
GPU/Accelerator programming with
OpenMP 4.0:

yet another Significant Paradigm Shift in
High-level Parallel Computing

Michael Wong, Senior Compiler Technical Lead/Architect
michaelw@ca.ibm.com
OpenMP CEO
Chair of WG21 SG5 Transactional Memory
ISOCPP.org, Director, VP
Vice Chair of Programming Languages, Standards Council of Canada
WG21 C++ Standard, Head of Delegation for Canada and IBM

CPPCON 2014

mailto:michaelw@ca.ibm.com�

Acknowledgement and Disclaimer
• Numerous people internal and external to the

OpenMP WG, in industry and academia, have
made contributions, influenced ideas, written
part of this presentations, and offered
feedbacks to form part of this talk.

• I even lifted this acknowledgement and
disclaimer from some of them.

• But I claim all credit for errors, and stupid
mistakes. These are mine, all mine!

• Any opinions expressed in this presentation are
my opinions and do not necessarily reflect the
opinions of IBM or OpenMP or ISO C++.

Legal Disclaimer
• This work represents the view of the author and

does not necessarily represent the view of IBM.
• IBM, PowerPC and the IBM logo are trademarks

or registered trademarks of IBM or its subsidiaries
in the United States and other countries.

• The OpenMP_Timeline files here are licensed
under the three clause BSD license,
http://opensource.org/licenses/BSD-3-Clause

• Other company, product, and service names may
be trademarks or service marks of others..

What is OpenMP about?

And how does it fit with C++?

Common-vendor Specification
Parallel Programming model on

Multiple compilers
AMD, Convey, Cray, Fujitsu, HP, IBM,
Intel, NEC, NVIDIA, Oracle, RedHat

(GNU), ST Mircoelectronics, TI,
clang/llvm

A de-facto Standard: Across 3
Major General Purpose

Languages
C++, C, Fortran

A de-facto Standard: One High-
Level Accelerator Language

One High-Level Vector SIMD
language too!

Support Multiple Devices and let
the local compiler generate the

best code
Xeon Phi, NVIDIA, GPU, GPGPU, DSP,

MIC, ARM and FPGA

So how does it fit with other
GPU/Accelerator efforts?

ISO C++ WG21 SG1 Parallelism TS
C++AMP
OpenCL
Cuda?

WG21 SG1 Parallelism TS
std::vector<int> v = ...
// standard sequential sort
std::sort(vec.begin(), vec.end());
using namespace

std::experimental::parallel;
// explicitly sequential sort
sort(seq, v.begin(), v.end());
// permitting parallel execution
sort(par, v.begin(), v.end());
// permitting vectorization as well
sort(vecpar_vec, v.begin(), v.end());
// sort with dynamically-selected

execution

size_t threshold = ...
execution_policy exec = seq;
if (v.size() > threshold) {
 exec = par;
}
sort(exec, v.begin(), v.end());

C++AMP
void AddArrays(int n, int m, int * pA, int * pB, int * pSum) {
 concurrency::array_view<int,2> a(n, m, pA), b(n, m, pB),

sum(n, m, pSum);
 concurrency::parallel_for_each(sum.extent,

[=](concurrency::index<2> i) restrict(amp)
 {
 sum[i] = a[i] + b[i];
 });
}

CUDA
texture<float, 2, cudaReadModeElementType> tex;
void foo() {
 cudaArray* cu_array;
 // Allocate array
 cudaChannelFormatDesc description = cudaCreateChannelDesc<float>();
 cudaMallocArray(&cu_array, &description, width, height);
 // Copy image data to array
 …
 // Set texture parameters (default)
 …
 // Bind the array to the texture
 …
 // Run kernel
 …
 // Unbind the array from the texture
}

Its like the difference between:

An Aircraft Carrier Battle Group (ISO)
And a Cruiser (Consortium: OpenMP)
And a Destroyer (Company Specific

language)

Agenda
• What Now?
• OpenMP ARB Corporation
• A Quick Tutorial
• A few key features in 4.0
• Accelerators and GPU programming
• Implementation status and Design in clang/llvm
• The future of OpenMP
• IWOMP 2014 and OpenMPCon 2015

1

What now?
• Nearly every C, C++ features makes for beautiful, elegant code for developers

(Disclaimer: I love C++)
– Please insert your beautiful code here:
– Elegance is efficiency, or is it? Or
– What we lack in beauty, we gain in efficiency; Or do we?

• The new C++11 Std is
– 1353 pages compared to 817 pages in C++03

• The new C++14 Std is
– 1373 pages (N3937), vs the free n3972

• The new C11 is
– 701 pages compared to 550 pages in C99

• OpenMP 3.1 is
– 354 pages and growing

• OpenMP 4.0 is
– 520 pages

Beautiful and elegant Lambdas

• “Lambdas, Lambdas Everywhere”
http://vimeo.com/23975522

• Full Disclosure: I love C++ and have for many years
• But … What is wrong here?

C++98 C++11

vector<int>::iterator i =
v.begin();
for(; i != v.end(); ++i) {
 if(*i > x && *i < y)
 break;
}

auto i = find_if(begin(v), end(v),
[=](int i) {
 return i > x && i < y;
});

The Truth

• Q: Does your language allow you to access all the GFLOPS of your
machine?

“Is there in Truth No Beauty?”
from Jordan by George Herbert

• Q: Does your language allow you to access all the GFLOPS of your

machine?
• A: What a quaint concept!

