Awalt 2.0
Stackless Resumable
Function

MOST SCALABLE, MOST EFFICIENT, MOST OPEN
COROUTINES OF ANY PROGRAMMING LANGUAGE IN
EXISTENCE

§
f
, I{
CppCon 2014 ® Gor Nishanov (gorn@microsoft.com) ® Microsc? i'

What this talk is about

* Evolution of N3858 and N3g977

* Stackless Resumable Functions (D4134)
* Lightweight, customizable coroutines
* Proposed for C++17

* Experimental implementation “to be” released in Visual Studio “14"

* What are they?
* How they work?
* How to use them?

* How to customize them?

CppCon 2014 * Stackless Resumable Functions

Coroutines 56 years

ago

* Introduced in 1958 by Melvin Conway

 Donald Knuth, 1968: “"generalization of subroutine”

call Allocate frame, pass parameters Allocate frame, pass parameters

return Free frame, return result Free frame, return eventual result

suspend X yes

resume X yes

CppCon 2014 * Stackless Resumable Functions

. .] User Mode Threads / Fibers
CO ro Utl ne c l CEE Ifl Catl on Stackless Resumable Functions

. Sxmmetric / Asxmmetric

* Modula-2 /Win32 Fibers / Boost::context are symmetric (SwitchToFiber)

* C# asymmetric (distinct suspend and resume operations)

* First-class / Constrained
.
* Can coroutine be passed as a parameter, returned from a function, stored in a

data structure?

» Stackful / Stackless

* How much state coroutine has? Just the locals of the coroutine or entire stack?

* Can coroutine be suspended from nested stack frames

/ CppCon 2014 * Stackless Resumable Functions 4
L

Stackful

Captured
Parameters

Locals &
Temporaries

1 meg of stack

CppCon 2014 * Stackless Resumable Functions

VS.

4k stacklet

4k stacklet

4k stacklet

4k stacklet

4k stacklet

Stackless

Coroutine State: g

1meg
of stack

Design Goals

* Highly scalable (to hundred millions of concurrent coroutines)

* Highly efficient (resume and suspend operations comparable
in cost to a function call overhead)

» Seamless interaction with existing facilities with no overhead

* Open ended coroutine machinery allowing library designers to
develop coroutine libraries exposing various high-level
semantics, such as generators, goroutines, tasks and more.

* Usable in environments where exception are forbidden or not
available

CppCon 2014 * Stackless Resumable Functions 6

Anatomy of a Function

std: :future<ptrdiff t> tcp reader(int
{

char buf[64 * 1024];
ptrdiff t result = 0;

auto conn =

CppCon 2014 * Stackless Resumable Functions 7

Anatomy of a Resumable Function

std: :future<ptrdiff_t> tcp_reader(int total)

{

char buf[64 * 1024];
ptrdiff t result = 0;

auto conn = await Tcp::Connect("127.0.0.1", 1337);
do

{

auto bytesRead = await conn.Read(buf, sizeof(buf));
total -= bytesRead;
result += std::count(buf, buf + bytesRead, 'c');

}
while (total > 9);

return result;

CppCon 2014 * Stackless Resumable Functions

Satisfies
Coroutine Promise Requirements

Anatomy of a Stackless Resumable Function

std: :future<ptrdiff t> tcp_reader(int total)// Platform Context*
1 /
char buf[64 * 1024]; ‘ ‘

ptrdiff t result = 0; //

/
auto ¢onn = await Tcez:Connectﬁ'127.@.0.1"i 1337“
do /
Suspend /

Points auto bytesRead ==awa2f conn.Re , sizeof(buf));
total -= bytesReady/
result += std::cpu/nt(buf, buf + bytesRead, 'c');
} /

