
The Perils of 
Strict Aliasing
Don’t Break the §3.10.10 (Rules)

Rules

1

Andy Webber
andy@aligature.com

andy.webber@sig.com

mailto:andy@aligature.com
mailto:andy.webber@sig.com

The Rules
! §3.10.10 If a program attempts to access the stored value of an object through a glvalue of other than one

of the following types the behavior is undefined:52 !

! ! — the dynamic type of the object, !

! ! — a cv-qualified version of the dynamic type of the object, !

! ! — a type similar (as defined in 4.4) to the dynamic type of the object, !

! ! — a type that is the signed or unsigned type corresponding to the dynamic type of the object, !

! ! — a type that is the signed or unsigned type corresponding to a cv-qualified version of the dynamic
type of the object, !

! ! — an aggregate or union type that includes one of the aforementioned types among its elements
or non- static data members (including, recursively, an element or non-static data member of a
subaggregate or contained union), !

! ! — a type that is a (possibly cv-qualified) base class type of the dynamic type of the object, !

! ! — a char or unsigned char type.  
52) The intent of this list is to specify those circumstances in which an object may or may not be
aliased.

2

Does this work?

uint32_t swaphalves(uint32_t a)
{
 auto ptr = reinterpret_cast<uint16_t*>(&a);
 std::swap(ptr[0], ptr[1]);
 return a;
}
!
(adapted from http://dbp-consulting.com/StrictAliasing.pdf)

3

http://dbp-consulting.com/StrictAliasing.pdf

Does this work?

uint32_t swaphalves(uint32_t a)
{
 auto ptr = reinterpret_cast<uint16_t*>(&a);
 std::swap(ptr[0], ptr[1]);
 return a;
}
!
(adapted from http://dbp-consulting.com/StrictAliasing.pdf)

4

http://dbp-consulting.com/StrictAliasing.pdf

union*

uint32_t swaphalves_union_ptr(uint32_t a)
{
 union u
 {
 uint32_t dw;
 int16_t w[2];
 };
!
 auto u_ptr = reinterpret_cast<u*>(&a);
 std::swap(u_ptr->w[0], u_ptr->w[1]);
 return u_ptr->dw;
}

5

union*

uint32_t swaphalves_union_ptr(uint32_t a)
{
 union u
 {
 uint32_t dw;
 int16_t w[2];
 };
!
 auto u_ptr = reinterpret_cast<u*>(&a);
 std::swap(u_ptr->w[0], u_ptr->w[1]);
 return u_ptr->dw;
}

6

union value

uint32_t swaphalves_union(uint32_t a)
{
 union
 {
 uint32_t dw;
 int16_t w[2];
 };
!
 dw = a;
 std::swap(w[0], w[1]);
 return dw;
}

7

union value

uint32_t swaphalves_union(uint32_t a)
{
 union
 {
 uint32_t dw;
 int16_t w[2];
 };
!
 dw = a;
 std::swap(w[0], w[1]);
 return dw;
}

GCC extension
(not C99 or C++14)

8

__may_alias__

uint32_t swaphalves_mayalias(uint32_t a)
{
 using uint16_alias =
 uint16_t __attribute__((__may_alias__));
 auto ptr = reinterpret_cast<uint16_alias*>(&a);
 std::swap(ptr[0], ptr[1]);
 return a;
}

9

__may_alias__

uint32_t swaphalves_mayalias(uint32_t a)
{
 using uint16_alias =
 uint16_t __attribute__((__may_alias__));
 auto ptr = reinterpret_cast<uint16_alias*>(&a);
 std::swap(ptr[0], ptr[1]);
 return a;
}

10

GCC extension
(not C99 or C++14)

punt!

g++ -std=c++11 -O3 -fno-strict-aliasing alias.cpp -o alias
!
uint32_t swaphalves(uint32_t a)
{
 auto ptr = reinterpret_cast<uint16_t*>(&a);
 std::swap(ptr[0], ptr[1]);
 return a;
}

11

punt!

g++ -std=c++11 -O3 -fno-strict-aliasing alias.cpp -o alias
!
uint32_t swaphalves(uint32_t a)
{
 auto ptr = reinterpret_cast<uint16_t*>(&a);
 std::swap(ptr[0], ptr[1]);
 return a;
}

12

memcpy

uint32_t swaphalves_memcpy(uint32_t a)
{
 uint32_t swapped;
 auto swapped_char = reinterpret_cast<char*>(&swapped);
 auto a_char = reinterpret_cast<char const*>(&a);
!
 std::memcpy(swapped_char, a_char + sizeof(uint16_t),
 sizeof(uint16_t));
 std::memcpy(swapped_char + sizeof(uint16_t), a_char,
 sizeof(uint16_t));
 return swapped;
}

13

memcpy

uint32_t swaphalves_memcpy(uint32_t a)
{
 uint32_t swapped;
 auto a_char = reinterpret_cast<char const*>(&a);
 auto swapped_char = reinterpret_cast<char*>(&swapped);
!
 std::memcpy(swapped_char, a_char + sizeof(uint16_t),
 sizeof(uint16_t));
 std::memcpy(swapped_char + sizeof(uint16_t), a_char,
 sizeof(uint16_t));
 return swapped;
}

14

Conclusions?
• Seen all over low-level code and network

(de)serialization.

• -fno-strict-aliasing

• linux kernel, libevent, others?

• gcc-help inconclusive on placement new

• alias_cast?

15

