
Await 2.0
Stackless Resumable
Function
M OS T S C AL ABLE , M OS T E F F I C IEN T, M OS T OPE N
C O R O U TI N E S O F AN Y P R O G R AM MIN G L AN G U AGE I N
E X I S TEN C E

CppCon 2014 • Gor Nishanov (gorn@microsoft.com) • Microsoft

What this talk is about

• Evolution of N3858 and N3977

• Stackless Resumable Functions (D4134)

• Lightweight, customizable coroutines

• Proposed for C++17

• Experimental implementation “to be” released in Visual Studio “14”

• What are they?

• How they work?

• How to use them?

• How to customize them?

CppCon 2014 • Stackless Resumable Functions 2

Coroutines

• Introduced in 1958 by Melvin Conway

• Donald Knuth, 1968: “generalization of subroutine”

subroutines coroutines

call Allocate frame, pass parameters Allocate frame, pass parameters

return Free frame, return result Free frame, return eventual result

suspend x yes

resume x yes

CppCon 2014 • Stackless Resumable Functions 3

56 years
ago

Coroutine classification

• Symmetric / Asymmetric

• Modula-2 / Win32 Fibers / Boost::context are symmetric (SwitchToFiber)

• C# asymmetric (distinct suspend and resume operations)

• First-class / Constrained

• Can coroutine be passed as a parameter, returned from a function, stored in a
data structure?

• Stackful / Stackless

• How much state coroutine has? Just the locals of the coroutine or entire stack?

• Can coroutine be suspended from nested stack frames

User Mode Threads / Fibers

Stackless Resumable Functions

CppCon 2014 • Stackless Resumable Functions 4

Stackful vs. Stackless

1 meg
of stack

Coroutine State

1 meg of stack

Coroutine State
(chained stack)

4k stacklet

4k stacklet

4k stacklet

4k stacklet

…

4k stacklet

Captured
Parameters

Locals &
Temporaries

Coroutine State:

CppCon 2014 • Stackless Resumable Functions 5

Design Goals

• Highly scalable (to hundred millions of concurrent coroutines)

• Highly efficient (resume and suspend operations comparable
in cost to a function call overhead)

• Seamless interaction with existing facilities with no overhead

• Open ended coroutine machinery allowing library designers to
develop coroutine libraries exposing various high-level
semantics, such as generators, goroutines, tasks and more.

• Usable in environments where exception are forbidden or not
available

CppCon 2014 • Stackless Resumable Functions 6

std::future<ptrdiff_t> tcp_reader(int total)
{

char buf[64 * 1024];
ptrdiff_t result = 0;

auto conn =

}

Anatomy of a Function

CppCon 2014 • Stackless Resumable Functions 7

Anatomy of a Resumable Function

std::future<ptrdiff_t> tcp_reader(int total)
{

char buf[64 * 1024];
ptrdiff_t result = 0;

auto conn = await Tcp::Connect("127.0.0.1", 1337);
do
{

auto bytesRead = await conn.Read(buf, sizeof(buf));
total -= bytesRead;
result += std::count(buf, buf + bytesRead, 'c');

}
while (total > 0);
return result;

}

CppCon 2014 • Stackless Resumable Functions 8

Anatomy of a Stackless Resumable Function

std::future<ptrdiff_t> tcp_reader(int total)
{

char buf[64 * 1024];
ptrdiff_t result = 0;

auto conn = await Tcp::Connect("127.0.0.1", 1337);
do
{

auto bytesRead = await conn.Read(buf, sizeof(buf));
total -= bytesRead;
result += std::count(buf, buf + bytesRead, 'c');

}
while (total > 0);
return result;

}

Coroutine
Return Object

Coroutine
Eventual Result

Suspend
Points

Satisfies Awaitable
Requirements

Coroutine Promise

Coroutine Frame

Platform Context*

Formals (Copy)

Locals / Temporaries

Satisfies
Coroutine Promise Requirements

await <initial-suspend>
await <final-suspend>CppCon 2014 • Stackless Resumable Functions 9