while (total > @);
return result; / Satisfies Awaitable

Requirements
|
‘

await <initial-suspend>
await <final-suspend>

mable Functions

2X2X?2

* Two new keywords
* await

* yield

* Two new concepts

* Awaitable

* Coroutine Promise

* Two new types

* resumable_handle

* resumable_traits

/' CppCon 2014 * Stackless Resumable Functions

Examples

CppCon 2014 * Stackless Resumable Functions

11

current_value

GeneratOr COI’OUtInes Active [Cancelling /

Closed

rgenerator<int> fib(int n)
{
int a =
int b =
while (n-- > 9)
{
yield a;
auto next = a + b;
a = b; auto & _ range = fib(35);
b = next; for (auto __begin = _ range.begin(),
__end = __range.end()
5
__begin != _ _end
5

int main() { ++_ begin)

for (auto v : fib(35))
{

if (v > 10) auto v = *__begin;

break; {

Cout << V <K< ! '; i'F (V > 1@) bl"eak;

cout << v < 5

CppCon 2014 * Stackless Resumable Functions

Recursive Generators

recursive generator<int> range(int a, int b)

{

auto n = b - a;

if (n <= 0)
return; int main()

{
if (n == 1) auto r = range(0, 100);

{ copy(begin(r), end(r),
ostream iterator<int>(cout, " "));

yield a;
return;

}

auto mid = a + n / 2;

yield range(a, mid);
yield range(mid, b);

CppCon 2014 * Stackless Resumable Functions

Parent-stealing scheduling

spawnable<int> fib(int n) {
if (n < 2) return n;
return await(fib(n - 1) + fib(n - 2));

int main() { std::cout << fib(5).get() << std::endl; }

1,4 billion recursive invocations to compute fib(43), uses less than 16k of space
Not using parent-stealing, runs out of memory at fib(35)

(22) [{1

CppCon 2014 * Stackless Resumable Functions 14

Goroutines?

goroutine pusher(channel<int>& left, channel<int>& right) {

for (5;) {
auto val = await left.pull();

await right.push(val + 1);

CppCon 2014 * Stackless Resumable Functions 15

Goroutines? Sure. 100,000,000 of them

goroutine pusher(channel<int>& left, channel<int>& right) {

for (5;) {
auto val = await left.pull();
await right.push(val + 1);

int main() {
const int N = 100 * 1000 * 1000;
vector<channel<int>> c(N + 1);

for (int 1 = 0; 1 < N; ++1)
goroutine::go(pusher(c[i], c[i + 1]));

c.front().sync _push(9);

cout << c.back().sync pull() << endl;

CppCon 2014 * Stackless Resumable Functions

Reminder: Just Core Language Evolution

i
AL TN
-

’IT';Q;‘ o, il T A
= /) ot ME B L
FE-D' E"\'/s.".',’ " ooevll/4)
Library Designer Paradise |
T

4

7

* Lib devs can design new coroutines types

* generator<T>

* goroutine
* spawnable<T>

* task<T>

* Oradapt to existing async facilities

std::future<T>

* concurrency::task<T>

|AsyncAction, |AsyncOperation<T>

/ CppCon 2014 * Stackless Resumable Functions 17
Y/

CppCon 2014 * Stackless Resumable Functions

Awaitable

18

Reminder: Range-Based For

auto & & _ range = fib(35);
for (auto _ begin = _ range.begin(),
__end = __range.end()
__begin != __end

++_begin)

auto v = *_ begin;

int main() {
for (auto v : fib(35)) cout << v << endl;
cout << v << endl;

CppCon 2014 * Stackless Resumable Functions 19

If <expr>is a class type and

await <expr> unqualified ids await_ready,
await_suspend or await_resume
Expands into expression equivalent of are found in the scope of a class

auto && __tmp = <expr>;
if (I_tmp.await_ready()) {

__tmp.await_suspend(<resumption-function-object>);
suspend

resume

}

<cancel-check>

return __tmp.await_resume();

CppCon 2014 * Stackless Resumable Functions 20

: Otherwise
await <expr> (see rules for range-based-for

lookup)

Expands into expression equivalent of

{
auto && __tmp = <expr>;
if (! await_ready(__tmp)) {

await_suspend(__tmp, <resumption-function-object>);