– I thought its natural to drop out into OpenCL, CUDA, OpenGL, DirectX,
C++AMP, Assembler …. to get at my GPU

– Why? I just use my language as a cool driver, it’s a great scripting
language too. But for real kernel computation, I just use Fortran

– I write vectorized code, so my vendor offers me intrinsics, they also tell
me they can auto-vectorize, though I am not sure how much they really
do, so I am looking into OpenCL

– Well, I used to use one thread, but now that I use multiple threads, I
can get at it with C++11, OpenMP, TBB, GCD, PPL, MS then
continuation, Cilk

– I know I may have a TM core somewhere, so my vendor offers me
intrinsics

– No I like using a single thread, so I just use C, or C++

The Question

• Q: Is it true that there is a language that allows you to access all the
GFLOPS of your machine?

Power of Computing
• 1998, when C++ 98 was released

– Intel Pentium II: 0.45 GFLOPS
– No SIMD: SSE came in Pentium III
– No GPUs: GPU came out a year later

• 2011: when C++11 was released
– Intel Core-i7: 80 GFLOPS
– AVX: 8 DP flops/HZ*4 cores *4.4 GHz= 140 GFlops
– GTX 670: 2500 GFLOPS

• Computers have gotten so much faster, how come
software have not?
– Data structures and algorithms
– latency

In 1998, a typical machine had the
following flops

• .45 GFLOP, 1 core

• Single threaded C++98/C99 dominated this picture

In 2011, a typical machine had the
following flops

• 2500 GFLOP GPU

• To program the GPU, you use CUDA, OpenCL, OpenGL,
DirectX, Intrinsics, C++AMP

In 2011, a typical machine had the
following flops

• 2500 GFLOP GPU+140GFLOP AVX

• To program the GPU, you use CUDA, OpenCL, OpenGL,
DirectX, Intrinsics, C++AMP

• To program the vector unit, you use Intrinsics, OpenCL, or
auto-vectorization

In 2011, a typical machine had the
following flops

• 2500 GFLOP GPU+140GFLOP AVX+80GFLOP 4
cores

• To program the GPU, you use CUDA, OpenCL, OpenGL,
DirectX, Intrinsics, C++AMP

• To program the vector unit, you use Intrinsics, OpenCL, or
auto-vectorization

• To program the CPU, you use C/C++11, OpenMP, TBB,
Cilk, MS Async/then continuation, Apple GCD, Google
executors

In 2011, a typical machine had the
following flops

• 2500 GFLOP GPU+140GFLOP AVX+80GFLOP 4
cores+HTM

• To program the GPU, you use CUDA, OpenCL, OpenGL,
DirectX, Intrinsics, C++AMP

• To program the vector unit, you use Intrinsics, OpenCL, or
auto-vectorization

• To program the CPU, you use C/C++11, OpenMP, TBB,
Cilk, MS Async/then continuation, Apple GCD, Google
executors

• To program HTM, you have?

In 2014, a typical machine had the
following flops

• 2500 GFLOP GPU+140GFLOP AVX+80GFLOP 4
cores+HTM

• To program the GPU, you use CUDA, OpenCL, OpenGL,
DirectX, Intrinsics, C++AMP, OpenMP

• To program the vector unit, you use Intrinsics, OpenCL, or
auto-vectorization, OpenMP

• To program the CPU, you might use C/C++11/14,
OpenMP, TBB, Cilk, MS Async/then continuation, Apple
GCD, Google executors

• To program HTM, you have the upcoming C++ TM TS

OpenMP 4.0 released

27

OpenMP 4.0: A Significant Paradigm S
Parallelism

Agenda
• What Now?
• OpenMP ARB Corporation
• A Quick Tutorial
• A few key features in 4.0
• Accelerators and GPU programming
• Implementation status and Design in clang/llvm
• The future of OpenMP
• IWOMP 2014 and OpenMPCon 2015

2

A brief history of OpenMP API
by Kelvin Li

Fortran V1.1

C & C++ V1.0

C & C++ V2.0

Fortran, C & C++

V2.5

Fortran, C & C++

V3.0

Fortran V2.0

Fortran V1.0

1997

1998

1999 2000 2001

2002

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Fortran, C & C++

V4.0

Fortran, C & C++

V3.1

2014 onwards, more agile
Next OpenMP revision cycle:

faster, more predictable

Less monolithic: Delivering concurrent TRs &
language extensions

OpenMP is a living language

OpenMP Members growth
• From Dieter An Mey, RWTH Aachen 2012, since 2012 added

– Red Hat/GCC
– Barcelona SuperComputing Centre
– University of Houston

30

26 members
and growing

Major Features by Jim Cownie

OpenMP internal Organization

Today

Future

The New Mission Statement of
OpenMP • OpenMP’s new mission statement

–“Standardize directive-based multi-
language high-level parallelism that is
performant, productive and portable”

–Updated from
• "Standardize and unify shared memory,

thread-level parallelism for HPC”

33

Agenda
• What Now?
• OpenMP ARB Corporation
• A Quick Tutorial
• A few key features in 4.0
• Accelerators and GPU programming
• VectorSIMD Programming
• The future of OpenMP
• IWOMP 2014 and OpenMPCon 2015

3

Hello Concurrent World
#include <iostream>
#include <thread> //#1
void hello() //#2
{
 std::cout<<"Hello Concurrent World"<<std::endl;
}
int main()
{
 std::thread t(hello); //#3
 t.join(); //#4
}

35

Is this valid C++ today? Are
these equivalent?

int x = 0;
atomic<int> y = 0;
Thread 1:

x = 17;
y.store(1,
memory_order_release);
// or: y.store(1);

Thread 2:
while
(y.load(memory_order_acq
uire) != 1)
// or: while
(y.load() != 1)

assert(x == 17);

int x = 0;
atomic<int> y = 0;
Thread 1:

x = 17;
y = 1;

Thread 2:
while (y != 1)
 continue;
assert(x == 17);

36

Hello World again
• What will this program print?

