OpenVIP. ‘OpenMPCona

USERS CONVENTION

GPU/Accelerator programming with
OpenMP 4.0:

yvet another Significant Paradigm Shift in
High-level Parallel Computing

Michael Wong, Senior Compiler Technical Lead/Architect
michaelw@ca.ibm.com

OpenMP CEO

Chair of WG21 SG5 Transactional Memory

ISOCPP.org, Director, VP

Vice Chair of Programming Languages, Standards Council of Canada
WG21 C++ Standard, Head of Delegation for Canada and IBM

CPPCON 2014

mailto:michaelw@ca.ibm.com�

Acknowledgement and Disclaimer

umerous people internal and external to the
OpenMP WG, in industry and academia, have
made contributions, influenced ideas, written
part of this presentations, and offered
feedbacks to form part of this talk.

| even lifted this acknowledgement and
disclaimer from some of them.

But | claim all credit for errors, and stupid
mistakes. These are mine, all mine!

Any opinions expressed in this presentation are
my opinions and do not necessarily reflect the
opinions of IBM or OpenMP or ISO C++.

P Legal Disclaimer
LRenivir Orl

* This work represents the view of the author and
does not necessarily represent the view of IBM.

 [BM, PowerPC and the IBM logo are trademarks
or registered trademarks of IBM or its subsidiaries
in the United States and other countries.

e The OpenMP_Timeline files here are licensed
under the three clause BSD license,
http://opensource.org/licenses/BSD-3-Clause

e Other company, product, and service names may
be trademarks or service marks of others..

USERS CONVENTION

What is OpenMP about?

And how does it fit with C++?

Common-vendor Specification
Parallel Programming model on

Multiple compilers

AMD, Convey, Cray, Fujitsu, HP, IBM,
Intel, NEC, NVIDIA, Oracle, RedHat
(GNU), ST Mircoelectronics, Tl,
clang/llvm

USERS CONVENTION

A de-facto Standard: Across 3
Major General Purpose
Languages

C++, C, Fortran

A de-facto Standard: One High-
Level Accelerator Language

One High-Level Vector SIMD
language too!

OpenMIP

QQpenMP-

Support Multiple Devices and let
the local compiler generate the

best code

Xeon Phi, NVIDIA, GPU, GPGPU, DSP,
MIC, ARM and FPGA

So how does it fit with other
GPU/Accelerator efforts?

1ISO C++ WG21 SG1 Parallelism TS
C++AMP
OpenCL

Cuda?

std::vector<int>v = ...
// standard sequential sort
std::sort(vec.begin(), vec.end());

using namespace
std::experimental::parallel;

// explicitly sequential sort
sort(seq, v.begin(), v.end());

// permitting parallel execution
sort(par, v.begin(), v.end());

// permitting vectorization as well
sort(vecpar_vec, v.begin(), v.end());

// sort with dynamically-selected
execution

WG21 SG1 Parallelism TS

size_t threshold = ...

execution_policy exec = seq;

if (v.size() > threshold) {
exec = par;

}

sort(exec, v.begin(), v.end());

OpenE C++AMP

void AddArrays(int n, int m, int * pA, int * pB, int * pSum) {

concurrency::array_view<int,2> a(n, m, pA), b(n, m, pB),
sum(n, m, pSum);

concurrency::parallel_for_each(sum.extent,
[=](concurrency::index<2> i) restrict(amp)

{

sumli] = ali] + bli];
};
}

SIere CUDA

USERS CONVENTION

texture<float, 2, cudaReadModeElementType> tex;
void foo() {
cudaArray* cu_array;
// Allocate array
cudaChannelFormatDesc description = cudaCreateChannelDesc<float>();
cudaMallocArray(&cu_array, &description, width, height);
// Copy image data to array

// Set texture parameters (default)
// Bind the array to the texture
// Run kernel

// Unbind the array from the texture

g T O e
B R e | e

Its like the difference between:

An Aircraft Carrier Battle Group (ISO)
And a Cruiser (Consortium: OpenMP)

And a Destroyer (Company Specific
language)

Agenda

What Now?

OpenMP ARB Corporation

A Quick Tutorial

A few key features in 4.0

Accelerators and GPU programming
Implementation status and Design in clang/llvm
The future of OpenMP

IWOMP 2014 and OpenMPCon 2015

OpenB What now?

USERS CONVENTION

Nearly every C, C++ features makes for beautiful, elegant code for developers
(Disclaimer: | love C++)

— Please insert your beautiful code here:

— Elegance is efficiency, oris it? Or

— What we lack in beauty, we gain in efficiency; Or do we?
The new C++11 Std is

— 1353 pages compared to 817 pages in C++03
The new C++14 Std is

— 1373 pages (N3937), vs the free n3972
The new Cl1 is

— 701 pages compared to 550 pages in C99
OpenMP 3.1 s

— 354 pages and growing
OpenMP 4.0 is

— 520 pages

Beautiful and elegant Lambdas

vector<int>::iteratori = auto i = find_if(begin(v), end(v),
v.begin(); [=](int i) {
for(;i!=v.end(); ++i) { returni>x &&i<y;
if(*i>x && *i<y) });
break;
}

e “Lambdas, Lambdas Everywhere”
http://vimeo.com/23975522

e Full Disclosure: | love C++ and have for many years
e But.. Whatis wrong here?

SIperie The Truth

USERS CONVENTION

Q: Does your language allow you to access all the GFLOPS of your
machine?

OpenME |5 there in Truth No Beauty?”

QQDGHMP from Jordan by George Herbert

e (Q: Does your language allow you to access all the GFLOPS of your
machine?

 A:What a quaint concept!

— | thought its natural to drop out into OpenCL, CUDA, OpenGL, DirectX,
C++AMP, Assembler to get at my GPU

— Why? | just use my language as a cool driver, it’s a great scripting
language too. But for real kernel computation, | just use Fortran

— | write vectorized code, so my vendor offers me intrinsics, they also tell
me they can auto-vectorize, though | am not sure how much they really
do, so | am looking into OpenCL

— Well, | used to use one thread, but now that | use multiple threads, |
can get at it with C++11, OpenMP, TBB, GCD, PPL, MS then
continuation, Cilk

— | know | may have a TM core somewhere, so my vendor offers me
intrinsics
— No |l like using a single thread, so | just use C, or C++

Lot The Question

USERS CONVENTION

e Q:lsittrue that there is a language that allows you to access all the
GFLOPS of your machine?

Power of Computing

e 1998, when C++ 98 was released
— Intel Pentium II: 0.45 GFLOPS
— No SIMD: SSE came in Pentium Il
— No GPUs: GPU came out a year later

e 2011: when C++11 was released
— Intel Core-i7: 80 GFLOPS
— AVX: 8 DP flops/HZ*4 cores *4.4 GHz= 140 GFlops
— GTX 670: 2500 GFLOPS

e Computers have gotten so much faster, how come
software have not?