}

<cancel-check>

return await_resume(__tmp);

CppCon 2014 * Stackless Resumable Functions 21

Trivial Awaitable #1

struct blank {
bool await ready(){ return false; }
template <typename F>

void await suspend(F const&){}
void await _resume(){}

CppCon 2014 * Stackless Resumable Functions

Trivial Awaitable #1

struct suspend always {
bool await ready(){ return false; }
template <typename F>
void await suspend(F const&){}
void await resume(){}

await suspend_always {};

CppCon 2014 * Stackless Resumable Functions

Trivial Awaitable #2

struct suspend never {
bool await ready(){ return true; }
template <typename F>

void await suspend(F const&){}
void await _resume(){}

CppCon 2014 * Stackless Resumable Functions

Simple Awaitable #1

void DoSomething(mutex& m) {
unique lock<mutex> lock =

//

await lock or_suspend{m};

struct lock or suspend {
std::unique lock<std::mutex> lock;
lock _or suspend(std::mutex & mut) : lock(mut, std::try to lock) {}

bool await ready() { return lock.owns lock(); }

template <typename F>
void await_suspend(F cb)

{
std::thread t([this, cb]{ lock.lock(); cb(); });

t.detach();
}

auto await _resume() { return std::move(lock);}

CppCon 2014 * Stackless Resumable Functions

Simple Awaiter #2: Making Boost.Future awaitable

#include <boost/thread/future.hpp>
namespace boost {

template <class T>
bool await_ ready(unique_future<T> & t) {
return t.is_ready();

}

template <class T, class F>
void await suspend(unique_future<T> & t,
F resume_callback)

{
}

t.then([=](auto&){resume_callback();});

template <class T>
auto await resume(unique_ future<T> & t) {
return t.get(); }

}

CppCon 2014 * Stackless Resumable Functions

Awaitable
Interacting with C APIs

CppCon 2014 * Stackless Resumable Functions

2X2X?2

* Two new keywords

* await

* yield

* Two new concepts

* Awaitable

* Coroutine Promise

* Two new types

* resumable_handle

* resumable_traits

' / CppCon 2014 * Stackless Resumable Functions

resumable handle

template <typename Promise = void> struct resumable handle;

template <> struct resumable handle<void> {
void operator() ();
void * to_address();
static resumable handle<void> from _address(void*);

¥
template <typename Promise>
struct resumable handle: public resumable handle<> {

Promise & promise();
static resumable handle<Promise> from promise(Promise¥*);

CppCon 2014 * Stackless Resumable Functions

Simple Awaitable #2: Raw OS APIs

await sleep for(10ms);
class sleep for {

static void TimerCallback(PTP_CALLBACK INSTANCE, void* Context, PTP_TIMER) {
std: :resumable_handle<>::from_address(Context)();

}
PTP_TIMER timer = nullptr;

std::chrono::system clock: :duration duration;
public:

sleep for(std::chrono::system clock::duration d) : duration(d){}

bool await ready() const { return duration.count() <= 0; }

void await suspend(std::resumable handle<> resume cb) {
int64_t relative count = -duration.count();
timer = CreateThreadpoolTimer(TimerCallback, resume_cb.to_address(), 9);
SetThreadpoolTimer(timer, (PFILETIME)&relative_count, 0, 0);

}

void await_resume() {}

~sleep for() { if (timer) CloseThreadpoolTimer(timer); }

CppCon 2014 * Stackless Resumable Functions

2X2X?2

* Two new keywords

* await

* yield

* Two new concepts

* Awaitable

* Coroutine Promise

* Two new types

* resumable_handle

* resumable_traits

4 / CppCon 2014 * Stackless Resumable Functions
S oy

resumable traits

generator<int> fib(int n)

std: :resumable_traits<generator<int>, int>

template <typename R, typename... Ts>

struct resumable_traits {
using allocator _type = std::allocator<char>;
using promise_type = typename R::promise type;

s

CppCon 2014 * Stackless Resumable Functions

Defining Coroutine Promise for boost::future

namespace std {
template <typename T, typename.. anything>
struct resumable traits<boost::unique_ future<T>, anything..> {
struct promise type {
boost: :promise<T> promise;
auto get return_object() { return promise.get future(); }

template <class U> void set value(U && value) {
promise.set value(std::forward<U>(value));