3

#include <stdlib.h>
#include <stdio.h>
int main(int argc, char *argv[]) {

printf("Hello ");
printf("World ");
printf("\n");
return(0);

}

2-threaded Hello World with
OpenMP threads

3

#include <stdlib.h>
#include <stdio.h>
int main(int argc, char *argv[]) {

#pragma omp parallel
{

printf("Hello ");
printf("World ");

} // End of parallel region
printf("\n");
return(0);

}
Hello World Hello World
Or
Hello Hello World World

More advanced 2-threaded
Hello World

3

#include <stdlib.h>
#include <stdio.h>
int main(int argc, char *argv[]) {

#pragma omp parallel
{

#pragma omp single
{

printf("Hello ");
printf("World ");

}
} // End of parallel region
printf("\n");
return(0);

}
Hello World

Hello World with OpenMP
tasks now run 3 times

4

int main(int argc, char *argv[]) {
#pragma omp parallel
{

#pragma omp single
{

#pragma omp task
 {printf("Hello ");}
#pragma omp task
 {printf("World ");}
}

} // End of parallel region
printf("\n");
return(0);

}
 Hello World

 Hello World

 World Hello

Tasks are executed at a task
execution point

4

int main(int argc, char *argv[]) {
#pragma omp parallel
{

#pragma omp single
{

#pragma omp task
 {printf("Hello ");}
#pragma omp task
 {printf("World ");}
printf(“\nThank You “);

}
} // End of parallel region

printf("\n");
return(0);

}
Thank You Hello World

Thank You Hello World

Thank You World Hello

Execute Tasks First

4

int main(int argc, char *argv[]) {
#pragma omp parallel
{

#pragma omp single
{

#pragma omp task
 {printf("Hello ");}
#pragma omp task
 {printf("World ");}
#pragma omp taskwait
printf(“Thank You “);

}
} // End of parallel region
printf("\n");return(0);

}
Hello World Thank You

Hello World Thank You

World Hello Thank You

Execute Tasks First with
Dependencies • OpenMP 4.0 only

4

int main(int argc, char *argv[]) {
#pragma omp parallel
{

#pragma omp single
{
 int x = 1;

#pragma omp task shared (x) depend (out:x)
 {printf("Hello ");}
#pragma omp task shared (x) depend (in:x)
 {printf("World ");}
#pragma omp taskwait
printf(“Thank You “);

}
} // End of parallel region
printf("\n");return(0);

}
Hello World Thank You

Hello World Thank You

Hello World Thank You

4

Intro to OpenMP
• De-facto standard Application Programming

Interface (API) to write shared memory parallel
applications in C, C++, and Fortran

• Consists of:
– ● Compiler directives
– ● Run time routines
– ● Environment variables

• Specification maintained by the OpenMP
Architecture Review Board
(http://www.openmp.org)
– Version 4.0 was released 2013

When do you want to use OpenMP?

• If the compiler cannot parallelize the way you like
it even with auto-parallelization
– a loop is not parallelized

• Data dependency analyses are not able to
determine whether it is safe to parallelize or not

– Compiler finds a low level of parallelism
• But your know there is a high level, but compiler

lacks information to parallelize at the highest
possible level

• No Auto-parallelizing compiler, then you have to
do it yourself
– Need explicit parallelization using directives

4

Advantages of OpenMP

• Good performance and scalability
–If you do it right

• De-facto and mature standard
• An OpenMP program is portable

–Supported by a large number of
compilers

• Allows the program to be parallelized
incrementally

4

Can OpenMP work with
MultiCore, Heterogeneous

• OpenMP is ideally suited for
multicore architectures
–Memory and threading model

map naturally
–Lightweight
–Mature
–Widely available and used

4

The OpenMP Execution Model

4

4

Directive Format
• C/C++

– #pragma omp directive [clause [clause] …]
– Continuation: \
– Conditional compilation: _OPENMP macro is set

• Fortran:
– Fortran: directives are case insensitive

• Syntax: sentinel directive [clause [[,] clause]...]
• The sentinel is one of the following:

–✔ !$OMP or C$OMP or *$OMP (fixed format)
–✔ !$OMP (free format)

– Continuation: follows the language syntax
– Conditional compilation: !$ or C$ -> 2 spaces

5

Components of OpenMP
• Directives

– Tasking
– Parallel region
– Work sharing
– Synchronization
– Data scope

attributes
• Private
• Firstprivate
• Lastprivate
• Shared
• reduction

– Orphaning

• Environment
Variables

– Number of
threads

– Scheduling type
– Dynamic thread

adjustment
– Nested

parallelism
– Stacksize
– Idle threads
– Active levels
– Thread limit

• Runtime Variables
– Number of threads
– Thread id
– Dynamic thread

adjustment
– Nested Parallelism
– Schedule
– Active Levels
– Thread limit
– Nesting Level
– Ancestor thread
– Team size
– Wallclock Timer
– locking

But why does OpenMP use
pragmas?

