CONVERGENT EVOLUTION

Arriving at C++'s Concepts from a different path.

THERE'S NO GREAT INSIGHT HERE

- What I'm about to present is well-known information...
- ...if you've read a lot of papers on the subject.

* If you haven't read any papers, you might think that concepts are just a way to simplify
template error messages.

* But the ideas here are cool!
* | want to disseminate them to show you how cool they are.

 May help you reason about your programs in a new way.

- Also demonstrates that sometimes there really is only a single right answer when
designing things.

PROGRAMS ARE PROOFS

- Called the “"Curry-Howard correspondence”.
- Types are propositions.
* An object with that type proves the proposition that that type represents.

* Not 100% true in any real life programming system, especially not C++.
- Evaluation scheme, side effects, cosmic rays, etc.

* But it’s fun to think that way sometimes.
* Productive? | don’t know.

* This idea ties all programming languages together.

WHAT DOES IT MEAN?

* Functions are implications (IF):
- Haskell: A->B

* B (*)(A)
+ std::function<B(A)>, | guess?

- Aggregates are conjunctions (AND):
- struct {Aa;Bb;}
- std::tuple<A, B>
* Many ways in a lot of languages.

* Sum types are disjunctions (OR):
- union {A a; B b}

* Haskell: data Foo = FooA A | FooB B

* Parametric polymorphism is “for all”

(V), also known as “universal types"”:
* Haskell: id :: foralla. a->a

« C++: template<typename A> A id(A);

- Existential types (3) are complicated.

- TaPL (Pierce) says they're pairs of
values and types.

- ML modules?

- Encodable with universals anyway.

WHAT IS ACONSTRAINT?

- Say you want to sort a set. You have to prove that the elements of that set have a
total order.

- void gsort(void *base, size_t num, size_t size, int (*compar)(const void *, const
void *))
* “compar” here is the proof that the order exists.
- Itis a constraint on the elements of the set.

* Yes, this is a very rough approximation.
- A constraint is an extra parameter.

* They're just lemmas in your proof.

SO... WHY CONCEPTS/TYPE CLASSES?

- Convenience!

- Ifit's an established fact that objects of type T have total order, then the sorting
function shouldn’t require me to explicitly supply that proof every time | want to
sort a set of T objects.

* You're telling a function to JFGI.
» Just f***ing get it from the environment!

- Typeclasses in Haskell and Scala are actually implicit parameters indexed by types (yes,
typeclasses are types t00).

* Concepts and typeclasses allow you to state facts about types in a single place and
let those facts be known everywhere, just by mentioning the constraint.

DRINK THE KOOL-AID

Haskell C++

sort :: Ord a => [a] -S> [a] template<typename T> requires Ord<T>

list<T> sort(list<T>);

class Eq a =>Ord a where template<typename T>
concept bool Ord = requires (T a, T b)
§{a <=b}->bool; ...}

(<=)::a->a->Bool

class Eq a where template<typename T>
concept bool Eq = requires (T a, T b)
f{a==b}->bool; ... }

(==)::a->a->Bool

FURTHER READING

* Oliveira, Moors, Odersky: Type Classes as Objects and Implicits. 2010.

* Bernardy, Jansson, Zalewsky, Schupp: Generic Programming with C++ Concepts
and Haskell Type Classes — A Comparison. 2010.