— Data structures and algorithms
— latency

Openivie In 1998, a typical machine had the

following flops
e .45 GFLOP, 1 core

e Single threaded C++98/C99 dominated this picture

OpenMP In 2011, a typical machine had the

following flops
e 2500 GFLOP GPU

e To program the GPU, you use CUDA, OpenCL, OpenGL,
DirectX, Intrinsics, C++AMP

In 2011, a typical machine had the

following flops
e 2500 GFLOP GPU+140GFLOP AVX

e To program the GPU, you use CUDA, OpenCL, OpenGL,
DirectX, Intrinsics, C++AMP

e To program the vector unit, you use Intrinsics, OpenCL, or
auto-vectorization

OpenMP In 2011, a typical machine had the

following flops
e 2500 GFLOP GPU+140GFLOP AVX+80GFLOP 4

cores

e To program the GPU, you use CUDA, OpenCL, OpenGlL,
DirectX, Intrinsics, C++AMP

e To program the vector unit, you use Intrinsics, OpenCL, or
auto-vectorization

e To program the CPU, you use C/C++11, OpenMP, TBB,
Cilk, MS Async/then continuation, Apple GCD, Google
executors

OpenMP In 2011, a typical machine had the

following flops
e 2500 GFLOP GPU+140GFLOP AVX+80GFLOP 4

cores+tHTM

e To program the GPU, you use CUDA, OpenCL, OpenGlL,
DirectX, Intrinsics, C++AMP

e To program the vector unit, you use Intrinsics, OpenCL, or
auto-vectorization

e To program the CPU, you use C/C++11, OpenMP, TBB,
Cilk, MS Async/then continuation, Apple GCD, Google
executors

e To proeram HTM. vou have?

OpenMP In 2014, a typical machine had the

following flops
e 2500 GFLOP GPU+140GFLOP AVX+80GFLOP 4

cores+tHTM

e To program the GPU, you use CUDA, OpenCL, OpenGlL,
DirectX, Intrinsics, C++AMP, OpenMP

e To program the vector unit, you use Intrinsics, OpenCL, or
auto-vectorization, OpenMP

* To program the CPU, you might use C/C++11/14,
OpenMP, TBB, Cilk, MS Async/then continuation, Apple
GCD, Google executors

e To proeram HTM. vou have the upcoming C++ TM TS

Parallelism

N

Subscribe to the News Feed
»OpenMP Specifications

»About the OpenMP ARB
»Frequently Asked
Questions

»Compilers

»Resources

»Who's Using OpenMP?
»Press Releases

»Discussion Forums

Events
»Public OpenMP Calendar

Input Register

Alert the OpenMP.org
webmaster about new products,
events, or updates and we'll
post it here.
»Webmaster@openmp.org

W Follow @0OpenMP_ARB

Search OpenMP.org

| Custom Search |

Search

A wmlninrm -

¥ Next 4 Previous & Highlight all O Match case

8T Cruiseaeckplans p

Effective Advanced C+... B (1) 5G5 - Transactional ... M Gmail - [Omp-error-mo... # Custom Query — OpenMP » Connecting... » FreeStockCharts.com - ... i IBM Club Toronto {2 IBM Club | Toronto IBl

OpenMIP

OpenMP 4.0: A Significant Paradigm !

TaE OPENMP® API SPECIFICATION FOR PARALLEL PROGRAMMING

OpenMP 4.0 Specifications Released

The OpenMP 4.0 API Specification is released with Significant New Standard
Features

The OpenMP 4.0 API supports the programming of accelerators, SIMD programming, and better
optimization using thread affinity

The OpenMP Consortium has released OpenMP API 4.0, a major upgrade of the OpenMP API
standard language specifications. Besides several major enhancements, this release provides a new
mechanism to describe regions of code where data and/or computation should be moved to another
computing device.

Bronis R. de Supinski, Chair of the OpenMP Language Committee, stated that "OpenMP 4.0 APl is a
major advance that adds two new forms of parallelism in the form of device constructs and SIMD
constructs. It also includes several significant extensions for the loop-based and task-based forms of
parallelism already supported in the OpenMP 3.1 APL"

The 4.0 specification is now available on the »OpenMP Specifications page.
Standard for parallel programming extends its reach

With this release, the OpenMP API specifications, the de-facto standard for parallel programming on
shared memory systems, continues to extend its reach beyond pure HPC to include DSPs, real time
systems, and accelerators. The OpenMP APl aims to provide high-level parallel language support for a
wide range of applications, from automotive and aeronautics to biotech, automation, robotics and
financial analysis.

New features in the OpenMP 4.0 API include:

- Support for accelerators. The OpenMP 4.0 AP| specification effort included significant
participation by all the major vendors in order to support a wide variety of compute devices. OpenMP
API provides mechanisms to describe regions of code where data and/or computation should be
moved to another computing device. Several prototypes for the accelerator proposal have already
been implemented.

- SIMD constructs to vectorize both serial as well as parallelized loops. With the advent of
SIMD units in all major processor chips, portable support for accessing them is essential. OpenMP 4.0
AP provides mechanisms fo describe when multiple iterations of the loop can be executed
concurrently using SIMD instructions and to describe how to create versions of functions that can be
invoked across SIMD lanes.

¥ Reached end of page, continued from top

Get
»OpenMP specs

Use
»OpenMP Compilers

Learn

POUTARLE SHARED MEMORT PARALLEL PROGRANMING

»Using OpenMP - the book
»lUsing OpenMP - the
examples

»lsing OpenMP -- the forum
»Wikipedia

»OpenMP Tutorial

»More Resources

Discuss

nUser Forum

Ask the experts and get
answers to questions about
OpenMP

Recent News

+ OpenMP at 5C13 Denver

OpenMP Agenda
OpenMPCon
e \What Now?
* OpenMP ARB Corporation

A Quick Tutorial

A few key features in 4.0

Accelerators and GPU programming
Implementation status and Design in clang/llvm
The future of OpenMP

IWOMP 2014 and OpenMPCon 2015

%23”“:'"': A brief history of OpenMP AP

by Kelvin Li

Fortran, C & C++
V4.0

Fortran, C & C++

V3.1
Fortran V1.1

Fortran, C & C++

V3.0

Fortran V2.0 Fortran, C & C++

N

1998 2002

V2.5

\

1997 1999 2000 2001 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

2014 onwards, more agile
C& C++ V2.0
Next OpenMP revision cycle:
C&C++ V1.0

faster, more predictable

Less monolithic: Delivering concurrent TRs &
language extensions

OpenMP is a living language

OpenMIP

OpenMPCon

USERS CONVENTION

OpenMP Members grow

From Dieter An Mey, RWTH Aachen 2012, since 2012 added

Red Hat/GCC

Barcelona SuperComputing Centre

University of Houston

T Development of the OpenMP ARB Membership _
Convey
[permanent members (vendors) | LL | NVIDIA
CAPS Tl
Cray CAPS
AMD Cray
| PGI/STMicrod Microsoft AND
Cnmpaqj’[}l&] MEC PGI/STMicroelectronics Microsoft
Compadq/DEC Fujitsu MNEC PGI/STMicroelectronics
KAl Fujitsu MEC
SGI Fujitsu
HP
1BM
I ntel
Sun |Sunid Oracle
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
—
LLNL (DOE ASC)
EPCC
cOMPuUnity
| NASA
| RWTH Aachen University
| ANL
|auxiliary members (education & research) | | TACC
LAML
ORML
Sandia

30

I o mim Tl | | o ol B, LS [P
m Vendors provide similar but different solutions for loop parallelism, causing portability and maintenance problems.
77 Kuck and Assodiates, Inc (KAIY | 5G1 | Cray | IBM | High Performance Fortran (HPF) | Parallel Computing Forum (PCF) 246
PE2EES inspring 7 vendors, cOMPunity, the sroup The OpenMP ARB OpenMP releases its OpenMP gezars toward paEEes
Intel and DOE agres of OpenMP users, is mezches 15 members of first Technical Report wersion 417 and 50,
on the spelling of formed, and organizes which 5 are supercom- that outlines how Topics under
parzllel loop and form workshops on OpenMP puting centers. This accelerstor and discussion include
the OpenhP ARB. By in North America, rmocture of vendors and coprocessor devices more support for
‘October, version 1.0 Burope, and Asiz. users isa trademark of will be handled. heterogensous
of the OpenMP OpenMP’s cooperative Systems,
ificati 2.0 style of operation.