It is an intentional design …

Pragmas can support 3 General
Purpose Programming Languages

and maintain the same style
C++

C
Fortran

And National Labs, weather
research, nuclear simulations

Still have substantial kernels written
in mix of Fortran and C driven by C++

Agenda
• What Now?
• OpenMP ARB Corporation
• A Quick Tutorial
• A few key features in 4.0
• Accelerators and GPU programming
• Implementation status and Design in clang/llvm
• The future of OpenMP
• IWOMP 2014 and OpenMPCon 2015

5

Goals
• Thread-rich computing environments are becoming more

prevalent
– more computing power, more threads
– less memory relative to compute

• There is parallelism, it comes in many forms
– hybrid MPI - OpenMP parallelism
– mixed mode OpenMP / Pthread parallelism
– nested OpenMP parallelism

• Have to exploit parallelism efficiently
– providing ease of use for casual programmers
– providing full control for power programmers
– providing timing feedback

5

What did we accomplish in
OpenMP 4.0?

• Broad form of accelerator support
• SIMD
• Cancellation (start of a full error model)
• Task dependencies and task groups
• Thread Affinity
• User-defined reductions
• Initial Fortran 2003
• C/C++ array sections
• Sequentially Consistent Atomics
• Display initial OpenMP internal control variable state

5

Compilers are here!
• Intel 13.1 compiler supports

Accelerators/SIMD
• Oracle/Sun Studio 12.4 Beta just

announced full OpenMP 4.0
• GCC 4.9 shipped April 9, 2014 supports

4.0
• Clang support for OpenMP injecting

into trunk, first appears in 3.5 last week
• Cray, TI, IBM coming online 57

In 2014, a typical machine had the
following flops

• 2500 GFLOP GPU+140GFLOP AVX+80GFLOP 4
cores+HTM

• To program the GPU, you have to use CUDA, OpenCL,
OpenGL, DirectX, Intrinsics, C++AMP, OpenMP

• To program the vector unit, you have to use Intrinsics,
OpenCL, or auto-vectorization, OpenMP

• To program the CPU, you might use C/C++11/14,
OpenMP, TBB, Cilk, MS Async/then continuation, Apple
GCD, Google executors

• To program HTM, you have the upcoming C++ TM TS

Agenda
• What Now?
• OpenMP ARB Corporation
• A Quick Tutorial
• A few key features in 4.0
• Accelerators and GPU Programming
• Implementation status and Design in clang/llvm
• The future of OpenMP
• IWOMP 2014 and OpenMPCon 2015

5

6

OpenMP Accelerator
Subcommittee • Co-chairs Technical leads

– Jame Beyers- Cray (courtesy for slides)
– Eric Stotzer – TI (courtesy for slides)

• Active subcommittee members
– Xinmin Tian – Intel (courtesy for slides)
– Ravi Narayanaswamy – Intel (courtesy for slides)
– Jeff Larkin – Nvidia
– Kent Milfeld – TACC
– Henry Jin – NASA
– Kevin O’Brien, Kelvin Li, Alexandre Eichenberger, IBM
– Christian Terboven– RWTH Aachen (courtesy for slides)
– Michael Klemm – Intel (courtesy for slides)
– Stephane Cheveau – CAPS
– Convey, AMD, ORNL, TU Dresden,

60

So, how do you program GPU?

Why is GPU important now?
• Or is it a flash in the pan?
• The race to exascale computing .. 10 18 flops

• Vertical scale is in GFLOPS

Top500 contenders

What is OpenMP Model’s aim?
• All forms of accelerators, DSP, GPU, APU, GPGPU
• Network heterogenous consumer devices

– Kitchen appliances, drones, signal processors, medical
imaging, auto, telecom, automation, not just graphics
engines

Heterogeneous Device model
• OpenMP 4.0 supports accelerators/coprocessors
• Device model:

– One host
– Multiple accelerators/coprocessors of the same kind

Heterogeneous SoC

Glossary

6

OpenMP 4.0 Device
Constructs

• Execute code on a target device
– omp target [clause[[,] clause],…]
structured-block

– omp declare target
[function-definitions-or-declarations]

• Map variables to a target device
– map ([map-type:] list) // map clause

map-type := alloc | tofrom | to | from

– omp target data [clause[[,] clause],…]
structured-block

– omp target update [clause[[,] clause],…]
– omp declare target
[variable-definitions-or-declarations]

• Workshare for acceleration
– omp teams [clause[[,] clause],…]
structured-block

– omp distribute [clause[[,] clause],…]
for-loops
 6

target Construct

6

target data Construct

6

target update Construct

7

Execution Model

7

Execution Model and Data
Environment

7

map Clause
• The target construct creates

a new device data
environment and explicitly
maps the array sections
v1[0:N], v2[:N] and p[0:N] to
the new device data
environment.

• The variable N implicitly
mapped into the new device
data environment from the
encountering task's data
environment.

7

extern void init(float*, float*, int);
extern void output(float*, int);

void vec_mult(float *p, float *v1, float *v2, int N)
{
 int i;
 init(v1, v2, N);

 #pragma omp target map(to:v1[0:N],v2[:N]) \\
 map(from:p[0:N])
 #pragma omp parallel for
 for (i=0; i<N; i++)
 p[i] = v1[i] * v2[i];

 output(p, N);
}

Map-types:
• alloc: allocate storage for corresponding variable
• to: alloc and assign value of original variable to corresponding variable on entry
• from: alloc and assign value of corresponding variable to original variable on exit
• tofrom: default, both to and form

target Construct Example
 • Use target construct to

– Transfer control from the host to the device
– Establish a device data environment (if not yet done)

• Host thread waits until offloaded region completed
– Use other OpenMP constructs for asynchronicity