2 x 2 x 2
•Two new keywords
• await

• yield

•Two new concepts
• Awaitable

• Coroutine Promise

• Two new types
• resumable_handle

• resumable_traits

CppCon 2014 • Stackless Resumable Functions 10

CppCon 2014 • Stackless Resumable Functions 11

Examples

Generator coroutines

int main() {
for (auto v : fib(35))
{

if (v > 10)
break;

cout << v << ' ';
}

}

generator<int> fib(int n)
{

int a = 0;
int b = 1;
while (n-- > 0)
{

yield a;
auto next = a + b;
a = b;
b = next;

}
}

CppCon 2014 • Stackless Resumable Functions 12

{
auto && __range = fib(35);
for (auto __begin = __range.begin(),

__end = __range.end()
;
__begin != __end
;
++__begin)

{
auto v = *__begin;
{

if (v > 10) break;
cout << v << ' ';

}
}

}

current_value

Active / Cancelling /
Closed

Coroutine Promise

generator<int>

generator<int>::iterator

Recursive Generators

CppCon 2014 • Stackless Resumable Functions 13

recursive_generator<int> range(int a, int b)
{

auto n = b - a;

if (n <= 0)
return;

if (n == 1)
{

yield a;
return;

}

auto mid = a + n / 2;

yield range(a, mid);
yield range(mid, b);

}

int main()
{

auto r = range(0, 100);
copy(begin(r), end(r),

ostream_iterator<int>(cout, " "));
}

Parent-stealing scheduling

spawnable<int> fib(int n) {

if (n < 2) return n;

return await(fib(n - 1) + fib(n - 2));

}

int main() { std::cout << fib(5).get() << std::endl; }

1,4 billion recursive invocations to compute fib(43), uses less than 16k of space
Not using parent-stealing, runs out of memory at fib(35)

1
1

n

1 1
1 0

x
y

=

CppCon 2014 • Stackless Resumable Functions 14

Goroutines?

CppCon 2014 • Stackless Resumable Functions 15

goroutine pusher(channel<int>& left, channel<int>& right) {
for (;;) {

auto val = await left.pull();
await right.push(val + 1);

}
}

Goroutines? Sure. 100,000,000 of them

CppCon 2014 • Stackless Resumable Functions 16

goroutine pusher(channel<int>& left, channel<int>& right) {
for (;;) {

auto val = await left.pull();
await right.push(val + 1);

}
}

int main() {
const int N = 100 * 1000 * 1000;
vector<channel<int>> c(N + 1);

for (int i = 0; i < N; ++i)
goroutine::go(pusher(c[i], c[i + 1]));

c.front().sync_push(0);

cout << c.back().sync_pull() << endl;
}

c0-g0-c1

c1-g1-c2

cn-gn-cn+1

…

Reminder: Just Core Language Evolution

• Lib devs can design new coroutines types

• generator<T>

• goroutine

• spawnable<T>

• task<T>

• …

• Or adapt to existing async facilities

• std::future<T>

• concurrency::task<T>

• IAsyncAction, IAsyncOperation<T>

• …

Library Designer Paradise
FE-DEVs

BE-DEVs

CppCon 2014 • Stackless Resumable Functions 17

Awaitable

CppCon 2014 • Stackless Resumable Functions 18

Reminder: Range-Based For

int main() {
for (auto v : fib(35))

cout << v << endl;
}

CppCon 2014 • Stackless Resumable Functions 19

{
auto && __range = fib(35);
for (auto __begin = __range.begin(),

__end = __range.end()
;
__begin != __end
;
++__begin)

{
auto v = *__begin;
cout << v << endl;

}
}

await <expr>

Expands into expression equivalent of

{

auto && __tmp = <expr>;

if (!__tmp.await_ready()) {

__tmp.await_suspend(<resumption-function-object>);

}

<cancel-check>

return __tmp.await_resume();

}

CppCon 2014 • Stackless Resumable Functions 20

resume
suspend

If <expr> is a class type and
unqualified ids await_ready,

await_suspend or await_resume
are found in the scope of a class

await <expr>

Expands into expression equivalent of

{

auto && __tmp = <expr>;

if (! await_ready(__tmp)) {

await_suspend(__tmp, <resumption-function-object>);