m &5 O penkP
es to maintzin
Loop Parallelization

100 242
pages

15 15

oo 4700

35 15 g 11 11 11 11
e I I |.|.||||I|I|||IIIIIII|I | | |- =

3G 1o 252 477 §98 1020 13250 1220 1370 1600 1880 2220 2100 4100 5370 5010 S470
OpenMP ARE Mem bership Evolution .Fe"‘naﬂeﬁtéRE Auxilizry ARE Members .:'CE"'lr"FS::;.éf:ﬂ:.E‘HtE

140

270

penhMMP Google

= up ports accelemtorf
CopnooEs sor devices,
SIMD parzllzlism,
thread affinity, and
more. Expands
OpenMP beyvond its
traditicnzl boundaries

2014

a010 8470

cholar Hit

22

L
m

OpenMP internal Organization

OpenMP ARB
Language WG Marketing WG

EEEEEEEEEEEEEEE

Toda - Fortran
A E viemory
oriented

OpenMP - The New I\/Iission Statement of

| OpenMIPCon

USERS CONVENTION

e OpenMP’s new mISSI QtMement

—“Standardize directive-based multi-
language high-level parallelism that is
performant, productive and portable”

—Updated from

e "Standardize and unify shared memory,
thread-level parallelism for HPC”

33

Agenda

What Now?

OpenMP ARB Corporation

A Quick Tutorial

A few key features in 4.0
Accelerators and GPU programming
VectorSIMD Programming

The future of OpenMP

IWOMP 2014 and OpenMPCon 2015

Hello Concurrent World

USERS CONVENTION

#include <iostream>
#include <thread> //#1
void hello() //#2

{

std::cout<<"Hello Concurrent World"<<std::endl;

}

int main()

{
std::thread t(hello); //#3

t.join(); //#4
}

35

s this valid C++ today? Are

these equivalent?

int x = 0;

atomic<int> y = 0;

Thread 1:
x = 17;
y.store(1l,
memory_order_releas%si

/ or-: y.store(
Thread 2:

while

(y-load(memory_order_acq

uire) 1= 1 i

/ or: while

(y.load() = 1)
assert(x == 17);

int x = 0;
atomic<int> y = 0O;

Thread 1:
X = 17;
y = 1;
Thread 2:
while (y_ = 1)
conctinue;

assert(x == 17);

36

Hello World again

USERS CONVENTION

 What will this program print?

#include <stdlib.h>

#include <stdio.h>

int main(int argc, char *argv[]) {
printf("Hello ");
printf("World ");
printf("\n");
return(0);

2penME - 3_threaded Hello World with
- OpenMP threads

#include <stdlib.h>
#include <stdio.h>
int main(int argc, char *argv|[]) {

#pragma omp parallel

{

printf("Hello ");
printf("World ");

} // End of parallel region
printf("\n");

return(0);

}
Hello World Hello World
Oor

Hello Hello World World 3

USERS CONVENTION

More advanced 2-threaded

Hello World

#include <stdlib.h>

#include <stdio.h>

int main(int argc, char *argvi[]) {
#pragma omp parallel

{
#pragma omp single
{
printf("Hello ");
printf("World ");
}

}// End of parallel region
printf("\n");
return(0);

}
Hello World

USERS CONVENTION

Hello World with OpenMP

tasks now run 3 times

int main(int argc, char *argv[]) {
#pragma omp parallel
{
#pragma omp single
{
#pragma omp task
{printf("Hello ");}
#pragma omp task
{printf("World ");}
}
} // End of parallel region
printf("\n");
return(0);

Hello World
Hello World
World Hello

Tasks are executed at a task
execution point

USERS CONVENTION

int main(int argc, char *argv[]) {
#pragma omp parallel

{
#pragma omp single
{
#pragma omp task
{printf("Hello ");}
#pragma omp task
{printf("World ");}
printf(“\nThank You “);
}

}// End of parallel region
printf("\n");
return(0);

}
Thank You Hello World

Thank You Hello World
Thank You World Hello

%j”"l’\':cﬁ Execute Tasks First

int main(int argc, char *argv[]) {
#pragma omp parallel
{
#pragma omp single
{
#pragma omp task
{printf("Hello ");}
#pragma omp task
{printf("World ");}
#pragma omp taskwait
printf(“Thank You “);
}
} // End of parallel region
printf("\n");return(0);
}
Hello World Thank You

Hello World Thank You
World Hello Thank You

OpenMIP

OpenMIPCon

Execute Tasks First with
* OpenMP 4.0 only DependenCles

int main(int argc, char *argv[]) {
#pragma omp parallel

{

#pragma omp single
{
intx=1;
#pragma omp task shared (x) depend (out:x)
{printf("Hello ");}
#pragma omp task shared (x) depend (in:x)
{printf("World ");}
#pragma omp taskwait
printf(“Thank You “);
}
} // End of parallel region
printf("\n");return(0);
}
Hello World Thank You

Hello World Thank You
Hello World Thank You

Interface (API) to write shared memory parallel
applications in C, C++, and Fortran

e Consists of:
— o Compiler directives
— @ Run time routines
— @ Environment variables
* Specification maintained by the OpenMP
Architecture Review Board
(http://www.openmp.org)

— Version 4.0 was released 2013

it even with auto-parallelization

—a loop is not parallelized

e Data dependency analyses are not able to
determine whether it is safe to parallelize or not

— Compiler finds a low level of parallelism

e But your know there is a high level, but compiler
lacks information to parallelize at the highest
possible level

 No Auto-parallelizing compiler, then you have to
do it yourself

—Need explicit parallelization using directives
4

Advantages of OpenMP

 Good performance and scalability
—If you do it right

* De-facto and mature standard

* An OpenMP program is portable

—Supported by a large number of
compilers

* Allows the program to be parallelized
incrementally

Ope”e':’"’ Can OpenMP work with
MultiCore, Heterogeneous

* OpenMP is ideally suited for
multicore architectures

—Memory and threading model
map naturally

—Lightweight
—Mature
—Widely available and used

OpenlME The OpenMP Execution Model

OpenMPCon

USERS CONVENTION

Fork and Join Model

Master
Thread

. Worker

Parallel region * * * * * Threads
Work

Parallel region * * * * * Th?gagg

Directive Format

— #pragma omp directive [clause [clause] ...]

— Continuation: \

— Conditional compilation: _OPENMP macro is set
* Fortran:

— Fortran: directives are case insensitive
e Syntax: sentinel directive [clause [[,] clause]...]
e The sentinel is one of the following:
— ¢/ ISOMP or CSOMP or *SOMP (fixed format)
— ¢/ ISOMP (free format)

— Continuation: follows the language syntax
— Conditional compilation: 1S or CS -> 2 spaces

OpenMPCon
* Directives e Environment
— Tasking Variables
— Parallel region — Number of
— Work sharing threads
— Synchronization — Scheduling type
— Data scope — Dynamic thread
attributes adjustment
e Private — Nested
* Firstprivate parallelism
* Lastprivate — Stacksize
* Shared — Idle threads
e reduction ,
. — Active levels
— Orphaning .
— Thread limit

Components of OpenMP

Runtime Variables
— Number of threads
— Thread id

— Dynamic thread
adjustment

— Nested Parallelism
— Schedule

— Active Levels

— Thread limit

— Nesting Level

— Ancestor thread

— Team size

— Wallclock Timer

— locking

USERS CONVENTION

But why does OpenMP use
pragmas?

It is an intentional design ...

OpenMIP

Sroue.

Pragmas can support 3 General
Purpose Programming Languages
and maintain the same style

C++

C
Fortran

And National Labs, weather
research, nuclear simulations

Still have substantial kernels written
in mix of Fortran and C driven by C++

Agenda

What Now?