}

void set exception(std::exception ptr e) {
promise.set exception(std::move(e));

}

suspend_never initial_suspend() { return{}; }
suspend_never final_suspend() { return{}; }

bool cancel requested() { return false; }

CppCon 2014 * Stackless Resumable Functions

Awaitable
and Exceptions

CppCon 2014 * Stackless Resumable Functions

Exceptionless Error Propagation (Await Part)

#include <boost/thread/future.hpp>
namespace boost {

template <class T>
bool await ready(unique future<T> & t) { return t.is_ready();}

template <class T, class F>
void await_suspend(
unique future<T> & t, F rh)

{
t.then([=](auto& result){

rh();
});

template <class T>
auto await _resume(unique_future<T> & t) { return t.get(); }

CppCon 2014 * Stackless Resumable Functions

Exceptionless Error Propagation (Await Part)

#include <boost/thread/future.hpp>
namespace boost {

template <class T>
bool await ready(unique future<T> & t) { return t.is_ready();}

template <class T, class Promise>
void await_suspend(
unique_ future<T> & t, std::resumable_handle<Promise> rh)

{
t.then([=](auto& result){

if(result.has_exception())
rh.promise().set _exception(result.get exception ptr());
rh();
1
}

template <class T>
auto await _resume(unique_future<T> & t) { return t.get(); }

CppCon 2014 * Stackless Resumable Functions

Exceptionless Error Propagation (Promise Part)

namespace std {
template <typename T, typename.. anything>
struct resumable traits<boost::unique_ future<T>, anything..> {
struct promise type {
boost: :promise<T> promise;

auto get return_object() { return promise.get future(); }

suspend_never initial_suspend() { return{}; }
suspend_never final_suspend() { return{}; }

template <class U> void set value(U && value) {
promise.set value(std::forward<U>(value));

}

void set exception(std::exception ptr e) {
promise.set exception(std::move(e));

}

bool cancel requested() { return(false; }

Exceptionless Error Propagation (Promise Part)

namespace std {
template <typename T, typename.. anything>
struct resumable traits<boost::unique_ future<T>, anything..> {
struct promise type {
boost: :promise<T> promise;

auto get return_object() { return promise.get future(); }

suspend_never initial_suspend() { return{}; }
suspend_never final_suspend() { return{}; }

template <class U> void set value(U && value) {
promise.set value(std::forward<U>(value));

}

void set exception(std::exception ptr e) {
promise.set exception(std::move(e));

}

bool cancel requested() { return promise.has error(); }

Simple Happy path and reasonable error
propagation

std: :future<ptrdiff t> tcp reader(int total)
{

char buf[64 * 1024];

ptrdiff t result = 0;

auto conn = await Tcp::Connect("127.0.0.1", 1337);
do

{

auto bytesRead = await conn.Read(buf, sizeof(buf));
total -= bytesRead;
result += std::count(buf, buf + bytesRead, 'c');

}
while (total > 9);

return result;

CppCon 2014 * Stackless Resumable Functions 39

await <expr>

Expands into expression equivalent of

auto && __tmp = <expr>;
if (! await_ready(__tmp)) {

await_suspend(__tmp, <resumption-function-object>);
suspend

resume

}

if (<promise>.cancellation_requested()) goto <end-label>;

return await_resume(_tm p),

' Iy ’ ~ CppCon 2014 * Stackless Resumable Functions 4o

CppCon 2014 * Stackless Resumable Functions

Done!

41

What this talk was about

* Stackless Resumable Functions (D4134)
* Lightweight, customizable coroutines
* Proposed for C++17

* Experimental implementation “to be” released in Visual Studio “14"
* What are they?
* How they work?
* How to use them?

