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VINTAGE

* Flight simulation must recreate diverse environments
 Ada, C, C++, Fortran, Jovial, PLM, Pascal
- PowerPC, Motorola 68k, AMD 29050, 16/32bit x86, 1750A

 The simulation must either stimulate, simulate or
emulate real instruments
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SIMULATION OF OLD

Deterministic
( simulation models

User mode C
scheduler and
diagnostics support FORTRAN

Some *NIX

CPUs
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SIMULATION OF YESTERDAY

* CPUs became fast enough that only one CPU was
needed

 Simulation framework switched from C to C++

* A deterministic real-time flight simulation could run
on a desktop/laptop OS by linking with different
libraries
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SIMULATION OF YESTERDAY

Deterministic
simulation models

Ring0 C++98/03

scheduler, drivers
and diagnostics FORTRAN
support

Some RTOS

CPUs
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EXAMPLE: BIGGER PROBLEMS

* Integrate binaries that run on

6 little endian, 16bit CISC CPUs with 20bit segmented memory
addressing and 60Hz scheduling

* 4 big endian, 32bit CISC CPUs with 50Hz scheduling
« Backplane shared memory
« Serial, DMA, timers, Ethernet

« Solution developed with C++98/03 with some TR1
elements

 Return to multicore roots
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SIMULATION OF TODAY

« Make it all work on a multicore system with
C++11/14
« without forgetting history of PDP-11s
« decltype, lambdas, rvalue-references/move
semantics, nullptr, range-based for loops, auto,
static_assert

e atomics, type traits, chrono, lock _guard, addressof,
unique_ptr, regex, tuple
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SIMULATION OF TODAY

Deterministic
simulation models

Ring0 C++11
simulation
framework (scheduler,

diagnostics, ...)
Some RTOS

FORTRAN

Ring0 C++11 OS
Interface

CPUs
FlightSafety.
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ACCEPTANCE

* FAA certified C++11 simulator currently in training
* More are on the way

 All FlightSafety simulators in 2015 will probably use
C++11
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C++: AFOREIGN VOCABULARY

* Developers may not be programmers first
* Flight simulation modeler
+ VOR, ILS, DME, EFIS, HOT, PFD, APU, EOM, ...

* DI, DO, Al, AO, ARINC 429/629, MIL-STD1553, ARINC
664/AFDX, CAN, DR-11w, ...

« C++ developer
* RAIl, SFINAE, NSDMI, RTTI, CRTP, ...
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Late homework will not be excepted

« Tuesday: The Joint Strike Fighter Coding Standard:
Using C++ on Mission and Safety Critical Platforms

« See keynotes for more on not using exceptions with
low latency systems
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EXCEPTIONS AND MEMORY

« At present, exceptions and memory allocations
should be outside of our simulation models

 We aren’t even close to saturating a mid-range CPU

 If problems get larger to the point of requiring more
processing, our exception usage may be
reevaluated
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EXCEPTIONS AND MEMORY

Ring0 C++11
simulation
framework (scheduler,

diagnostics, ...)

Deterministic
simulation models

Some RTOS

_ Exceptions and
Ring0 C++11 OS allocations

Interface

CPUs
FlightSafety.
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GETTING STARTED

Dha)a ®-ge

N g

 Starting an update development cycle can be huge
« Why would you want to update a working codebase?
« What parts of modern C++ can you use”?
« How can you update the working codebase?
« Who is going to perform the work?
« What should be done first?
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WHY UPDATE

* APIs may be bloated and easy to misuse
« Standard C++ may have a replacement

« Toolchain may no longer supported
« Hardware obsolete
* Need to update to 64bit

« Software maintenance costs may already be 60%
* Robert Glass, Facts and Fallacies of Software Engineering
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WHY: THE PLANETS ALIGNED

* Our APIs were bloated and easily misused
« Our toolchain was no longer supported

« Our hardware was end of life

* We needed to update to 64bit

* New realtime operating system

« Qur version control system was no longer supported
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WHAT CAN YOU ACTUALLY USE

* Depends on compiler support

o www.italiancpp.org/wp-content/uploads/2014/03/CpplSO-Feb2014-
rl.pdf

« WWW.Ccpprocks.com
« https://developer.mozilla.org/en-US/docs/Using CXX in Mozilla code
« https://wiki.apache.org/stdcxx/C%2B%2B0OxCompilerSupport

« Additional considerations
« C++11 support in 3" party libraries
» Limited to compiler supplied with operating system
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EXAMPLE: LLVM/CLANG/LLD

 llvm/clang/lld 3.4 last version built with C++98/03
* Builds using C++11 as of Feb 28, 2014

* “The set of features supported for use in LLVM is the
Intersection of those supported in MSVC 2012, GCC
4.7, and Clang 3.1.7
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HOW TO UPDATE