OpenMP ARB Corporation

A Quick Tutorial

A few key features in 4.0

Accelerators and GPU programming
Implementation status and Design in clang/llvm
The future of OpenMP

IWOMP 2014 and OpenMPCon 2015

Goals

 Thread-rich computing environments are becoming more
prevalent
— more computing power, more threads
— less memory relative to compute

 There is parallelism, it comes in many forms
— hybrid MPI - OpenMP parallelism
— mixed mode OpenMP / Pthread parallelism
— nested OpenMP parallelism

 Have to exploit parallelism efficiently
— providing ease of use for casual programmers

— providing full control for power programmers
— providing timing feedback

What did we accomplish in
OpenMP 4.0?

 Broad form of accelerator support
e SIMD
e Cancellation (start of a full error model)

e Task dependencies and task groups

 Thread Affinity

e User-defined reductions

e |nitial Fortran 2003

e C/C++ array sections

e Sequentially Consistent Atomics

e Display initial OpenMP internal control variable state

OpenMIP

Compilers are here!

e Intel 13.1 compiler supports
Accelerators/SIMD

e Oracle/Sun Studio 12.4 Beta just
announced full OpenMP 4.0

e GCC 4.9 shipped April 9, 2014 supports
4.0

e Clang support for OpenMP injecting
into trunk, first appears in 3.5 last week

ogpenMPCo

* Cray, Tl, IBM coming online 57

OpenMP In 2014, a typical machine had the

following flops
e 2500 GFLOP GPU+140GFLOP AVX+80GFLOP 4

cores+tHTM

 To program the GPU, you have to use CUDA, OpenCL,
OpenGL, DirectX, Intrinsics, C++AMP, OpenMP

e To program the vector unit, you have to use Intrinsics,
OpenCL, or auto-vectorization, OpenMP

* To program the CPU, you might use C/C++11/14,
OpenMP, TBB, Cilk, MS Async/then continuation, Apple
GCD, Google executors

e To proeram HTM. vou have the upcoming C++ TM TS

OpenMIP

OpenMIPCon

USERS CONVENTION

e What Now?

e OpenMP ARB Corporation
* A Quick Tutorial

 Afew key features in 4.0

Agenda

e Accelerators and GPU Programming

e Implementation status and Design in clang/llvm
 The future of OpenMP

e IWOMP 2014 and OpenMPCon 2015

OpenMIP

OpenMP Accelerator

— Jame Beyers- Cray (courtesy for slides)
— Eric Stotzer — Tl (courtesy for slides)

e Active subcommittee members
— Xinmin Tian — Intel (courtesy for slides)
— Ravi Narayanaswamy — Intel (courtesy for slides)
— Jeff Larkin — Nvidia
— Kent Milfeld — TACC
— Henry Jin — NASA
— Kevin O’Brien, Kelvin Li, Alexandre Eichenberger, IBM
— Christian Terboven— RWTH Aachen (courtesy for slides)
— Michael Klemm — Intel (courtesy for slides)
— Stephane Cheveau — CAPS
— Convey, AMD, ORNL, TU Dresden,

Why is GPU important now?

USERS CONVENTION

e Orisitaflashin the pan?
* The race to exascale computing .. 10 18flops
e Vertical scale is in GFLOPS

..

Top500 contenders

OpenME — \What is OpenMP Model’s aim?

USERS CONVENTION

e All forms of accelerators, DSP, GPU, APU, GPGPU

 Network heterogenous consumer devices

— Kitchen appliances, drones, signal processors, medical

Heterogeneous Device model

NNNNNNNNNNNNNNN

e OpenMP 4.0 supports accelerators/coprocessors

* Device model:
— One host
— Multiple accelerators/coprocessors of the same kind

Coprocessors

Heterogeneous SoC

Glossary

USERS CONVENTION

B Device:
an implementation-defined (logical) execution unit

M |_eague:
the set of threads teams created by a teams
construct

Bl Contention group:
threads of a team in a league and their descendant
threads

B Device data environment:
Data environment as defined by target data or
target constructs

Hm Mapped variable:
An original variable in a (host) data environment
with a corresponding variabl/e in a device data
environment

B Mapable type:

A type that is amenable for mapped variables.
(Bitwise copyable plus additional restrictions.)

QpenMP OpenMP 4.0 Device
Constructs

 Execute code on a target device
— omp target [clause|],] clause],.]
structured-block
— omp declare target
[function-definitions-or-declarations]
e Map variables to a target device
— map ([map-type:] list) // map clause
map-type := alloc | tofrom | to | from

— omp target data [clause[][,] clause],.]
structured-block

— omp target update [clause[[,] clause],..]
— omp declare target
[variable-definitions-or-declarations]
 Workshare for acceleration

— omp teams [clause[][,] clause],.]
structured-block

— omp distribute [clause[[,] clause],.]
for-loops

OpenMIP

0 OpenMPCon

B Transfer control from the host to the device
B Syntax (C/C++)

#pragma omp target [clause[[,] clause],..]
structured-block

M Syntax (Fortran)
!'Somp target [clause[[,] clause],..]
structured-block

target Construct

B Clauses
device (scalar—-integer—-expression)
map (alloc | to | from | tofrom: 1ist)

1f (scalar—-expr)

OpenMIP

égpenMPCQ n

B Create a device data environment

B Syntax (C/C++)
#fpragma omp target data [clause[[,] clause],..]
structured-block

M Syntax (Fortran)
!Somp target data [clause[[,] clause],..]
structured-block

target data Construct

B Clauses
device (scalar—-integer—-expression)
map (alloc | to | from | tofrom: 1ist)

1f (scalar—-expr)

target update Construct

USERS CONVENTION

B [ssue data transfers between host and devices
B Syntax (C/C++)

fpragma omp target update [clause[[,] clause],..]

B Syntax (Fortran)
'Somp target data update [clause/[[,] clause],..]

B Clauses
device (scalar-integer-expression)
to(list)
from(list)
1f(scalar—-expr)

Execution Model

USERS CONVENTION

B The target construct transfers the control flow
to the target device
—> The transfer clauses control direction of data flow
—>Array notation is used to describe array length
B The target data construct creates a scoped
device data environment
—> The transfer clauses control direction of data flow

- The device data environment is valid through the lifetime
of the target data region

B Use target update to request data transfers
from within a target data region

Execution Model and Data

USERS CONVENTION

Environment

M Data environment is lexically scoped

- Data environment is destroyed at closing curly brace
- Allocated buffers/data are automatically released

Host Device
PA TFEB alloc]...)
\ /,"@_7 aa -

EELEEEEE to(..) B

CET E a3

:;g;;, :g;g: /

L EY L // #pragma omp target \
@ map (alloc:...) \

from(..) map (to:...) \

] map (from:...)
{ ...}

©

OpenMP - map Clause

Ope nMP
extern void init(float*, float*, int); The target construct creates
extern void output(float*, int); a hew device data
void vec_mult(float *p, float *vl1l, float *v2, int N) environment and EXP|ICIt|y
{ maps the array sections
int i; v1[O:N], v2[:N] and p[O:N] to
init(vl, v2, N); the new device data
#pragma omp target map(to:v1i[O:N],v2[:N]) \\ environment.
map(from:p[0:N]) e The variable N implicitly
#pragna onp paratisl for mapped into the new device
or (i=0; i<N; i++) .
o[i] = Vvi[i] * v2[i]; data enqunmentlfrom the
encountering task's data
) output(p, N); environment.
Map-types:

e alloc: allocate storage for corresponding variable

e to: allocand assign value of original variable to corresponding variable on entry
e from: allocand assign value of corresponding variable to original variable on exit
e tofrom: default, both to and form

openlME target Construct Example

USERS CONVENTION

e Use target construct to
— Transfer control from the host to the device
— Establish a device data environment (if not yet done)

 Host thread waits until offloaded region completed

— Use other OpenMP constructs for asynchronicity

#pragma omp target map(to:b[O:count]) map(to:c,d) map(from:a[0:count])
{
#pragma omp parallel for
for (1=0; i<count; 1++) {
a[i] = b[i] * c + d;
s
¥

Lot Data Environments

USERS CONVENTION

B Create a data environment to keep data on devices

- Avoid frequent transfers or overlap computation/comm.