}

<cancel-check>

return await_resume(__tmp);

}

CppCon 2014 • Stackless Resumable Functions 21

resume
suspend

Otherwise
(see rules for range-based-for

lookup)

Trivial Awaitable #1

CppCon 2014 • Stackless Resumable Functions 22

struct _____blank____ {
bool await_ready(){ return false; }
template <typename F>
void await_suspend(F const&){}
void await_resume(){}

};

Trivial Awaitable #1

CppCon 2014 • Stackless Resumable Functions 23

struct suspend_always {
bool await_ready(){ return false; }
template <typename F>
void await_suspend(F const&){}
void await_resume(){}

};

await suspend_always {};

Trivial Awaitable #2

CppCon 2014 • Stackless Resumable Functions 24

struct suspend_never {
bool await_ready(){ return true; }
template <typename F>
void await_suspend(F const&){}
void await_resume(){}

};

Simple Awaitable #1

CppCon 2014 • Stackless Resumable Functions 25

void DoSomething(mutex& m) {
unique_lock<mutex> lock = await lock_or_suspend{m};
// ...

}

struct lock_or_suspend {
std::unique_lock<std::mutex> lock;
lock_or_suspend(std::mutex & mut) : lock(mut, std::try_to_lock) {}

bool await_ready() { return lock.owns_lock(); }

template <typename F>
void await_suspend(F cb)
{

std::thread t([this, cb]{ lock.lock(); cb(); });
t.detach();

}

auto await_resume() { return std::move(lock);}
};

Simple Awaiter #2: Making Boost.Future awaitable

#include <boost/thread/future.hpp>
namespace boost {

template <class T>
bool await_ready(unique_future<T> & t) {
return t.is_ready();

}

template <class T, class F>
void await_suspend(unique_future<T> & t,

F resume_callback)
{

t.then([=](auto&){resume_callback();});
}

template <class T>
auto await_resume(unique_future<T> & t) {

return t.get(); }
}

}

CppCon 2014 • Stackless Resumable Functions 26

Awaitable
Interacting with C APIs

CppCon 2014 • Stackless Resumable Functions 27

2 x 2 x 2
•Two new keywords
• await

• yield

•Two new concepts
• Awaitable

• Coroutine Promise

• Two new types
• resumable_handle

• resumable_traits

CppCon 2014 • Stackless Resumable Functions 28

resumable_handle

CppCon 2014 • Stackless Resumable Functions 29

template <typename Promise = void> struct resumable_handle;

template <> struct resumable_handle<void> {

void operator() ();

void * to_address();

static resumable_handle<void> from_address(void*);

…

};

template <typename Promise>

struct resumable_handle: public resumable_handle<> {

Promise & promise();

static resumable_handle<Promise> from_promise(Promise*);

…

};

== != < > <= >=

Simple Awaitable #2: Raw OS APIs

class sleep_for {
static void TimerCallback(PTP_CALLBACK_INSTANCE, void* Context, PTP_TIMER) {

std::resumable_handle<>::from_address(Context)();
}
PTP_TIMER timer = nullptr;
std::chrono::system_clock::duration duration;

public:
sleep_for(std::chrono::system_clock::duration d) : duration(d){}

bool await_ready() const { return duration.count() <= 0; }

void await_suspend(std::resumable_handle<> resume_cb) {
int64_t relative_count = -duration.count();
timer = CreateThreadpoolTimer(TimerCallback, resume_cb.to_address(), 0);
SetThreadpoolTimer(timer, (PFILETIME)&relative_count, 0, 0);

}

void await_resume() {}

~sleep_for() { if (timer) CloseThreadpoolTimer(timer); }
};

await sleep_for(10ms);

CppCon 2014 • Stackless Resumable Functions 30

2 x 2 x 2
•Two new keywords
• await

• yield

•Two new concepts
• Awaitable

• Coroutine Promise

• Two new types
• resumable_handle

• resumable_traits

CppCon 2014 • Stackless Resumable Functions 31

resumable_traits

CppCon 2014 • Stackless Resumable Functions 32

template <typename R, typename... Ts>
struct resumable_traits {

using allocator_type = std::allocator<char>;
using promise_type = typename R::promise_type;