#pragma omp target map(to:b[0:count]) map(to:c,d) map(from:a[0:count])
 {

#pragma omp parallel for

 for (i=0; i<count; i++) {

 a[i] = b[i] * c + d;

 }

 }

host
target

host

Data Environments

7

extern void init(float*, float*, int);
extern void init_again(float*, float*, int);
extern void output(float*, int);

void vec_mult(float *p, float *v1, float *v2, int N)
{
 int i;

 init(v1, v2, N);

 #pragma omp target data map(from: p[0:N])
 {
 #pragma omp target map(to: v1[:N], v2[:N])
 #pragma omp parallel for
 for (i=0; i<N; i++)
 p[i] = v1[i] * v2[i];

 init_again(v1, v2, N);

 #pragma omp target map(to: v1[:N], v2[:N])
 #pragma omp parallel for
 for (i=0; i<N; i++)
 p[i] = p[i] + (v1[i] * v2[i]);
 }

 output(p, N);
}

target data Construct Example
• The target data

construct creates a device
data environment and
encloses target regions,
which have their own device
data environments.

• The device data environment
of the target data region
is inherited by the device
data environment of an
enclosed target region.

• The target data
construct is used to create
variables that will persist
throughout the target
data region.

• v1 and v2 are mapped at
each target construct.

• Instead of mapping the
variable p twice, once at each
target construct, p is
mapped once by the
target data construct.

7

Data mapping: shared or distributed memory

A

Memory

Processor Y

Cache

A

Processor X

Cache

A

A

Memory X
Accelertor

Y

A

Memory Y
Processor

X

Cache

A

Shared memory

Distributed memory

• The corresponding variable in the device
data environment may share storage
with the original variable.

• Writes to the corresponding variable

may alter the value of the original
variable.

if Clause Example

• The if clause on the
target construct
indicates that if the
variable N is smaller than
a given threshold, then
the target region will
be executed by the host
device.

• The if clause on the
parallel construct
indicates that if the
variable N is smaller than
a second threshold then
the parallel region is
inactive.

7

#define THRESHOLD1 1000000
#define THRESHOLD2 1000

extern void init(float*, float*, int);
extern void output(float*, int);

void vec_mult(float *p, float *v1, float *v2, int N)
{
 int i;
 init(v1, v2, N);

 #pragma omp target if(N>THRESHOLD1) \\
 map(to: v1[0:N], v2[:N]) map(from: p[0:N])
 #pragma omp parallel for if(N>THRESHOLD2)
 for (i=0; i<N; i++)
 p[i] = v1[i] * v2[i];
 output(p, N);
}

declare target Constrtuct

7

Host and device functions

8

Explicit Data
Transfers:Target

update Construct Example
#pragma omp target data device(0) map(alloc:tmp[:N]) map(to:input[:N)) map(from:res)

 {

#pragma omp target device(0)

#pragma omp parallel for

 for (i=0; i<N; i++)

 tmp[i] = some_computation(input[i], i);

 update_input_array_on_the_host(input);

#pragma omp target update device(0) to(input[:N])

#pragma omp target device(0)

#pragma omp parallel for reduction(+:res)

 for (i=0; i<N; i++)

 res += final_computation(input[i], tmp[i], i)

 }

host
target

host
target

host

Asynchronous Offloading

8

Teams Constructs

C/C++

#pragma omp teams [clause[[,] clause],...] new-line
 structured-block

Fortran

!$omp teams [clause[[,] clause],...]
 structured-block
!$omp end teams

 Clauses: num_teams(integer-expression)
 num_threads(integer-expression)
 default(shared | none)
 private(list)
 firstprivate(list)
 shared(list)
 reduction(operator : list)

83

Restrictions on teams
Construct

8

Teams Execution Model
Teams Constructs

#pragma omp teams num_teams(3), num_threads(3)
 structured-block

Team 0
Thread0 Thread1 Thread2

Structured-block

Team 1
Thread0 Thread1 Thread2

Team 2
Thread0 Thread1 Thread2

Structured-block Structured-block

Thread0 Thread0 Thread0

SAXPY: Serial (host)

8

SAXPY: Serial (host)

8

SAXPY:
Coprocessor/Accelerator

8

Distribute Constructs
C/C++

#pragma omp distribute [clause[[,] clause],...] new-line
 for-loops

Fortran
 !$omp distribute [clause[[,] clause],...]
 do-loops
 [!$omp end distribute]

Clauses: private(list)

 firstprivate(list)
 collapse(n)
 dist_schedule(kind[, chunk_size])

A distribute construct must be closely nested in a teams region.

l 89

distribute Construct

9

Teams + Distribute Execution Model

#pragma omp teams num_teams(3), num_threads(3)
 #pragma omp distribute
 for (int i=0; i<9; i++) {

Team 0
Thread0 Thread1 Thread2

i = 0,1,2

Team 1
Thread0 Thread1 Thread2

Team 2
Thread0 Thread1 Thread2

i = 3,4,5 i = 6,7,8

Thread0 Thread0 Thread0

Teams + Distribute Constructs
#pragma omp teams num_teams(3), num_threads(3)
 #pragma omp distribute
 for (int i=0; i<9; i++) {
 # pragma omp parallel for
 for (int j=0;j<6; j++) {