 Brute force

* Write your own tools

» Possibly using clang’s LibTooling
« Use existing tools

« Clang-modernize

« Cevelop (www.cevelop.com)
* More being developed every day
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EXAMPLE: clang-modernize

* Transformations
« Use nullptr
» Use pass by value
« Use range based for loops
* Replace auto_ptr, use auto, and add override
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EXAMPLE: clang-modernize

« Our experience

* On Windows, might need to use headers from a different
compiler

 MiInGW/MinGW-w64 works well (STL: www.nuwen.net)
» Using nullptr was a common transformation
» Using pass by value was not a common transformation
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RISK: clang-modernize

* Important command line options
e -risk
» safe, reasonable (default), risky
» -final-syntax-check
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RISK: clang-modernize

#include <cstddef>
class Bar {
public:
typedef int** iterator;
iterator begin();
iterator end();
size_t size();
int* operator[](size_t 1);
}s
int main(int, char**) {
Bar ct;
for (size_t i = 0; 1 < ct.size(); ++i) {
int* f = ct[i];
}
}
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RISK: clang-modernize
* risk=safe
« Transform: LoopConvert - Accepted: O - Rejected: 1 - Deferred: O

* risk=reasonable
« Transform: LoopConvert - Accepted: 1

int main(int, char**) {
Bar ct;
for (size_t i = 0; i < ct.size(); ++i) {
int* f = ct[i];
}
}
int main(int, char**) {
Bar ct;
for (auto & elem : ct) { // <-----
int* f = elem; // <=====
}
}
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RISK 2: clang-modernize

#include <cstddef>

class Bar {

public:
typedef int** 1iterator;
iterator begin();
iterator end(Q);
size_t size();

int& operator[](size_t 1); /] <-—---
}s
int main(int, char**) {

Bar ct;

for (size_t i = 0; 1 < ct.size(); ++i) {

int* £ = &ct[i]; /) <-—----

}

}
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RISK 2: clang-modernize
* risk=safe
« Transform: LoopConvert - Accepted: O - Rejected: 1 - Deferred: O

* risk=reasonable
« Transform: LoopConvert - Accepted: 1

int main(int, char**) {
Bar ct;
for (size_t i = 0; i < ct.size(); ++i) {
int* f = &ct[i];
}
}
int main(int, char**) {
Bar ct;
for (auto & elem : ct) { // <-----
int* f = &elem; // <----- Compile error: cannot convert from int** to int*
}
}
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RISK 3: clang-modernize

#include <cstddef>
class Bar {
public:
typedef int** 1iterator;
iterator begin();
iterator end();
size_t size();
int& operator[](size_t 1);
}s
int main(int, char**) {
Bar ct;
for (size_t i = 0; 1 < ct.size(); ++i) {
int* f = (int*)&ct[i]; /) <----- danger!
}
}
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RISK 3: clang-modernize
* risk=safe
« Transform: LoopConvert - Accepted: O - Rejected: 1 - Deferred: O

* risk=reasonable
« Transform: LoopConvert - Accepted: 1

int main(int, char**) {
Bar ct;
for (size_t i = 0; i < ct.size(); ++i) {
int* f = &ct[i];
}
}
int main(int, char**) {
Bar ct;
for (auto & elem : ct) { // <-----
int* f = (int*)&elem; /) <----- Runtime errors most likely
}
}

FlightSafety Simulation FlightSafety.




RISK: THE ENGINES ARE BLEEDING

* Don’t be blinded by your tools

* Reviewing only the red rather than the whole line led
to broken code

= int*-f
&> > int*-f-

(int*)&elem;
- (int*)&ct[i];«
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WHO WILL DO THE WORK:
TRANSITIONS
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WHO: C PROGRAMMER

/* no include statements */

int main(int argc, char** argv) {
double r = pow(2.0, 3.0);
printf(“%f\n”’, r);
return 0;

}

Result:
0.000000 (msvc)
8.000000 (clang, gcc)

* cl /W4 pow.c

« warning C4013: 'pow' undefined; assuming extern returning int
« warning C4013: 'printf' undefined; assuming extern returning int
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WHO: C PROGRAMMER

« clang —c pow.c
pow.c:2:13: warning: implicitly declaring library function 'pow' with type
‘double (double, double)’
double r = pow(2.0, 3.0);
N

pow.c:2:13: note: include the header <math.h> or explicitly provide a
declaration for 'pow’

pow.c:3:2: warning: implicitly declaring library function 'printf' with type
'Int (const char *, ...)’
printf("%f\n", r);
N

pow.c:3:2: note: include the header <stdio.h> or explicitly provide a
declaration for 'printf’

FlightSafety Simulation FlightSafety.