};

generator<int> fib(int n)

std::resumable_traits<generator<int>, int>

Defining Coroutine Promise for boost::future

namespace std {
template <typename T, typename… anything>
struct resumable_traits<boost::unique_future<T>, anything…> {

struct promise_type {
boost::promise<T> promise;
auto get_return_object() { return promise.get_future(); }

template <class U> void set_value(U && value) {
promise.set_value(std::forward<U>(value));

}

void set_exception(std::exception_ptr e) {
promise.set_exception(std::move(e));

}
suspend_never initial_suspend() { return{}; }
suspend_never final_suspend() { return{}; }

bool cancel_requested() { return false; }
};

};

CppCon 2014 • Stackless Resumable Functions 33

Awaitable
and Exceptions

CppCon 2014 • Stackless Resumable Functions 34

Exceptionless Error Propagation (Await Part)

#include <boost/thread/future.hpp>

namespace boost {

template <class T>
bool await_ready(unique_future<T> & t) { return t.is_ready();}

template <class T, class F>
void await_suspend(

unique_future<T> & t, F rh)
{

t.then([=](auto& result){
rh();

});
}

template <class T>
auto await_resume(unique_future<T> & t) { return t.get(); }

}

CppCon 2014 • Stackless Resumable Functions 35

Exceptionless Error Propagation (Await Part)

#include <boost/thread/future.hpp>

namespace boost {

template <class T>
bool await_ready(unique_future<T> & t) { return t.is_ready();}

template <class T, class Promise>
void await_suspend(

unique_future<T> & t, std::resumable_handle<Promise> rh)
{

t.then([=](auto& result){
if(result.has_exception())
rh.promise().set_exception(result.get_exception_ptr());

rh();
});

}

template <class T>
auto await_resume(unique_future<T> & t) { return t.get(); }

}

CppCon 2014 • Stackless Resumable Functions 36

Exceptionless Error Propagation (Promise Part)

namespace std {
template <typename T, typename… anything>
struct resumable_traits<boost::unique_future<T>, anything…> {

struct promise_type {
boost::promise<T> promise;

auto get_return_object() { return promise.get_future(); }

suspend_never initial_suspend() { return{}; }
suspend_never final_suspend() { return{}; }

template <class U> void set_value(U && value) {
promise.set_value(std::forward<U>(value));

}

void set_exception(std::exception_ptr e) {
promise.set_exception(std::move(e));

}
bool cancel_requested() { return false; }

};
};

CppCon 2014 • Stackless Resumable Functions 37

Exceptionless Error Propagation (Promise Part)

namespace std {
template <typename T, typename… anything>
struct resumable_traits<boost::unique_future<T>, anything…> {

struct promise_type {
boost::promise<T> promise;

auto get_return_object() { return promise.get_future(); }

suspend_never initial_suspend() { return{}; }
suspend_never final_suspend() { return{}; }

template <class U> void set_value(U && value) {
promise.set_value(std::forward<U>(value));

}

void set_exception(std::exception_ptr e) {
promise.set_exception(std::move(e));

}
bool cancel_requested() { return promise.has_error(); }

};
};

CppCon 2014 • Stackless Resumable Functions 38

Simple Happy path and reasonable error
propagation

std::future<ptrdiff_t> tcp_reader(int total)
{

char buf[64 * 1024];
ptrdiff_t result = 0;

auto conn = await Tcp::Connect("127.0.0.1", 1337);
do
{

auto bytesRead = await conn.Read(buf, sizeof(buf));
total -= bytesRead;
result += std::count(buf, buf + bytesRead, 'c');

}
while (total > 0);
return result;

}

CppCon 2014 • Stackless Resumable Functions 39

await <expr>

Expands into expression equivalent of

{

auto && __tmp = <expr>;

if (! await_ready(__tmp)) {

await_suspend(__tmp, <resumption-function-object>);

}

if (<promise>.cancellation_requested()) goto <end-label>;

return await_resume(__tmp);

}

CppCon 2014 • Stackless Resumable Functions 40

resume
suspend

Done!