Team 0
Thread0 Thread1 Thread2

i = 0,1,2

Team 1
Thread0 Thread1 Thread2

Team 2
Thread0 Thread1 Thread2

i = 3,4,5 i = 6,7,8

Thread0 Thread0 Thread0

j=0,1

Thread0 Thread1 Thread2 Thread0 Thread1 Thread2 Thread0 Thread1 Thread2

j=2,3 j=4,5 j=0,1 j=2,3 j=4,5 j=0,1 j=2,3 j=4,5

SAXPY:
Coprocessor/Accelerator

9

Combined Constructs

9

SAXPY: Combined Constructs

9

SAXPY: Combined Constructs

9

Additional Runtime Support

9

Multi-device Example

9

OpenACC1 compared to OpenMP 4.0 (by
Dr. James Beyer)

OpenACC1
• Parallel (offload)

– Parallel (multiple “threads”)
• Kernels
• Data
• Loop
• Host data
• Cache
• Update
• Wait
• Declare

OpenMP 4.0
• Target
• Team/Parallel
•
• Target Data
• Distribute/Do/for/Simd
•
•
• Target Update
•
• Declare Target

Slide 99

Future OpenACC vs future OpenMP
(by Dr. James Beyer)

OpenACC2
• enter data
• exit data
• data api
• routine
• async wait
• parallel in parallel
• tile
• Linkable
• Device_type

OpenMP future
• Unstructured data environment

• declare target
•
• Parallel in parallel or team
• tile
• Linkable or Deferred_map
• Device_type

Slide 100

Preliminary results: AXPY (Y=a*X)

Hardware configuration:
• 4 quad-core Intel Xeon processors (16 cores) 2.27GHz
with 32GB DRAM.
• NVIDIA Tesla K20c GPU (Kepler architecture)

0

0.5

1

1.5

2

2.5

3

5000 50000 500000 5000000 50000000 100000000 500000000
Vector size (float)

AXPY Execution Time (s)

Sequential

OpenMP FOR (16 threads)

HOMP ACC

PGI OpenACC

HMPP OpenACC

Software configuration:
• PGI OpenACC compiler version 13.4
• HMPP OpenACC compiler version 3.3.3
• GCC 4.4.7 and the CUDA 5.0 compiler

Jacobi

0

10

20

30

40

50

60

70

80

90

100

128x128 256x256 512x512 1024x1024 2048x2048
Matrix size (float)

Jacobi Execution Time (s)

Sequential

HMPP

PGI

HOMP

OpenMP

HMPP Collapse

HOMP Collpase

Agenda
• What Now?
• OpenMP ARB Corporation
• A Quick Tutorial
• A few key features in 4.0
• Accelerators and GPU Programming
• Implementation status and Design in clang/llvm
• The future of OpenMP
• IWOMP 2014 and OpenMPCon 2015

1

Compilers are here!
• Oracle/Sun Studio 12.4 Beta just

announced full OpenMP 4.0
• GCC 4.9 shipped April 9, 2014 supports

OpenMP 4.0
• Clang support for OpenMP injecting

into trunk, first appears in 3.5
• Intel 13.1 compiler supports

Accelerators/SIMD
• Cray, TI, IBM coming 104

OpenMP in Clang update
• I Chaired Weekly OpenMP Clang review WG (Intel, IBM, AMD, TI, Micron) to

help speedup OpenMP upstream into clang: April-on going
– Joint code reviews, code refactoring
– Delivered Most of OpenMP 3.1 constructs (except atomic and ordered) into Clang 3.5

stream for AST/Semantic Analysis support.
– have OpenMP –fsyntax-only, Runtime, and basic parallel for loop region to

demonstrate code capability
– Added U of Houston OpenMP tests into clang
– IBM team Delivered changes for OpenMP RT for PPC, other teams added their

platform/architecture
– Released Joint design on Multi-device target interface for LLVM to llvm-dev for

comment

• Future:
– Clang 3.5 (Sept 2, 2014): Initial support for AST/SEMA for OpenMP 3.1 (except

atomic and ordered) + OpenMP library for AMD, ARM, TI, IBM, Intel
– Clang 3.6 (~Feb 2015): aim for functional codegen of all OpenMP 3.1 + accelerator

support(from 4.0)
– Clang 3.7 (~Sept 2015): aim for full OpenMP 4.0 functional support

Release note commited by me
to clang/llvm 3.5

• Clang 3.5 now has parsing and semantic-analysis support for all
OpenMP 3.1 pragmas (except atomics and ordered). LLVM's OpenMP
runtime library, originally developed by Intel, has been modified to
work on ARM, PowerPC, as well as X86. Code generation support is
minimal at this point and will continue to be developed for 3.6,
along with the rest of OpenMP 3.1. Support for OpenMP 4.0 features,
such as SIMD and target accelerator directives, is also in progress.
Contributors to this work include AMD, Argonne National Lab., IBM,
Intel, Texas Instruments, University of Houston and many others.

Slide 106

Many Participants/companies
• Ajay Jayaraj, TI
• Alexander Musman, Intel
• Alex Eichenberger, IBM
• Alexey Bataev, Intel
• Andrey Bokhanko, Intel
• Carlo Bertolli, IBM
• Eric Stotzer, TI
• Guansong Zhang, AMD
• Hal Finkel, ANL
• Ilia Verbyn, Intel
• James Cownie, Intel

• Kelvin Li, IBM
• Kevin O’Brien, IBM
• Samuel Antao, IBM
• Sergey Ostanevich, Intel
• Sunita Chandrasekaran,

UH
• Michael Wong, IBM
• Priya Unikhrishnan, IBM
• Robert Ho, IBM
• Wael Yehia, IBM
• Yan Liu, IBM

