
CONVERGENT EVOLUTION

Arriving at C++’s Concepts from a different path.

THERE’S NO GREAT INSIGHT HERE

 What I’m about to present is well-known information…
 …if you’ve read a lot of papers on the subject.

 If you haven’t read any papers, you might think that concepts are just a way to simplify
template error messages.

 But the ideas here are cool!
 I want to disseminate them to show you how cool they are.

 May help you reason about your programs in a new way.

 Also demonstrates that sometimes there really is only a single right answer when
designing things.

PROGRAMS ARE PROOFS

 Called the “Curry-Howard correspondence”.
 Types are propositions.

 An object with that type proves the proposition that that type represents.

 Not 100% true in any real life programming system, especially not C++.
 Evaluation scheme, side effects, cosmic rays, etc.

 But it’s fun to think that way sometimes.
 Productive? I don’t know.

 This idea ties all programming languages together.

WHAT DOES IT MEAN?

 Functions are implications (IF):
 Haskell: A -> B

 B (*)(A)

 std::function<B(A)>, I guess?

 Aggregates are conjunctions (AND):
 struct { A a; B b; }

 std::tuple<A, B>

 Many ways in a lot of languages.

 Sum types are disjunctions (OR):
 union {A a; B b}

 Haskell: data Foo = FooA A | FooB B

 Parametric polymorphism is “for all”
(∀), also known as “universal types”:
 Haskell: id :: forall a. a -> a

 C++: template<typename A> A id(A);

 Existential types (∃) are complicated.
 TaPL (Pierce) says they’re pairs of

values and types.

 ML modules?

 Encodable with universals anyway.

WHAT IS A CONSTRAINT?

 Say you want to sort a set. You have to prove that the elements of that set have a
total order.

 void qsort(void *base, size_t num, size_t size, int (*compar)(const void *, const
void *))
 “compar” here is the proof that the order exists.

 It is a constraint on the elements of the set.

 Yes, this is a very rough approximation.

 A constraint is an extra parameter.

 They’re just lemmas in your proof.

SO… WHY CONCEPTS/TYPE CLASSES?

 Convenience!

 If it’s an established fact that objects of type T have total order, then the sorting
function shouldn’t require me to explicitly supply that proof every time I want to
sort a set of T objects.

 You’re telling a function to JFGI.
 Just f***ing get it from the environment!

 Typeclasses in Haskell and Scala are actually implicit parameters indexed by types (yes,
typeclasses are types too).

 Concepts and typeclasses allow you to state facts about types in a single place and
let those facts be known everywhere, just by mentioning the constraint.

DRINK THE KOOL-AID

Haskell

sort :: Ord a => [a] -> [a]

class Eq a => Ord a where

(<=) :: a -> a -> Bool

class Eq a where

(==) :: a -> a -> Bool

C++

template<typename T> requires Ord<T>

list<T> sort(list<T>);

template<typename T>

concept bool Ord = requires (T a, T b)

{ {a <= b} -> bool; … }

template<typename T>

concept bool Eq = requires (T a, T b)

{ {a == b} -> bool; … }

FURTHER READING

 Oliveira, Moors, Odersky: Type Classes as Objects and Implicits. 2010.

 Bernardy, Jansson, Zalewsky, Schupp: Generic Programming with C++ Concepts
and Haskell Type Classes – A Comparison. 2010.