* How to customize them?

CppCon 2014 * Stackless Resumable Functions

42

To learn more:

* https://github.com/GorNishanov/await/

* Draft snapshot: D4134 Resumable Functions v2.pdf
* In October 2014 look for

* N4134 at http://isocpp.org

* http://open-std.org/JTC1/SC22/WG21/

' Iy ’ ~ CppCon 2014 * Stackless Resumable Functions

43

https://github.com/GorNishanov/await/blob/master/D4134 Resumable Functions v2.pdf

Backup

l
.

CppCon 2014 * Stackless Resumable Functions

& B -

Introduction

b bINg | Alex Stepanov Gor Nishanov

18,200 RESULTS Any time ~

Generic Programming Projects and Open Problems ...

www._cs.rpi.edu/~musser/gp/pop/index_19.html ~
[Stepanov] Already well along ... [Stepanov] Dave Musser and Gor Nishanov have
essentially solved this problem, with a fast generic sequence searching algorithm ...

CppCon 2014 * Stackless Resumable Functions 45

How does it work?

CppCon 2014 * Stackless Resumable Functions

A

Generator coroutines

generator<int> fib(int n)
{
int a
int b
while (n-- > 0)
{

yield a;
auto next
b;
next;

a + b;

a =
b

int main() {
for (auto v :
cout << v << endl;

fib(35))

CppCon 2014 * Stackless Resumable Functions

auto & & _ range = fib(35);
for (auto _ begin = _ range.begin(),
__end = __range.end()

__begin != _end
++_begin)

auto v = *_ begin;
cout << v << endl;

47

x86_x64 Windows ABI

Execution generator<int> fib(int n)

auto && __range = fib(35)

RSP Stack
ret-addr | __range RCX=&__range
&__range | savedRDI NEASEE
savedRSI| | savedRDX
RDI=n
ret-main | savedRBP RS| = a Q
slot1 slot2 RDX=b C_CD‘
RBP = ¢f
slot3 slot4 P saved RDI B g—
saved RSI M
d RDX N
save
RAX =&__range %
saved RIP D

/ CppCon 2014 * Stackless Resumable Functions 48

REnlE generator<int>::iterator: :operator ++()

_ struct iterator {
RSP for(...j...; ++__begin) iterator& operator ++() {

Stack resume_ch(); return *this; }
ret-addr | __range RCX = sfp

slota savedRDI

resumable_handle<Promise> resume_cb;

5

Heap

savedRSI| | savedRDX

RDI =n =
ret-main | savedRBP RS| = a Q
slot1 slot2 RDX=b C_CD‘
slot3 slotg RBP = sfp saved RDI B g—
saved RSI ™
i
saved RDX Q
saved RIP ?,

/ CppCon 2014 * Stackless Resumable Functions 49

Coroutine Promise Requirement

return <expr> Eeaamal <Promise>.set_value(<expr>);
goto <end>

<unhand|ed-exception> el <Promise>.set_exception (

std: :current_exception())

<get-return-object> el <Promise>.get_return_object()

yield <expr> Bmdll awWait <Promise>.yield value(<expr>)

<before-|a5t_cur|y> el 2Wait <Promise>.initial suspend()
<after-first-curly> W await <Promise>.final_suspend()

<cancel-check> if(<Promise>.cancellation_requested())

<goto end>

CppCon 2014 * Stackless Resumable Functions 50

If await_suspend

returns bool

await <expr>

Expands into expression equivalent of

{
auto && __tmp = <expr>;
if (! await_ready(__tmp) &&

await_suspend(__tmp, <resumption-function-object>) {
suspend

resume

}

if (<promise>.cancellation_requested()) goto <end-label>;

return await_resume(__tmp);

CppCon 2014 * Stackless Resumable Functions 55

Yield implementation

compiler; yield <expr> Bmmdll 2Wait <Promise>.yield value(<expr>)

library:

suspend_now
generator<T>::promise type::yield value(T const& expr) {

this->current_value = &expr;
return{};