Summary of upstream
progress of OpenMP clan

• Upstream progress to clang 3.5
– https://github.com/clang-omp/clang/wiki/Status-of-

supported-OpenMP-constructs

• Benchmark OpenMP clang vs OpenMP GCC
– http://www.phoronix.com/scan.php?page=article&ite

m=llvm_clang_openmp&num=1
• Unfairly Used –O3 for GCC and noopt for clang

• Link to OpenMP offload infrastructure in LLVM
– http://lists.cs.uiuc.edu/pipermail/llvmdev/attachment

s/20140809/cd6c7f7a/attachment-0001.pdf
Slide 108

https://github.com/clang-omp/clang/wiki/Status-of-supported-OpenMP-constructs�
https://github.com/clang-omp/clang/wiki/Status-of-supported-OpenMP-constructs�
http://www.phoronix.com/scan.php?page=article&item=llvm_clang_openmp&num=1�
http://www.phoronix.com/scan.php?page=article&item=llvm_clang_openmp&num=1�

OpenMP offload/target in
LLVM • Samuel Antao (IBM)

• Carlo Bertolli (IBM)
• Andrey Bokhanko (Intel)
• Alexandre Eichenberger (IBM)
• Hal Finkel (Argonne National Laboratory)
• Sergey Ostanevich (Intel)
• Eric Stotzer (Texas Instruments)
• Guansong Zhang (AMD)

Goal of Design
1. support multiple target platforms at runtime and

be extensible in the future with minimal or no
changes

2. determine the availability of the target platform
at runtime and able to make a decision to
offload depending on the availability and load of
the target platform

Clang/llvm offload design

Example code
1. #pragma omp declare target
2. int foo(int[1000]);
3. #pragma omp end declare target
4. ...
5. int device_count = omp_get_num_devices();
6. int device_no;
7. int *red = malloc(device_count * sizeof(int));
8. #pragma omp parallel
9. for (i = 0; i < 1000; i++) {
10. device_no = i % device_count;
11. #pragma omp target device(device_no) map(to:c) map(red[i])
12. {
13. red[i] += foo(c);
14. }
15. }
16.
17. for (I = 0; i< device_count; i++)
18. total red = red[i];

Generation of fat binary
1. The driver called on a source code should spawn a

number of front-end executions for each available
target. This should generate a set of object files for each
target

2. Target linkers combine dedicated target objects into
target shared libraries – one for each target

3. The host linker combines host object files into an
executable/shared library and incorporates shared
libraries for each target into a separate section within
host binary. This process and format is target-
dependent and will be thereafter handled by the target
RTL at runtime

Agenda
• What Now?
• OpenMP ARB Corporation
• A Quick Tutorial
• A few key features in 4.0
• Accelerators and GPU programming
• Implementation status and Design in clang/llvm
• The future of OpenMP
• IWOMP 2014 and OpenMPCon 2015

1

What did we accomplish in
OpenMP 4.0?

• Much broader form of accelerator support
• SIMD
• Cancellation (start of a full error model)
• Task dependencies and task groups
• Thread Affinity
• User-defined reductions
• Initial Fortran 2003
• C/C++ array sections
• Sequentially Consistent Atomics
• Display initial OpenMP internal control variable state

1

OpenMP future features
• OpenMP Tools: Profilers and Debuggers

– Just released as TR2
• Consumer style parallelism: event/async/futures
• Enhance Accelerator support/FPGA

– Multiple device type, linkable to match OpenACC2
• Additional Looping constructs
• Transactional Memory, Speculative Execution
• Task Model refinements
• CPU Affinity
• Common Array Shaping
• Full Error Model
• Interoperability
• Rebase to new C/C++/Fortran Standards, C/C++11 memory model

Agenda
• What Now?
• OpenMP ARB Corporation
• A Quick Tutorial
• A few key features in 4.0
• Accelerators

– OpenMP and OpenACC

• Affinity
• VectorSIMD
• The future of OpenMP
• IWOMP 2014 and OpenMPCon 2015

1

IWOMP, SC14 and
OpenMPCon

• International Workshop on OpenMP
– 2014 to be held in Brazil
– A strongly academic conference, with refereed papers, and a Springer-

Verlag published proceeding

• SC14
– Chairing OpenMP Bof, Steering commitete for LLVM in HPC,

giving keynote at OpenMP Exhibitor’s Forum
• What is missing is a user conference similar to ACCU, pyCON, CPPCON (next

week presenting 2 talks), C++Now
• OpenMPCON

– A user conference paired with IWOMP
– Non-refereed, user abstracts
– 1st one will be held in Europe in 2015 to pair with the 2015 IWOMP

1

IWOMP 2014
September 28-30, 2014

SENAI CIMATEC – Salvador, Brazil

Salvador

• Salvador is the largest city on the northeast coast of Brazil

– The capital of the Northeastern Brazilian state of Bahia
– It is also known as Brazil's capital of happiness

• Salvador was the first colonial capital of Brazil
– The city is one of the oldest in the Americas

• Getting There (SSA):

– Direct flights from US (Miami) and Europe (Lisbon, Madrid, &
Frankfurt)

– Alternatively, fly to Rio (GIG) or Sao Paulo (GRU) and connect to
Salvador (SSA)

• Average Temperatures in September:
– Average high: 27 °C / 81 °F
– Daily mean: 25 °C / 77 °F
– Average low 22 °C / 72 °F

Common-vendor Specification
Parallel Programming model on

Multiple compilers
AMD, Convey, Cray, Fujitsu, HP, IBM,
Intel, NEC, NVIDIA, Oracle, RedHat

(GNU), ST Mircoelectronics, TI,
clang/llvm

A de-facto Standard: Across 3
Major General Purpose

Languages
C++, C, Fortran

A de-facto Standard: One High-
Level Accelerator Language

One High-Level Vector SIMD
language too!