CppCon 2014 • Stackless Resumable Functions 41

What this talk was about

• Stackless Resumable Functions (D4134)

• Lightweight, customizable coroutines

• Proposed for C++17

• Experimental implementation “to be” released in Visual Studio “14”

• What are they?

• How they work?

• How to use them?

• How to customize them?

CppCon 2014 • Stackless Resumable Functions 42

To learn more:

• https://github.com/GorNishanov/await/

• Draft snapshot: D4134 Resumable Functions v2.pdf

• In October 2014 look for

• N4134 at http://isocpp.org

• http://open-std.org/JTC1/SC22/WG21/

CppCon 2014 • Stackless Resumable Functions 43

https://github.com/GorNishanov/await/blob/master/D4134 Resumable Functions v2.pdf

Backup

CppCon 2014 • Stackless Resumable Functions 44

Introduction

CppCon 2014 • Stackless Resumable Functions 45

How does it work?

CppCon 2014 • Stackless Resumable Functions 46

Generator coroutines

int main() {
for (auto v : fib(35))

cout << v << endl;
}

generator<int> fib(int n)
{

int a = 0;
int b = 1;
while (n-- > 0)
{

yield a;
auto next = a + b;
a = b;
b = next;

}
}

CppCon 2014 • Stackless Resumable Functions 47

{
auto && __range = fib(35);
for (auto __begin = __range.begin(),

__end = __range.end()
;
__begin != __end
;
++__begin)

{
auto v = *__begin;
cout << v << endl;

}
}

Execution generator<int> fib(int n)

slot1 slot2

slot3 slot4

ret-main savedRBP

slot1 slot2

slot3 slot4

RSP

ret-addr __range

auto && __range = fib(35)

RCX = &__range

RDI = n
RSI = a
RDX = b
RBP = $fp

savedRDI

savedRSI savedRDX

Coroutine
Promise

RDI slot

RSI slot

RDX slot

RIP slot

Heap

saved RSI

saved RDI

saved RDX

saved RIP

Stack
Suspend!!!!

RAX = &__range

CppCon 2014 • Stackless Resumable Functions 48

RDX = 35
&__range

C
o

ro
u

tin
e F

ram
e

x86_x64 Windows ABI

Resume generator<int>::iterator::operator ++()

slot1 slot2

slot3 slot4

ret-main savedRBP

slot1 slot2

slot3 slot4

RSP

ret-addr __range

for(…;…; ++__begin)

RCX = $fp

RDI = n
RSI = a
RDX = b

savedRDI

savedRSI savedRDX

Coroutine
Promise

RDI slot

RSI slot

RDX slot

RIP slot

Heap

saved RSI

saved RDI

saved RDX

saved RIP

Stack

RBP = $fp

struct iterator {
iterator& operator ++() {

resume_cb(); return *this; }
…

resumable_handle<Promise> resume_cb;
};

CppCon 2014 • Stackless Resumable Functions 49

C
o

ro
u

tin
e F

ram
e

Coroutine Promise Requirement

yield <expr> await <Promise>.yield_value(<expr>)

<after-first-curly>

return <expr> <Promise>.set_value(<expr>);
goto <end>

<before-last-curly>

<unhandled-exception>

<cancel-check> if(<Promise>.cancellation_requested())
<goto end>

<Promise>.set_exception (
std::current_exception())

<get-return-object> <Promise>.get_return_object()

await <Promise>.initial_suspend()

await <Promise>.final_suspend()

CppCon 2014 • Stackless Resumable Functions 50

await <expr>

Expands into expression equivalent of

{

auto && __tmp = <expr>;

if (! await_ready(__tmp) &&

await_suspend(__tmp, <resumption-function-object>) {

}

if (<promise>.cancellation_requested()) goto <end-label>;

return await_resume(__tmp);

}

CppCon 2014 • Stackless Resumable Functions 55

resume
suspend

If await_suspend
returns bool

Yield implementation

compiler: yield <expr> await <Promise>.yield_value(<expr>)

suspend_now
generator<T>::promise_type::yield_value(T const& expr) {

this->current_value = &expr;
return{};

