C++ Hardware Register
Access

Safer and efficient MMIO

Ken Smith
kgsmith@gmail .com



Common approach 1: raw volatiles

using reg_val_t = volatile unsigned uint32_t;
using reg_t = reg_val_tx;

reg_t device = reinterpret_cast<reg_t»>(0xffffoo0Q);

int main()

{
xdevice |= 1;

reg_val_t status = xdevice;



Features

® super common
® predictable runtime

® ecasy to misuse



Common approach 2: bitfields

struct reg_t {
volatile uint32_t enabled: 1;
volatile uint32_t flag : 1;
1

int main() {

reg_tx reg = reinterpret_cast<reg_tx> (0xffffo000) ;
reg->flag = 1;
if (reg->enabled) {}



Features

® reads well
e performs well

® requires compiler support



The proposal

template<typename mut_t, uint32_t addr, int offset, int width>
struct reg_t

{
static uint32_t read() { /*x .. x/ }

static uint32_t write(uint32_t val) {/x .. x/ }
¥



read

static uint32_t read()

{
mut_t: :read(

reinterpret_cast<volatile uint32_tx*>(addr), offset,
generate_mask_t(offset, width));



write

static void write(uint32_t val)

{

mut_t: :write(

reinterpret_cast<volatile uint32_tx*>(addr), offset,
generate_mask_t(offset, width), val);



ro_t, a mutability policy

struct ro_t
{
static uint32_t read(
volatile uint32_t x device,
int offset,
int mask

)

{ return (xdevice & mask) »>> offset; }

¥



Usage
using flag = reg_t«wo_t, Oxffffoooo, 1, 1>;

flag::write(1);
flag::read() // error



Features

volitional

safer

can easily translate from datasheet
mutability policies provide opportunities for
o unit testing (mock registers)

O simulation

o logging

o profiling

Optimization is a requirement to elide func
calls



Moar

e https://github.com/kensmith/cppmmio
® email me at Ken Smith <kgsmith@gmail.com>



https://github.com/kensmith/cppmmio
https://github.com/kensmith/cppmmio

