• ???

constexpr
• Generalized constant expression

• Function evaluated at compile time

• Some C++11 limits

• typically needs a single return value

• can only call other constexpr functions

• C++14 generalizes constexpr

• Allows control structures (if/switch)

• Local variables

45

obvious constexpr

 static constexpr uint8_t day_of_month_min() { return 1; }
 static constexpr uint8_t day_of_month_max() { return 31; }
!
 static void validate_ymd(uint16_t year, uint8_t month, uint8_t day)
 {
 range_check("year", year_min(), year_max(), year);
 range_check("month", month_min(), month_max(), month);
 range_check("day", day_of_month_min(), day_of_month_max(), day);
 }

46

constexpr limits

• consider ‘max_date’ function

• returns a date that represents max representable
date

47

date::max_date

 static constexpr date max_date()
 {
 return date(year_max()-1,
 month_max(),
 day_of_month_max());
 }

48

well, maybe not…

g++-4.8 -I ~/devtools/boost_1_55_0 -std=c++11 test.cpp
In file included from test.cpp:6:0:
date.hpp: In static member function ‘static constexpr boost::date_time2::date
boost::date_time2::date::max_date()’:
date.hpp:85:29: error: invalid return type ‘boost::date_time2::date’ of constexpr function ‘static constexpr
boost::date_time2::date boost::date_time2::date::max_date()’
 static constexpr date max_date()
 ^
date.hpp:78:11: note: ‘boost::date_time2::date’ is not literal because:
 class date : public date_base<gregorian_calendar>
 ^
date.hpp:78:11: note: ‘boost::date_time2::date’ is not an aggregate, does not have a trivial default
constructor, and has no constexpr constructor that is not a copy or move constructor

49

std::to_string

• new standard library functions to convert many
integral types to std::string

• types covered include integer and floating point
of various flavors

• corresponding string to type (eg: stoi) functions
also there

50

using to_string - generic range check

 template <typename T>
 void range_check(std::string unit, T min, T max, T value)
 {
 if (value > max || value < min) {
 throw std::out_of_range(unit + " is out of range "
 + std::to_string(min) + "..." + std::to_string(max)
 + ": " + std::to_string(value));

 }
 }

51

delegating constructors

• Allows calling one constructor from another

• Avoids writing ‘init’ type functions

52

delegating constructor

class year_month_day {
public:
 year_month_day(const char* const ymd_string);

 template<typename T>
 explicit year_month_day(const T& ymd);
!

 template<>
 year_month_day::year_month_day(const std::string& ymd_string) :
 year_month_day(ymd_string.c_str())!
 {}

53

Building Valuetypes in C+
+11/14

!
• It’s a whole new world…

• Top features — Jeff’s view…

• to_string

• noexcept

• explicit defaults for compiler generated constructors

• member initialization

• constexpr

• delegating constructor

• questionable value

• final

• user defined literals

54

Conclusions: Valuetype
Design Considerations

• How does your type integrate with others?

• Does it play well with things in standard library?

• Does if follow recognized / common patterns
from standard?

55

Conclusion
• C++11 and 14 provide nice features for writing value types

• Implementation quality is much higher

• But don’t forget about old features!

• Other resources

• Sean Parent - C++Now 2012 - Value Semantics and
Concepts-Based Polymorphism

• Eric Niebler C++ Now 2014 - C++11 Library Design

• Michael Caisse - The Canonical Class - Wed 9 am

56