CppCon 2014 * Stackless Resumable Functions 56

awaitable_overlapped_base

struct awaitable_overlapped base : public OVERLAPPED
{

ULONG IoResult;

ULONG_PTR NumberOfBytesTransferred;

std: :resumable _handle<> resume;

static void _ stdcall io complete callback(PTP_CALLBACK INSTANCE,
PVOID, PVOID Overlapped, ULONG IoResult,
ULONG_PTR NumberOfBytesTransferred,
PTP_I0)

auto o = reinterpret_cast<OVERLAPPED*>(Overlapped);
auto me = static _cast<awaitable overlapped base*>(0);

me->IoResult = IoResult;
me->NumberOfBytesTransferred = NumberOfBytesTransferred;
me->resume();

CppCon 2014 * Stackless Resumable Functions

Dial awaitable

class Dial : public awaitable overlapped base {
ports::endpoint remote;
Connection conn;
public:
Dial(string view str, unsigned short port) : remote(str, port) {}
bool await ready() const { return false; }
void await suspend(std::resumable handle<> cb) {
resume = cb;
conn.handle = detail::TcpSocket::Create();

detail::TcpSocket::Bind(conn.handle, ports::endpoint("0.0.0.0"));
conn.io = CreateThreadpoolIlo(conn.handle, &io complete callback, 0,0);
if (conn.io == nullptr) throw_error(GetLastError());

StartThreadpoolIo(conn.io);
auto error = detail::TcpSocket::Connect(conn.handle, remote, this);
if (error) { CancelThreadpoolIo(conn.io); throw_error(GetLastError());
}
Connection await_resume() {
if (conn.error) throw_error(error);
return std::move(conn); }

CppCon 2014 * Stackless Resumable Functions

Connection::Read

auto Connection::read(void* buf, size t bytes) {

class awaiter : public awaitable overlapped base {
void* buf; size t size;
Connection * conn;

public:
awaiter(void* b, size_t n, Connection * c): buf(b), size(n), conn(c) {}
bool await ready() const { return false; }
void await_suspend(std::resumable_handle<> cb) {

resume = cb;

StartThreadpoolIlo(conn->io);
auto error = TcpSocket::Read(conn->handle, buf, (uint32 t)size, this);
if (error)

{ CancelThreadpoollo(conn->io); throw error(error); }

await _resume() {
if (IoResult)
{ throw_error(IoResult); }
return (int)this->NumberOfBytesTransferred; }
}s

return awaiter{ buf, bytes, this };

CppCon 2014 * Stackless Resumable Functions

asynchronous iterator helper: await for

goroutine foo(channel<int> & input) {
await for(auto && i : input) {

cout << “got: “<<i<<endl;

}
}

await for expands into:
auto && __range = range-init;
for (auto __ begin = await (begin-expr),
__end = end-expr;
__begin!=__ end;

await ++__begin)

for-range-declaration = * _ begin;
statement

Recursive Tree Walk (Stackful)

void traverse (hode_t* n, std::push_coroutine<std::string> & yield) {
if(n-> left) traverse (n->left, yield);
yield (n-> value);
if(n-> right) traverse (n->right, yield);

}

node * rootl = create_tree();

node * root2 = create_tree();

std::pull_coroutine<std::string> reader1([&](auto & yield){ traverse (roota, yield);});
std::pull_coroutine<std::string> reader2([&](auto & yield){ traverse (root2, yield);});

std :: cout << “equal =" << std::equal (begin (readeri), end(reader1), begin(reader2))
<< std:: endl;

Recursive Tree Walk (Stackless)

generator<std: :string> traverse(node_t* n)
{

if (p->left) yield traverse(p->left);

yield p->name;

if (p->right) yield traverse(p->right);
}

node * rootl create_tree();
node * root2 create_tree();

auto readerl = traverse (rootl);
auto reader2 = traverse (root2);

std :: cout << “equal = “ << std::equal(begin(readerl), end(readerl),
begin(reader2))
<< std :: endl ;

