
C++ Hardware Register
Access

Safer and efficient MMIO

Ken Smith
kgsmith@gmail.com

Common approach 1: raw volatiles

using reg_val_t = volatile unsigned uint32_t;

using reg_t = reg_val_t*;

reg_t device = reinterpret_cast<reg_t>(0xffff0000);

int main()

{

 *device |= 1;

 reg_val_t status = *device;

}

Features

● super common
● predictable runtime

● easy to misuse

Common approach 2: bitfields

struct reg_t {

 volatile uint32_t enabled: 1;

 volatile uint32_t flag : 1;

};

int main() {

 reg_t* reg = reinterpret_cast<reg_t*>(0xffff0000);

 reg->flag = 1;

 if (reg->enabled) {}

}

Features

● reads well
● performs well

● requires compiler support

The proposal

template<typename mut_t, uint32_t addr, int offset, int width>
struct reg_t

{
 static uint32_t read() { /* … */ }

 static uint32_t write(uint32_t val) {/* … */ }

};

read

static uint32_t read()
{
 mut_t::read(
 reinterpret_cast<volatile uint32_t*>(addr), offset,
 generate_mask_t(offset, width));
}

write

static void write(uint32_t val)
{
 mut_t::write(
 reinterpret_cast<volatile uint32_t*>(addr), offset,
 generate_mask_t(offset, width), val);
}

ro_t, a mutability policy

struct ro_t
{
 static uint32_t read(
 volatile uint32_t * device,
 int offset,
 int mask
)
 { return (*device & mask) >> offset; }
};

Usage

using flag = reg_t<wo_t, 0xffff0000, 1, 1>;

flag::write(1);

flag::read() // error

Features

● volitional
● safer
● can easily translate from datasheet
● mutability policies provide opportunities for

○ unit testing (mock registers)
○ simulation
○ logging
○ profiling

Optimization is a requirement to elide func
calls

Moar

● https://github.com/kensmith/cppmmio
● email me at Ken Smith <kgsmith@gmail.com>

https://github.com/kensmith/cppmmio
https://github.com/kensmith/cppmmio