- Pre-allocate temporary fields

#pragma omp target data device(0) map(alloc:tmp[:N])
{
#pragma omp target device {0)
#pragma omp parallel for
for (i=0; i<N; 1i++)

tmp[i] = some computation (input[i], i);
do some other stuff on host();

#pragma omp target device (0)
#pragma omp parallel for reduction(t:res)
for (i=0; i<N; i++)

res += final computation (tmp[i], i)

map(to:input [:N))

map (from: res)

jsoyligsbaey | jsoy [W3SBiey | 3isoy

Openi® target data Construct Example

OpenMPeu on

extern v0|d |n|t(float* float*, Int);
extern void init_again(float*, float*, int);
extern void output(float*, int);

void vec_mult(float *p, float *v1, float *v2, int

I#pragma omp target map(to: vi[:N], v2[:N])'
' #pragma omp parallel for
' for (i=0; i<N; i++)

: pLi] = vi[i] > v2[i];

i#pragma omp target map(to: vi[:N], Vv2[:N])
| #pragma omp parallel for

, For (i=0; i<N; i++)

: pLil = pL[i] + (vi[i] * v2[i]);

output(p, N);
}

N)

The target data
construct creates a device
data environment and
encloses target regions,
which have their own device
data environments.

The device data environment
of the target data region
is inherited by the device
data environment of an
enclosed target region.

The target data
construct is used to create
variables that will persist
throughout the target
data region.

vl and v2 are mapped at
each target construct.

Instead of mapping the
variable p twice, once at each
target construct, p is
mapped once by the
target data construct.

OpenMP Data mapping: shared or distributed memory

EEEEEEEEEEEEEEE

Shared memory

Memory

.

Distributed memory

Memory Y

* The corresponding variable in the device
data environment may share storage
with the original variable.

- —
* Writes to the corresponding variable \

may alter the value of the original
variable.

OpenMP § ¥ Clause Example

USERS CONVENTION

#define THRESHOLD1 1000000
#define THRESHOLD2 1000

extern void init(float*, float*, int);
extern void output(float*, int);

void vec_mult(float *p, float *v1, float *v2, int N)
{

int i;

init(vli, v2, N);

#pragma omp target i1Tf(N>THRESHOLD1) \\
map(to: v1[O0:N], v2[:N]) map(from: p[O:N])
#pragma omp parallel for 1T(N>THRESHOLD2)
for (i=0; i<N; i++)
pLi] = vi[i] * v2[i];
output(p, N);

The 1T clause on the
target construct
indicates that if the
variable N is smaller than
a given threshold, then
the target region will
be executed by the host
device.

The 1T clause on the
parallel construct
indicates that if the
variable N is smaller than
a second threshold then
the parallel region is
inactive.

declare target Constrtuct

USERS CONVENTION

B Declare one or more functions to also be compiled
for the target device

B Syntax (C/C++):
#pragma omp declare target
[function-definitions—-or-declarations]

#fprragma omp end declare target

B Syntax (Fortran):
! Somp declare target [(proc-name-list | 1ist)]

Host and device functions

USERS CONVENTION

B The tagged functions will be compiled for
—~>Host execution (as usual)
- Target execution (to be invoked from offloaded code)

#pragma omp declare target
flecat some computation(float £1, int in) {
'/ ... code ...

}

float final computation (float £f1, int in) {
// ... code ...

}
#pragma omp end declare target 1
some computation: 1 some computation device:

movups %Sxmm2, (%rl5) hOSt vprefetchl 64 (%5rl5)

: crerenb selirly) device
movups $xmm3, (%rbx) vaddps %zmm7, %zmm6, %zmmY
functions functions
final computation: final computation device:

S Explicit Data
- Transftfers:Target
update Construct Example

#pragma omp target data device(0) map(alloc:tmp[:N]) map(to:input[:N)) map(from:res)
{
#pragma omp target device(0)
#pragma omp parallel for
for (i=0; i<N; i++)
tmp[1] = some_computation(input[i], 1);

update_input_array_on_the_host(input);

#pragma omp target update device(0) to(input[:N])

#pragma omp target device(0)
#pragma omp parallel for reduction(+:res)
for (i=0; i<N; i++)
res += final_computation(input[i], tmp[i], 1)

USERS CONVENTION

B Use existing OpenMP features to implement
asynchronous offloads.

#pragma omp parallel sections
{
#pragma omp task
{
#pragma omp target map (to:input[:N]) map(from:result[:N])
#pragma omp parallel for
for (i=0; 1i<N; i++) {
result[i] = some computation (input[i], i);
}
}
#pragma omp task
{
do something important on host({();
}
#pragma omp taskwait

}

Asynchronous Offloading

=

l

=
l

OpenMPCon Teams Constructs

USERS CONVENTION

C/C++
#pragma omp teams [clause[[,] clause],...] new-line
structured-block

Fortran

ISomp teams [clause[[,] clause],...]
structured-block
ISomp end teams

Clauses: num_teams(integer-expression)
num_threads(integer-expression)
default(shared | none)
private(list)
firstprivate(list)
shared(/ist)
reduction(operator : list)

83

Restrictions on teams

OpenMIP

B Creates a league of thread teams
- The master thread of each team executes the teams
region
- Number of teams is specified with num teams ()
—>Each team executes num threads () threads
B A teams constructs must be “perfectly” nested in a
target construct:

- No statements or directives outside the teams construct

® Only special OpenMP constructs can be nested
Inside a teams construct:

—~distribute (see next slides)
—“parallel
“parallel for (C/C++),parallel do (Fortran)

—parallel sections

OpenMPCon Teams Execution Model

USERS CONVENTION

structured-block

Team O
Thread0 Threadl Thread?2

ThreadO

Teams Constructs
#pragma omp teams num_teams(3), num_threads(3)

Team 1
Thread0 Threadl Thread?2

ThreadO

Team 2
ThreadO0 Threadl Thread?2

ThreadO

Structured-block Structured-block Structured-block

OpenMP SAXPY: Serial (host)

OpenMPCon

int main (int argc, const char* argv[]) {
float *x = (float*) malloc(n * sizeof(float)):
float *y = (float*) malloc(n * sizeof(float)):
// Define scalars n, a, b & initialize x, y

for (int 1 = 0; 1 < n; ++1){
y[i] = a*x[i] + yl[i];

free(x); free(y); return 0;

OpenMIP

SAXPY: Serial (host)

OpenMPCon
int main (int argc, const char* argv[]) {
float *x = (float*) malloc(n * sizeof(float)):;
float *y = (float*) malloc(n * sizeof(float)):;

// Define scalars n, a, b & initialize x, y

#pragma omp target data map (to:x[0:n])
{

for (int 1 = 0; 1 < n; ++1) {
y[i] = a*x[i] + yl[i];

}

}

free(x); free(y); return 0;

s SAXPY:

OpenMPCon
int main (int argc, const char* argv[]) {
float *x = (float*) malloc(n * sizeof(float)):
float *y = (float*) malloc(n * sizeof(float)):

// Define scalars n, a, b & initialize x, y

#pragma omp target data map (to:x[0:n])
{
#pragma omp target map(tofrom:y)
#pragma omp teams num_ teams (num blocks) num threads (nthreads)

vis MasnaaMangonlany
l j all do the same l l

for (int 1

0; i < n; i += num blocks) {
for (int j = 1; J < 1 + num blocks; Jj++)
yl3jl = a*x[J] + y[]l;
|
}

free(x); free(y); return 0;

OpenMIP

8 onerMPCon Distribute Constructs

C/CEFR_SFCHVEM\DN
#pragma omp distribute [clause[[,] clause],...] new-line

for-loops

Fortran
ISomp distribute [clause[[,] clause],...]
do-loops
[1Somp end distribute]

Clauses: private(/ist)
firstprivate(/ist)
collapse(n)
dist_schedule(kind[, chunk_size])

A distribute construct must be closely nested in a teams region.

