Rebuilding Boost Date
Time for C++11/14

Alternate title:

+11/14 Features for Building
Valuetype Classes - an exploration

What Will This Talk Achieve?

e Examination of C++11 & 14 features for building
Valuelype classes

* Using boost date-time as an example
e Differences from c++98

e (General discussion of considerations for
Valuelype classes

e Preview of date-time v2

3

Background

* boost date-time (bdt)
*v1 put into boost in 1.29 in 2002
* used in many, many projects
* Good
» Simple to use and fairly powerful interface

* Fanatical error checking

Qe

//bdt vi

using namespace boost::gregorian;

date weekstart(2002,Feb,1); //obvious construction
//math

date weekend = weekstart + week(1);
date d2 = d1 + days(5);

date-time & chrono

* BDT v1 the basis is elements in <chrono>
e but...c++11 was NOT ready for a full date-time library

e proposals were too late and immature (originally was
targeting TR2)

SHeriERln SRR el el e s el RLORSeINE el s de

C++11/14 Features Covered

» Design considerations for the ‘date’ class (mostly)
» Specifically c++11/14 feature considerations (language and library)
e final
* noexcept (error handling)
* move construction/assignment (R-values)
* constexpr

e member initialization

s enum ipes

Time to Start Over!

What's easliest to use type In
C++7

* Int!
* \Want date to be as easy as an int

* BDT v1 date is close...but not guite

* as easy as int

Properties of an Int

e Hard to break
* Never throws exceptions
* implicitly all functions are noexcept

e used in virtually ever program — mostly error free

 fast at almost everything

Design Considerations

Fast (er

o Simple (r) consistent interface

e ee

e Extensible, extensible, extensible

C++11/14 Features 1 by 1

final

 c++11 supports keyword ‘final’

e |n function context prevents derived classes

date as final class

class date final {.....};

class mydate : public boost::date_time2::date

> g++-4.9 -std=c++1 1 test.cpp

final - the final word

e Ultimately no classes in boost date_time2 are
currently marked as final

» could prevent valid extension path — add

//bdt vi

using namespace boost::gregorian;

date weekstart(2002,Feb,1); //obvious construction
//math

date weekend = weekstart + week(1);
date d2 = d1 + days(5);

//input streaming
std::stringstream ss("2004-Jan-1");
SS =63

//date generator functions
date d4 = next_weekday(d3, Sunday);

US labor day holiday is first Monday in Sept

Do you see the problem?

oo many ways to represent a date!

It's all about construction

e default constructors

e move constructors (c++11

* noexcept and errors (C++11

date d3;
d3 += days(2); //value?

It's all about construction

efault constructor

e Should there be a default constructor?
e |nitial answer was noin vi...

e std::map requires key to be default constructible

e some code clearly harder to write...

you're so special - a
diversion

v1 had special values for date - nadt, neg_infinity, pos_infinity

gone in v2

advantages

* handy for the domain on occasion

disadvantages

nadt == optional

« should be build optional into a low level value type?
e advantages

e don’t need the wrapper

» disadvantages

date d3;
d3 += days(2); //v2 == epoch() + 2 days

It's all about construction

move construction?

* Should there be a move constructor?
* value seems limited, however...

» best practice to include anyway

e can make it explicit in c++11

It's all about construction

Error Handling & NoExcept

Problem: Sometimes you know your date it
good...sometimes you don't

Solution: checking versus non-checking
constructor

Non checking variant is no-except for max
speed — use with trusted source

Checking variant insures correctness

26

noexcept

date(const year_month_day& ymd) noexcept;
date(const year_month_day& ymd, checking check);

e Performance boost for noexcept?

It's all about construction

member initialization

» Allows class/struct data members to be explicitly
initialized

lliiser code |
ISO_week_number wn;

//library code...

struct iso_week_number
/** Construct to invalid state */
iso_week_number() noexcept = default;

Date - How do | represent
thee”

e Strings — a gazillion variations

* |ocalization anyone?

 modified julian day &
e julian day

* month, day, year

It's all about construction

templated construction

e Really, | don't know how you're going to

std::tm

/Iv1

tm d_tm;

d_tm.tm_year = 105;

gl tmdm mon .= 0.

ditmaim mday. = 1;

date d = date_from_tm(d_tm);

[Iv2

i 6

t.tm_year = 113;//2013
t.tm_mon = 11; //Dec
tirm. mday. = 80;

date d(t);

std::tuple & chrono

/v2 only — can’t write in v1
std::tuple<int, int, int> t_ ymad(1900, 1, 1);
date d(t_ymd);