WHO: C PROGRAMMER (TAKE 2)

extern void y(char®);

void do_y(char* p) { // better name - do_y_and_modify_memory
y(p);

} p[0] = *\O";

void x() {
do_y(“oops™);
}

C++03 deprecated string literal to char* conversion
C++11, Annex C states that conversion is invalid

g++: warning: deprecated conversion from string constant to ‘char®
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WHO: C PROGRAMMER (TAKE 3)

class Foo {
public:

~Foo() {
release(bl);

release(bN);

}

private:
Bar bl;

Bar bN:
}s;

« Bar probably needs a destructor calling release() so that
adding another Bar does not require dtor changes

FlightSafety Simulation FlightSafety.



WHO: JAVA PROGRAMMER

void foo() {
Bar b = *new Bar();

}

 No memory leak if copy constructor deals with the
allocation (Richard Smith)
« Don'’t do this

void foo() {
Bar b; // the easy solution
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WHO: ??? PROGRAMMER

class E {
public:
virtual enum { NO, YES }; // virtual what? wrong!
}s
E e,

« Some versions of one vendor’s compiler have no
problems with this

» Future version: warning ‘virtual *: ignored on left of ” when no
variable is declared

* g+t error: 'virtual' can only be specified for functions

FlightSafety Simulation FlightSafety.



WHAT SHOULD BE DONE FIRST

 Internal changes may be easier

« Start with something you know
» Lock/wait free data structures may not be the best place to start

* Replace boost:: with std:: or ???
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FIRST: boost:: to std:: to 7?77

« What if your platform isn’t an officially supported
boost platform?
« Linux, MacOS, QNX, Windows are listed on boost.org
« What if compiler’s std::thread and std::mutex won't

work on your platform?
» As well as most other operating system interfaces
« filesystem
* networking?
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BUILD IT YOURSELF

 Match the standard
Interfaces as much as
possible for easy
documentation

You Can Build
an M irplane Too!
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DO IT YOURSELF: CHRONO

#include <chrono>
#include <cstdint>
struct high_resolution_clock {
typedef std::chrono::duration<int64_t, std::ratio<l, 10000000>>
duration;
typedef duration::rep rep;
typedef duration::period period;
typedef std::chrono::time_point<high_resolution_clock> time_point;
static const bool is_steady = true;

static time_point now();

}s

* now() built on top of IEEE1588, GPS hardware, or
other sources
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DO IT YOURSELF: THREAD

« A std::thread interface that, like boost, adds
attributes to constructor. This makes Rate
Monotonic or Earliest Deadline First scheduling
easier

« A std::mutex interface allows usage with
std::lock _guard and std::unique_lock
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NONCOPYABLE TO MOVABLE

* Noncopyable probably means pointers in containers

* Double indirection via container may be bad for
cache
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NONCOPYABLE: UGH

// suppose Foo 1s not copyable
std: :vector<Foo*> foos;

// initialize could also be a constructor
void initialize() {
// for each foo in configuration file
foos.push_back(new Foo(argl, arg2));
}

« Would have required explicit traversal of foos to
delete each element

« No modern C++ here

FlightSafety Simulation FlightSafety.



NONCOPYABLE: HO-HUM

// suppose Foo 1s not copyable
std::vector<std::unique_ptr<Foo>> foos;

void initialize() {
// for each foo in configuration file
foos.push_back(std: :unique_ptr<Foo>(new Foo(argl, arg2)));

« Automatic cleanup on vector destruction
« C++11 standard library usage
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NONCOPYABLE: DOH

// suppose Foo 1s not copyable
std::vector<std::unique_ptr<Foo>> foos;

void initialize() {
// for each foo in configuration file
foos.push_back(std: :make_unique<Foo>(argl, arg2));

« Automatic cleanup on vector destruction

« C++14, now with std::make_unique, standard library
usage
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NONCOPYABLE: MOVABLE!

// suppose Foo 1s not copyable but movable
// 1.e. Foo has Foo(Foo&&) constructor
std: :vector<Foo> foos;

void initialize() {
// for each foo in configuration file
foos.emplace_back(argl, arg2);

}

« C++11 standard library and core language usage
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BONUS: NETWORKING

* Network byte order moved in Chicago to become
first paper in TS working paper

* Network byte order moved to Library Fundamentals
TS in Issaquah

« LEWG looked at N2175 in Rapperswil as potentially
the starting point for the networking TS
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BONUS: ISSUES FROM EMBEDDED

 Renewed interest at Rapperswil
« www.open-std.org/mailman/listinfo/embedded
 Early initialization function

« Main with noreturn attribute
* Power cycle is only way to restart
* No atexit() processing
« Smaller footprint

 Removal of exception and RTTI overhead even
when using the standard library
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ENDING THE JOURNEY (FOR NOW

-

Make sure you have test cases.
If you don't try a feature, who will?
If you don’t report a bug, it won't get fixed.
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