89

distribute Construct

B New kind of worksharing construct

- Distribute the iterations of the associated loops across the
master threads of a teams construct

- No implicit barrier at the end of the construct

B dist schedule(kind/[, chunk size])

— If specified scheduling kind must be static

- Chunks are distributed in round-robin fashion of chunks
with size chunk size

- If no chunk size specified, chunks are of (almost) equal
size:; each team receives at least one chunk

USERS CONVENTION

Teams + Distribute Execution Model

#pragma omp teams num_teams(3), num_threads(3)

#pragma omp distribute
for (int i=0; i<9; i++) {

Team O
Thread0 Threadl Thread?2

ThreadO

Team 1
Thread0 Threadl Thread?2

ThreadO

Team 2
ThreadO0 Threadl Thread?2

ThreadO

OpenMIP

OpenMPCon

USERS CONVENTION

Teams + Distribute Constructs

#pragma omp teams num_teams(3), num_threads(3)
#pragma omp distribute
for (int i=0; i<9; i++) {
pragma omp parallel for
for (int j=0;j<6; j++) {

Team O Team 1 Team 2
Thread0 Threadl Thread?2 Thread0 Threadl Thread?2 ThreadO0 Threadl Thread?2
ThreadO ThreadO ThreadO

Thrgad0 Threpdl ThriadZ

o SAXPY:
- Coprocessor/Accelerator

USERS CONVENTION
int main (int argc, const char* argv([]) {

float *x = (float*) malloc(n * sizeof(float)):;
float *y = (float*) malloc(n * sizeof(float));
// Define scalars n, a, b & initialize x, y

#pragma omp target data map(to:x[0:n])

#pragma omp target map(tofrom:y)
#oragma omp teams num teams (num blocks) num threads (bsize)

™1 O O
l l all do the same l l

#pragma omp disL:lbu*

: i < n, i += num blocks){

works ha re (wlo barrie r)

L

#pragma omp parallel for

for (int 7 = i; 7 < i + num blocks;
IIIIIII IIIIIII lIIIIII "IIIIII

‘ H‘ workshare (w/ barrier)
IIWIIWIIWIIWII

y[jl = a*x[Jj] + y[3];

<
<

."‘.

b}

free(x); free(y); return 0; }

USERS CONVENTION

Combined Constructs

B The distribution patterns can be cumbersome

B OpenMP 4.0 defines combined constructs for typical

code patterns
—>distribute
—-distribute
—>distribute
—>distribute
—-distribute

simd

parallel for (C/C++)

parallel for simd (C/C++)
(Fortran)
(Fortran)

parallel do
parallel do simd

-2 ... plus additional combinations for teams and target
B Avoids the need to do manual loop blocking

OB SAXPY: Combined Constructs

OpenMPCon

USERS CONVENTION

int main (int argc, const char* argv([]) {
float *x = (float*) malloc(n * sizeof(float)):;
float *y = (float*) malloc(n * sizeof(float)):
// Define scalars n, a, b & initialize x, y
#pragma omp target map(to:x[0:n]) map(tofrom:y)

1
#pragma omp teams num_ teams (num blocks) num threads (bsize)
#pragma omp distribute parallel for
for (int 1 = 0; i1 < n; ++1) {
yli] = a*x[i] + yl[i];

free(x); free(y); return 0;

OB SAXPY: Combined Constructs

OpenMPCon

USERS CONVENTION

int main(int argc, const char* argv[]) {
float *x = (float*) malloc(n * sizeof(float)):;
float *y = (float*) malloc(n * sizeof(float)):
// Define scalars n, a, b & initialize x, y
#pragma omp target map(to:x[0:n]) map(tofrom:y)

{
#pragma omp teams distribute parallel for \
num teams (num blocks) num threads (bsize)
for (int 1 = 0; i1 < n; ++1) {
yli] = a*x[i] + yl[i];

free(x); free(y); return 0;

OpenMIP

Additional Runtime Support

OpenMPCon

USERS CONVENTION

B Runtime support routines
2void omp set default device (int dev num)
—21int omp get default device (void)
—2int omp get num devices (void);
—21int omp get num teams (void)
—2int omp get team num(void) ;
B Environment variable
—> Control default device through OMP DEFAULT DEVICE
— Accepts a a non-negative integer value

OpenMP

OpenMPCon.

USERS CONVENTION

Multi-device Example

int num dev = omp get num devices();
int chunksz = length / num dev;
assert((length % num dev) == 0);

#pragma omp parallel sections firstprivate (chunksz,num dev)

——

for (int dev = 0; dev < NUM DEVICES; dev++) ({
#pragma omp task firstprivate (dev)
{
int 1lb = dev * chunksz;
int ub = {dev+l) * chunksz;
#pragma omp target device(dev) map (in:y[lb:chunksz]) map(out:x[lb:chunksz])
{
#pragma omp parallel for
for (int i = 1b; i < ub; i++) {

x[i] = a * y[i];

DanA
USERS CONVENTI

CC1 compared to OpenMP 4.0 (by

Dr. James Beyer)

OpenACC1

e Parallel (offload)
— Parallel (multiple “threads”)

 Kernels

* Data

* Loop

e Hostdata
e Cache

e Update

* Wait
 Declare

Slide 99

OpenMP 4.0

e Target
e Team/Parallel

* Target Data
e Distribute/Do/for/Simd
e Target Update

 Declare Target

OpenMIP

D oemeco.FUture OpenACC vs future OpenMP

USERS CONVENTION

(by Dr. James Beyer)

OpenACC2

enter data

exit data

data api

routine

async wait
parallel in parallel
tile

Linkable
Device_type

Slide 100

OpenMP future

Unstructured data environment

declare target

Parallel in parallel or team
tile

Linkable or Deferred_map
Device_type

OpenMP

©o-Reeliminary results: AXPY (Y=a*X)

USERS CONVENTION

AXPY Execution Time (s)

25

=¢—Sequential //

== OpenMP FOR (16 threads) //
K

15

1),

==ié=HMPP OpenACC)/J/

o

5000

Hardware configuration:

* 4 quad-core Intel Xeon processors (16 cores) 2.27GHz

with 32GB DRAM.

50000 500000 5000000 50000000 100000000 500000000

Vector size (float)

Software configuration:
* PGI OpenACC compiler version 13.4
* HMPP OpenACC compiler version 3.3.3

* NVIDIA Tesla K20c GPU (Kepler architecture) « GCC 4.4.7 and the CUDA 5.0 compiler

OpenMP

Jacobi

OpenMIEC on
Jacobi Execution Time (s)
100
=—9—Sequential /
0 —=#=HMPP
80 —9—PG / P

I [P
. 8- OpenMP / ///

HMPP Collapse / ///
50 === HOMP Collpase //

128x128 256x256 512x512 1024x1024 2048x2048
Matrix size (float)

Agenda

USERS CONVENTION

What Now?

