The Perils of
Strict Aliasing

Don’t Break the §3.10.10 (Rules)

Andy Webber
andy@aligature.com
andy.webber@sig.com

mailto:andy@aligature.com
mailto:andy.webber@sig.com

The Rules

§3.10.10 If a program attempts to of an object through a glvalue of other than one
of the following types .52
— the of the object,

— a cv-qualified version of the dynamic type of the object,
— atype similar (as defined in 4.4) to the dynamic type of the object,
— atype that is the signed or unsigned type corresponding to the dynamic type of the object,

— atype that is the signed or unsigned type corresponding to a cv-qualified version of the dynamic
type of the object,

— an aggregate or union type that includes one of the aforementioned types among its elements
or non- static data members (including, recursively, an element or non-static data member of a
subaggregate or contained union),

— atype that is a (possibly cv-qualified) base class type of the dynamic type of the object,

52) The intent of this list is to specify those circumstances in which an object may or may not be
aliased.

Does this work”?

uint32_t swaphalves(uint32_t a)

{
auto ptr = <uintl6_tx>(&a);
std::swap(ptr[0], ptrl1]);
return a;

¥

(adapted from http://dbp-consulting.com/StrictAliasing.pdf)

http://dbp-consulting.com/StrictAliasing.pdf

Does this work”?

uint32_t swaphalves(a)

{
auto ptr = < x>(&a) ;
std::swap(ptr[0], ptrl1]);
return a;

I3

(adapted from http://dbp-consulting.com/StrictAliasing.pdf)

http://dbp-consulting.com/StrictAliasing.pdf

union™

uint32_t swaphalves_union_ptr(uint32_t a)

{

u
{
uint32_t dw;
int1l6_t wl[2];
&

u_ptr = <ux>(&a);
std::swap(u_ptr—>w[0], u ptr—>w[1]);
return u_ptr—>dw;

union™

uint32_t swaphalves_union_ptr(uint32_t a)

{

u
{
uint32_t dw;
int1l6_t wl[2];
&

u_ptr = <u+>(&a);
std::swap(u_ptr—>w[0], u ptr—>w[1]);
return u_ptr—>dw;

union value

uint32_t swaphalves_union(uint32_t a)

{

uint32_t dw;
intle t wl[2];
r;

dw = a;
std::swap(wl[0], wl[1]);
return dw;

union value

uint32_t swaphalves_union(uint32_t a) GCC extension
{
union (not C99 or C++14)
{
uint32_t dw;
int1l6_t w[2];
rs
dw = a;
std::swap(wl[0], wl[1]);
return dw;

__may_alias__

uint32_t swaphalves_mayalias(uint32_t a)

{

uintl6e_alias =

uintl6_t ((_may_alias__));
ptr = <uintl6_alias*>(&a);
std::swap(ptr[0], ptrl[1]);
return a;

}

__may_alias__

GCC extension

uint32_t swaphalves_mayalias(uint32_t a) (not C99 or C++14)
{

uintl6e_alias =
uintle_t attribute_ ((__may_alias_));
ptr = <uintl6_alias*>(&a);
std::swap(ptr[0], ptrl[1]);
return a;

}

10

punt!

g++ —-std=c++11 -03 —-fno-strict—-aliasing alias.cpp -0 alias

uint32_t swaphalves(uint32_t a)

{
auto ptr = <uintl6_tx>(&a);
std::swap(ptr[0ol, ptrl1l);
return aj;

}

11

punt!

g++ —-std=c++11 -03 —-fno-strict-aliasing alias.cpp -0 alias

uint32_t swaphalves(uint32_t a)

{
auto ptr = reinterpret cast<uintl6_tx>(&a);
std::swap(ptr[0ol, ptrl1l);
return a;

}

12

memcpy

uint32_t swaphalves_memcpy(uint32_t a)

{
uint32_t swapped;
auto swapped_char = reinterpret_cast<charx>(&swapped);
auto a_char = reinterpret cast<char const*>(&a);

std::memcpy(swapped_char, a_char + sizeof(uintl6_t),
sizeof(uintle _t));

std: :memcpy(swapped_char + sizeof(uintl6_t), a_char,
sizeof(uintl6_t));

return swapped;

13

memcpy

uint32_t swaphalves_memcpy(uint32_t a)

{
uint32_t oF
auto a_char = reinter - r constx>(&a);
auto swapped_char = reinterpret_cast<char>(&swapped);

std: :memcpy(swapped_char, a_char + sizeof(uintl6_t),
sizeof(uintle_t));

std: :memcpy(swapped_char + sizeof(uintl6_t), a_char,
sizeof(uintlo_t));

return swapped;

14

Conclusions”

Seen all over low-level code and network
(de)serialization.

-fno-strict-aliasing

* |inux kernel, libevent, others?

gcc-help inconclusive on placement new
alias_cast?

15