Support Multiple Devices and let
the local compiler generate the

best code
Xeon Phi, NVIDIA, GPU, GPGPU, DSP,

MIC, ARM and FPGA

1

My blogs and email address
• ISOCPP.org Director, VP

http://isocpp.org/wiki/faq/wg21#michael-wong
OpenMP CEO: http://openmp.org/wp/about-openmp/
My Blogs: http://ibm.co/pCvPHR
C++11 status: http://tinyurl.com/43y8xgf
Boost test results
http://www.ibm.com/support/docview.wss?rs=2239&context=SS
JT9L&uid=swg27006911
C/C++ Compilers Feature Request Page
http://www.ibm.com/developerworks/rfe/?PROD_ID=700
Chair of WG21 SG5 Transactional MemoryM:
https://groups.google.com/a/isocpp.org/forum/?hl=en&fromgro
ups#!forum/tm

FRAGEN?

Partner:

Vielen Dank!
Michael Wong

Ich freue mich auf Ihr Feedback!

Partner:

	GPU/Accelerator programming with OpenMP 4.0: �yet another Significant Paradigm Shift in High-level Parallel Computing
	Acknowledgement and Disclaimer
	Legal Disclaimer
	What is OpenMP about?
	Common-vendor Specification Parallel Programming model on Multiple compilers
	A de-facto Standard: Across 3 Major General Purpose Languages
	A de-facto Standard: One High-Level Accelerator Language
	Support Multiple Devices and let the local compiler generate the best code
	So how does it fit with other GPU/Accelerator efforts?
	WG21 SG1 Parallelism TS
	C++AMP
	CUDA
	Its like the difference between:
	Agenda
	What now?
	Beautiful and elegant Lambdas
	The Truth
	“Is there in Truth No Beauty?” from Jordan by George Herbert
	The Question
	Power of Computing
	In 1998, a typical machine had the following flops
	In 2011, a typical machine had the following flops
	In 2011, a typical machine had the following flops
	In 2011, a typical machine had the following flops
	In 2011, a typical machine had the following flops
	In 2014, a typical machine had the following flops
	OpenMP 4.0 released
	Agenda
	A brief history of OpenMP API by Kelvin Li
	OpenMP Members growth
	Major Features by Jim Cownie
	OpenMP internal Organization
	The New Mission Statement of OpenMP
	Agenda
	Hello Concurrent World
	Is this valid C++ today? Are these equivalent?
	Hello World again
	2-threaded Hello World with OpenMP threads
	More advanced 2-threaded Hello World
	Hello World with OpenMP tasks now run 3 times
	Tasks are executed at a task execution point
	Execute Tasks First
	Execute Tasks First with Dependencies
	Intro to OpenMP
	When do you want to use OpenMP?
	Advantages of OpenMP
	Can OpenMP work with MultiCore, Heterogeneous
	The OpenMP Execution Model
	Directive Format
	Components of OpenMP
	But why does OpenMP use pragmas?
	Pragmas can support 3 General Purpose Programming Languages and maintain the same style
	And National Labs, weather research, nuclear simulations
	Agenda
	Goals
	What did we accomplish in OpenMP 4.0?
	Compilers are here!
	In 2014, a typical machine had the following flops
	Agenda
	OpenMP Accelerator Subcommittee
	So, how do you program GPU?
	Why is GPU important now?
	Top500 contenders
	What is OpenMP Model’s aim?
	Heterogeneous Device model
	Glossary
	OpenMP 4.0 Device Constructs
	target Construct
	target data Construct
	target update Construct
	Execution Model
	Execution Model and Data Environment
	map Clause
	target Construct Example�
	Data Environments
	target data Construct Example
	Data mapping: shared or distributed memory
	if Clause Example
	declare target Constrtuct
	Host and device functions
	Explicit Data Transfers:Target update Construct Example
	Asynchronous Offloading
	Teams Constructs
	Restrictions on teams Construct
	Teams Execution Model�Teams Constructs
	SAXPY: Serial (host)
	SAXPY: Serial (host)
	SAXPY: Coprocessor/Accelerator
	Distribute Constructs
	distribute Construct
	Teams + Distribute Execution Model
	Teams + Distribute Constructs
	SAXPY: Coprocessor/Accelerator
	Combined Constructs
	SAXPY: Combined Constructs
	SAXPY: Combined Constructs
	Additional Runtime Support
	Multi-device Example
	OpenACC1 compared to OpenMP 4.0 (by Dr. James Beyer)
	Future OpenACC vs future OpenMP �(by Dr. James Beyer)
	Preliminary results: AXPY (Y=a*X)
	Jacobi
	Agenda
	Compilers are here!
	OpenMP in Clang update
	Release note commited by me to clang/llvm 3.5
	Many Participants/companies
	Summary of upstream progress of OpenMP clan
	OpenMP offload/target in LLVM
	Goal of Design
	Clang/llvm offload design
	Example code
	Generation of fat binary
	Agenda
	What did we accomplish in OpenMP 4.0?
	OpenMP future features
	Agenda
	IWOMP, SC14 and OpenMPCon
	Slide Number 119
	IWOMP 2014
	Salvador
	Common-vendor Specification Parallel Programming model on Multiple compilers
	A de-facto Standard: Across 3 Major General Purpose Languages
	A de-facto Standard: One High-Level Accelerator Language
	Support Multiple Devices and let the local compiler generate the best code
	My blogs and email address
	FRAGEN?
	Vielen Dank!