OpenMP ARB Corporation

A Quick Tutorial

A few key features in 4.0

Accelerators and GPU Programming
Implementation status and Design in clang/llvm
The future of OpenMP

IWOMP 2014 and OpenMPCon 2015

OpenMIP

Compllers are hereI

OpenMPC on

SSSSSSSSSSSSSS

announced full OpenI\/IP 4.0

e GCC 4.9 shipped April 9, 2014 supports
OpenMP 4.0

e Clang support for OpenMP injecting
into trunk, first appears in 3.5

e Intel 13.1 compiler supports
Accelerators/SIMD

* Cray, Tl, IBM coming 104

P — OpenMP in Clang update

e | Chaired Weekly OpenMP Clang review WG (Intel, IBM, AMD, TI, Micron) to
help speedup OpenMP upstream into clang: April-on going

Joint code reviews, code refactoring

Delivered Most of OpenMP 3.1 constructs (except atomic and ordered) into Clang 3.5

stream for AST/Semantic Analysis support.

have OpenMP —fsyntax-only, Runtime, and basic parallel for loop region to
demonstrate code capability

Added U of Houston OpenMP tests into clang

IBM team Delivered changes for OpenMP RT for PPC, other teams added their
platform/architecture

Released Joint design on Multi-device target interface for LLVM to llvm-dev for
comment

e Future:

Clang 3.5 (Sept 2, 2014): Initial support for AST/SEMA for OpenMP 3.1 (except
atomic and ordered) + OpenMP library for AMD, ARM, TI, IBM, Intel

Clang 3.6 (~“Feb 2015): aim for functional codegen of all OpenMP 3.1 + accelerator
support(from 4.0)

Clang 3.7 (~Sept 2015): aim for full OpenMP 4.0 functional support

Release note commited by me

to clang/llvm 3.5

Clang 3.5 now has parsing and semantic-analysis support for all
OpenMP 3.1 pragmas (except atomics and ordered). LLVM's OpenMP
runtime library, originally developed by Intel, has been modified to
work on ARM, PowerPC, as well as X86. Code generation support is
minimal at this point and will continue to be developed for 3.6,

along with the rest of OpenMP 3.1. Support for OpenMP 4.0 features,
such as SIMD and target accelerator directives, is also in progress.
Contributors to this work include AMD, Argonne National Lab., IBM,
Intel, Texas Instruments, University of Houston and many others.

Slide 106

P Many Participants/companies
LRenivir Orl

* Ajay Jayaraj, Tl
e Alexander Musman, Intel
e Alex Eichenberger, IBM

e Alexey Bataey, Intel
 Andrey Bokhanko, Intel
e Carlo Bertolli, IBM
 Eric Stotzer, TI

e Guansong Zhang, AMD
 Hal Finkel, ANL

* llia Verbyn, Intel

e James Cownie, Intel

Kelvin Li, IBM

Kevin O’Brien, IBM
Samuel Antao, IBM
Sergey Ostanevich, Intel

Sunita Chandrasekaran,
UH

Michael Wong, IBM
Priya Unikhrishnan, IBM
Robert Ho, IBM

Wael Yehia, IBM

Yan Liu, IBM

Summary of upstream
progress of OpenMP clan

e Upstream progress to clang 3.5

— https://github.com/clang-omp/clang/wiki/Status-of-
supported-OpenMP-constructs

e Benchmark OpenMP clang vs OpenMP GCC

— http://www.phoronix.com/scan.php?page=article&ite
m=llvm clang openmp&num=1

e Unfairly Used —03 for GCC and noopt for clang

e Link to OpenMP offload infrastructure in LLVM

— http://lists.cs.uiuc.edu/pipermail/llvmdev/attachment

s/20140809/cd6c7f7a/attachment-0001.pdf
Slide 108

https://github.com/clang-omp/clang/wiki/Status-of-supported-OpenMP-constructs�
https://github.com/clang-omp/clang/wiki/Status-of-supported-OpenMP-constructs�
http://www.phoronix.com/scan.php?page=article&item=llvm_clang_openmp&num=1�
http://www.phoronix.com/scan.php?page=article&item=llvm_clang_openmp&num=1�

2eM® OpenMP offload/target in
. LLVIM

e Samuel Antao (IBM)
e Carlo Bertolli (IBM)
 Andrey Bokhanko (Intel)

e Alexandre Eichenberger (IBM)

* Hal Finkel (Argonne National Laboratory)
e Sergey Ostanevich (Intel)

e Eric Stotzer (Texas Instruments)
 Guansong Zhang (AMD)

Goal of Design

1. support multiple target platforms at runtime and
be extensible in the future with minimal or no
changes

2. determine the availability of the target platform
at runtime and able to make a decision to
offload depending on the availability and load of
the target platform

Phi offload

generated ([t libtarget.so

host code
Dats —

Fatbinary

GPU offload
RTL

HOST

O 0 N ULk WNRE

S e T S S SR T
Gk W N PO

Example code

USERS CONVENTION

#pragma omp declare target
int foo(int[1000]);
#pragma omp end declare target

int device_count = omp_get num_devices();
int device_no;
int *red = malloc(device count * sizeof(int));
#pragma omp parallel
for (i =0; i< 1000; i++) {

device_no =i % device_count;
. #pragma omp target device(device_no) map(to:c) map(red|i])
{

red[i] += foo(c);
}
.}

=
N o

18.

. for (1 = 0; i< device_count; i++)
total red = redlil:

o — Generation of fat binary
LRenivir Orl

1. The driver called on a source code should spawn a

3.

number of front-end executions for each available

target. This should generate a set of object files for each
target

Target linkers combine dedicated target objects into
target shared libraries — one for each target

The host linker combines host object files into an
executable/shared library and incorporates shared
libraries for each target into a separate section within
host binary. This process and format is target-

dependent and will be thereafter handled by the target
RTL at runtime

Agenda

What Now?

OpenMP ARB Corporation

A Quick Tutorial

A few key features in 4.0

Accelerators and GPU programming
Implementation status and Design in clang/llvm
The future of OpenMP

IWOMP 2014 and OpenMPCon 2015

What did we accomplish in
OpenMP 4.0?

 Much broader form of accelerator support
e SIMD
e Cancellation (start of a full error model)

 Task dependencies and task groups
 Thread Affinity

e User-defined reductions

* |nitial Fortran 2003

e C/C++ array sections

e Sequentially Consistent Atomics

e Display initial OpenMP internal control variable state
1

OpenMP future features

e OpenMP Tools: Profilers and Debuggers
— Just released as TR2

e Consumer style parallelism: event/async/futures
e Enhance Accelerator support/FPGA

— Multiple device type, linkable to match OpenACC2
e Additional Looping constructs
 Transactional Memory, Speculative Execution
e Task Model refinements
e CPU Affinity
e Common Array Shaping
e Full Error Model
* Interoperability
e Rebase to new C/C++/Fortran Standards, C/C++11 memory model

Agenda

USERS CONVENTION

e What Now?

e OpenMP ARB Corporation
* A Quick Tutorial

 Afew key features in 4.0

e Accelerators
— OpenMP and OpenACC

o Affinity

* VectorSIMD

 The future of OpenMP

e IWOMP 2014 and OpenMPCon 2015

et IWOMP, SC14 and
OpenMPCon

e International Workshop on OpenMP
— 2014 to be held in Brazil

— A strongly academic conference, with refereed papers, and a Springer-
Verlag published proceeding

* SC14

— Chairing OpenMP Bof, Steering commitete for LLVM in HPC,
giving keynote at OpenMP Exhibitor’s Forum

e What is missing is a user conference similar to ACCU, pyCON, CPPCON (next
week presenting 2 talks), C++Now

* OpenMPCON
— A user conference paired with IWOMP

— Non-refereed, user abstracts
— 1%t one will be held in Europe in 2015 to pair with the 2015 IWOMP

OpenMP

OpenMPCon.