}

library:

CppCon 2014 • Stackless Resumable Functions 56

awaitable_overlapped_base
struct awaitable_overlapped_base : public OVERLAPPED
{

ULONG IoResult;
ULONG_PTR NumberOfBytesTransferred;
std::resumable_handle<> resume;

static void __stdcall io_complete_callback(PTP_CALLBACK_INSTANCE,
PVOID, PVOID Overlapped, ULONG IoResult,
ULONG_PTR NumberOfBytesTransferred,
PTP_IO)

{
auto o = reinterpret_cast<OVERLAPPED*>(Overlapped);
auto me = static_cast<awaitable_overlapped_base*>(o);

me->IoResult = IoResult;
me->NumberOfBytesTransferred = NumberOfBytesTransferred;
me->resume();

}
};

CppCon 2014 • Stackless Resumable Functions 57

Dial awaitable
class Dial : public awaitable_overlapped_base {

ports::endpoint remote;
Connection conn;

public:
Dial(string_view str, unsigned short port) : remote(str, port) {}
bool await_ready() const { return false; }
void await_suspend(std::resumable_handle<> cb) {

resume = cb;
conn.handle = detail::TcpSocket::Create();
detail::TcpSocket::Bind(conn.handle, ports::endpoint("0.0.0.0"));
conn.io = CreateThreadpoolIo(conn.handle, &io_complete_callback, 0,0);
if (conn.io == nullptr) throw_error(GetLastError());

StartThreadpoolIo(conn.io);
auto error = detail::TcpSocket::Connect(conn.handle, remote, this);
if (error) { CancelThreadpoolIo(conn.io); throw_error(GetLastError());

}
Connection await_resume() {

if (conn.error) throw_error(error);
return std::move(conn); }

};

CppCon 2014 • Stackless Resumable Functions 58

Connection::Read
auto Connection::read(void* buf, size_t bytes) {

class awaiter : public awaitable_overlapped_base {
void* buf; size_t size;
Connection * conn;

public:
awaiter(void* b, size_t n, Connection * c): buf(b), size(n), conn(c) {}
bool await_ready() const { return false; }
void await_suspend(std::resumable_handle<> cb) {

resume = cb;
StartThreadpoolIo(conn->io);
auto error = TcpSocket::Read(conn->handle, buf, (uint32_t)size, this);
if (error)

{ CancelThreadpoolIo(conn->io); throw_error(error); }
}
int await_resume() {

if (IoResult)
{ throw_error(IoResult); }

return (int)this->NumberOfBytesTransferred; }
};
return awaiter{ buf, bytes, this };

}

CppCon 2014 • Stackless Resumable Functions 59

asynchronous iterator helper: await for
goroutine foo(channel<int> & input) {

await for(auto && i : input) {
cout << “got: “ << i << endl;

}
}

{

auto && __range = range-init;

for (auto __begin = await (begin-expr),

__end = end-expr;

__begin != __end;

await ++__begin)

{

for-range-declaration = *__begin;

statement

}

}

await for expands into:

Recursive Tree Walk (Stackful)

void traverse (node_t * n, std::push_coroutine<std::string> & yield) {

if(n-> left) traverse (n->left, yield);

yield (n-> value);

if(n-> right) traverse (n->right, yield);

}

node * root1 = create_tree();

node * root2 = create_tree();

std::pull_coroutine<std::string> reader1([&](auto & yield){ traverse (root1, yield);});
std::pull_coroutine<std::string> reader2([&](auto & yield){ traverse (root2, yield);});

std :: cout << “equal = “ << std::equal (begin (reader1), end(reader1), begin(reader2))
<< std :: endl ;

Recursive Tree Walk (Stackless)

generator<std::string> traverse(node_t* n)
{

if (p->left) yield traverse(p->left);
yield p->name;
if (p->right) yield traverse(p->right);

}

node * root1 = create_tree();
node * root2 = create_tree();

auto reader1 = traverse (root1);
auto reader2 = traverse (root2);

std :: cout << “equal = “ << std::equal(begin(reader1), end(reader1),
begin(reader2))

<< std :: endl ;