/N2 api

using namespace boost::date_time?2;
date d(2012, 1, 1);

year_month_day ymd(2012, 1, 1);
date d2(ymd);

date d1(year_month_day(“20140401T000000"), ISO);

date d2(year_month_day(“2014-04-01"));
date d1(year_month_day(“2004-10-01"));
date d2(year_month_day("2004/10/01"));

//calculated dates
day_of_week dow(First, Wed

Jan, 2013);

iso_week_number wn1(“2014-W01-2");
date d1(wn1);

iso_week_number wn2("'2014", "W1", “2");
date d2(wn2);

iIso_week_number wn3(2014, 1, 5);
date d3(wn3); //2014-Jan-3

//oridge from bdt v1
boost::gregorian::date bd(1900, 1, 1);
date d(bd):;

How Is It done”

Templated constructor

Specializations for different types

Allows users to add new representation — all construction is
the same

Under the Hood

//declaration...
template<typename 1>
explicit date(const T& t) noexcept;

//] Template specialization to construct a date from a chrono::system_clock::time_point
template<> e ‘ - ‘ :

User Defined Literals

e C+11 allows creation of user defined literal

» Convert a literal in code to a type

user defined literal example

#include <chrono>

#include <iostream>

using namespace std::chrono;

using namespace std::literals::chrono_literals;

hours h(1); //traditional

auto ns = 1h + 20us; //ns type == chrono::nanoseconds
std::cout << ns.count() << std::endl

Nice, but...

o Standard limits user defined literals

e must Include underscore

s forieckis,

R

snippet of chrono ‘N’
operator

constexpr chrono::duration<long double, ratio<3600,1>>
operator"h(long double __hours)
{ return chrono::duration<long double, ratio<3600,1>>{__hours}; }

lemplate —chiar.. Digiis
constexpr typename
__select_type::_Select_type<__select_int::_Select_int<_Digits...>::value,
chrono::hours>::type

operator™n()

what’s wrong with this®

constexpr boost::date_time2::days operator™_d(short d)

{

return boost::date_time2::days(d);

)

still no joy...

constexpr days operator

{
J

_d(unsigned long long d)

return days(d);

CELOL

Remove the constexpr for
NOW

eonstexpr days operator”™_d(unsigned long long d)

{
return days(d);

)

is it worth it to be able to write”?

e IR 2 3
b i p iy s e

* question:

Gaeaimelis:

constexpr

» (Generalized constant expression
e Function evaluated at compile time

e Some C++11 limits

 typically needs a single return value

obvious constexpr

static constexpr uint8_t day_of_month_min() { return 1; }
static constexpr uint8_t day_of_month_max() { return 31; }

static void validate_ymd(uint16_t year, uint8_t month, uint8_t day)

onstexpr lImits

e consider ‘max_date’ function

date::max date

static constexpr date max_date()

{

return date(year_max()-1,
month_max(),
day_of_month_max());

well, maybe not...

g++-4.8 -| ~/devtools/boost_1_55_0 -std=c++11 test.cpp
In file included from test.cpp:6:0:
date.hpp: In static member function ‘static constexpr boost::date_time2::date
boost::date_time2::date::max_date()’:
date.hpp:85:29: error: invalid return type ‘boost::date_time2::date’ of constexpr function ‘static constexpr
boost::date_time2::date boost::date_time2::date::max_date()’

static constexpr date max_date()

std::to_string

* new standard library functions to convert many
iIntegral types to std::string

e types covered include integer and floating point
of various flavors

using to_string - generic range chec

template <typename 1>
void range_check(std::string unit, T min, T max, T value)

{

if (value > max || value < min) {
throw std::out_of_range(unit + " is out of range "
v : Sy : : A . y o i s B i

delegating constructors

e Allows calling one constructor from another

delegating constructor

class year_month_day {
public:
year_month_day(const char* const ymd_string);

template<typename T>
explicit year_month_day(const T& ymd);

Building Valuetypes in C+
+11/14

* |t's a whole new world...
* Top features — Jeff’s view...
* to_string

e noexcept

» explicit defaults for compiler generated constructors

Conclusions: Valuetype
Design Considerations

 How does your type integrate with others”
e Does it play well with things in standard library?

e Does if follow recognized / common patterns
from standard?

55

onclusion

C++11 and 14 provide nice features for writing value types

* Implementation quality is much higher

But don't forget about old features!

 Other resources