USERS CONVENTION

¥ Hotel Novo... | @ Sheraton Ri... |®Shelaton Ri... |®aircanada.c... |@AirCanada: ...|@AC2U.c0m | { OpenMP... x + v BN

C'.'" ' aircaanada P B ¥

openmpcon.org/call-for-papers/

USERS CONVENTION

HOME OPENMPCON 2015 CALL FOR PAPERS CFP SUBMISSIONS OPENMP | IWOMP

OpenMPCon

The Event for and by the OpenMP User Community

What is OpenMPCon?

OpenMPCon is the annual, face-to-face gathering, organized by the OpenMP community, for the community. Enjoy keynotes, inspirational talks,
and a friendly atmosphere that helps attendees meet interesting people, learn from each other, and have a stimulating experience. Multiple di-
verse technical tracks are being formulated that will appeal to anyone, from the OpenMP novice to the seasoned expert.

OpenMPCon About OpenMP Bean

2015 | OpenMP | Speaker

1

O pe nM P‘ O n imail - [Omp-error-m... -}} Custom Query - Open... ‘9 FreeStockCharts.com -... H Learning Center E Send Free SMS World... ﬂ (99+) ISO C++ Standa...
e

September 28-30, 2014
SENAI CIMATEC - Salvador, Brazil

Salvador Is the arges city on the northeas s

— The capital of the Northeastern Brazilian state of Bahia
— Itis also known as Brazil's capital of happiness

Salvador was the first colonial capital of Brazil
— The city is one of the oldest in the Americas

Getting There (SSA):
— Direct flights from US (Miami) and Europe (Lisbon, Madrid, &
Frankfurt)
— Alternatively, fly to Rio (GIG) or Sao Paulo (GRU) and connect to
Salvador (SSA) ~ TR

Average Temperatures in September:
— Average high: 27°C / 81°F
— Daily mean: 25°C / 77 °F
— Average low 22°C / 72°°F

Common-vendor Specification
Parallel Programming model on

Multiple compilers

AMD, Convey, Cray, Fujitsu, HP, IBM,
Intel, NEC, NVIDIA, Oracle, RedHat
(GNU), ST Mircoelectronics, Tl,
clang/llvm

USERS CONVENTION

A de-facto Standard: Across 3
Major General Purpose
Languages

C++, C, Fortran

A de-facto Standard: One High-
Level Accelerator Language

One High-Level Vector SIMD
language too!

OpenMIP

QQpenMP-

Support Multiple Devices and let
the local compiler generate the

best code

Xeon Phi, NVIDIA, GPU, GPGPU, DSP,
MIC, ARM and FPGA

http://isocpp.org/wiki/faq/wg21#tmichael-wong

OpenMP CEO: http://openmp.org/wp/about-openmp/

My Blogs: http://ibm.co/pCvPHR

C++11 status: http://tinyurl.com/43y8xgf

Boost test results
http://www.ibm.com/support/docview.wss?rs=2239&context=SS
JTIL&uid=swg27006911

C/C++ Compilers Feature Request Page
http://www.ibm.com/developerworks/rfe/?PROD _ID=700

Chair of WG21 SG5 Transactional MemoryM:
https://groups.google.com/a/isocpp.org/forum/?hl=en&fromgro
ups#!forum/tm

FRAGEN?

Ich freue mich auf Ihr Feedback!

Vielen Dank!

Michael Wong

	GPU/Accelerator programming with OpenMP 4.0: �yet another Significant Paradigm Shift in High-level Parallel Computing
	Acknowledgement and Disclaimer
	Legal Disclaimer
	What is OpenMP about?
	Common-vendor Specification Parallel Programming model on Multiple compilers
	A de-facto Standard: Across 3 Major General Purpose Languages
	A de-facto Standard: One High-Level Accelerator Language
	Support Multiple Devices and let the local compiler generate the best code
	So how does it fit with other GPU/Accelerator efforts?
	WG21 SG1 Parallelism TS
	C++AMP
	CUDA
	Its like the difference between:
	Agenda
	What now?
	Beautiful and elegant Lambdas
	The Truth
	“Is there in Truth No Beauty?” from Jordan by George Herbert
	The Question
	Power of Computing
	In 1998, a typical machine had the following flops
	In 2011, a typical machine had the following flops
	In 2011, a typical machine had the following flops
	In 2011, a typical machine had the following flops
	In 2011, a typical machine had the following flops
	In 2014, a typical machine had the following flops
	OpenMP 4.0 released
	Agenda
	A brief history of OpenMP API by Kelvin Li
	OpenMP Members growth
	Major Features by Jim Cownie
	OpenMP internal Organization
	The New Mission Statement of OpenMP
	Agenda
	Hello Concurrent World
	Is this valid C++ today? Are these equivalent?
	Hello World again
	2-threaded Hello World with OpenMP threads
	More advanced 2-threaded Hello World
	Hello World with OpenMP tasks now run 3 times
	Tasks are executed at a task execution point
	Execute Tasks First
	Execute Tasks First with Dependencies
	Intro to OpenMP
	When do you want to use OpenMP?
	Advantages of OpenMP
	Can OpenMP work with MultiCore, Heterogeneous
	The OpenMP Execution Model
	Directive Format
	Components of OpenMP
	But why does OpenMP use pragmas?
	Pragmas can support 3 General Purpose Programming Languages and maintain the same style
	And National Labs, weather research, nuclear simulations
	Agenda
	Goals
	What did we accomplish in OpenMP 4.0?
	Compilers are here!
	In 2014, a typical machine had the following flops
	Agenda
	OpenMP Accelerator Subcommittee
	So, how do you program GPU?
	Why is GPU important now?
	Top500 contenders
	What is OpenMP Model’s aim?
	Heterogeneous Device model
	Glossary
	OpenMP 4.0 Device Constructs
	target Construct
	target data Construct
	target update Construct
	Execution Model
	Execution Model and Data Environment
	map Clause
	target Construct Example�
	Data Environments
	target data Construct Example
	Data mapping: shared or distributed memory
	if Clause Example
	declare target Constrtuct
	Host and device functions
	Explicit Data Transfers:Target update Construct Example
	Asynchronous Offloading
	Teams Constructs
	Restrictions on teams Construct
	Teams Execution Model�Teams Constructs
	SAXPY: Serial (host)
	SAXPY: Serial (host)
	SAXPY: Coprocessor/Accelerator
	Distribute Constructs
	distribute Construct
	Teams + Distribute Execution Model
	Teams + Distribute Constructs
	SAXPY: Coprocessor/Accelerator
	Combined Constructs
	SAXPY: Combined Constructs
	SAXPY: Combined Constructs
	Additional Runtime Support
	Multi-device Example
	OpenACC1 compared to OpenMP 4.0 (by Dr. James Beyer)
	Future OpenACC vs future OpenMP �(by Dr. James Beyer)
	Preliminary results: AXPY (Y=a*X)
	Jacobi
	Agenda
	Compilers are here!
	OpenMP in Clang update
	Release note commited by me to clang/llvm 3.5
	Many Participants/companies
	Summary of upstream progress of OpenMP clan
	OpenMP offload/target in LLVM
	Goal of Design
	Clang/llvm offload design
	Example code
	Generation of fat binary
	Agenda
	What did we accomplish in OpenMP 4.0?
	OpenMP future features
	Agenda
	IWOMP, SC14 and OpenMPCon
	Slide Number 119
	IWOMP 2014
	Salvador
	Common-vendor Specification Parallel Programming model on Multiple compilers
	A de-facto Standard: Across 3 Major General Purpose Languages
	A de-facto Standard: One High-Level Accelerator Language
	Support Multiple Devices and let the local compiler generate the best code
	My blogs and email address
	FRAGEN?
	Vielen Dank!

