Adventures In Updating a Legaey

Vintage Codebase
Billy Baker
billy.baker@flightsafety.com
FlightSafety International Simulation Systems
Photos courtesy of Dan Littmann

FlightSafety Simulation FlightSafety.

VINTAGE

* Flight simulation must recreate diverse environments
 Ada, C, C++, Fortran, Jovial, PLM, Pascal
- PowerPC, Motorola 68k, AMD 29050, 16/32bit x86, 1750A

 The simulation must either stimulate, simulate or
emulate real instruments

FlightSafety Simulation FlightSafety.

SIMULATION OF OLD

Deterministic
(simulation models

User mode C
scheduler and
diagnostics support FORTRAN

Some *NIX

CPUs

FlightSafety Simulation FlightSafety.

SIMULATION OF YESTERDAY

* CPUs became fast enough that only one CPU was
needed

 Simulation framework switched from C to C++

* A deterministic real-time flight simulation could run
on a desktop/laptop OS by linking with different
libraries

FlightSafety Simulation FlightSafety.

SIMULATION OF YESTERDAY

Deterministic
simulation models

Ring0 C++98/03

scheduler, drivers
and diagnostics FORTRAN
support

Some RTOS

CPUs

FlightSafety Simulation FlightSafety.

EXAMPLE: BIGGER PROBLEMS

* Integrate binaries that run on

6 little endian, 16bit CISC CPUs with 20bit segmented memory
addressing and 60Hz scheduling

* 4 big endian, 32bit CISC CPUs with 50Hz scheduling
« Backplane shared memory
« Serial, DMA, timers, Ethernet

« Solution developed with C++98/03 with some TR1
elements

 Return to multicore roots

FlightSafety Simulation FlightSafety.

SIMULATION OF TODAY

« Make it all work on a multicore system with
C++11/14
« without forgetting history of PDP-11s
« decltype, lambdas, rvalue-references/move
semantics, nullptr, range-based for loops, auto,
static_assert

e atomics, type traits, chrono, lock _guard, addressof,
unique_ptr, regex, tuple

FlightSafety Simulation FlightSafety.

SIMULATION OF TODAY

Deterministic
simulation models

Ring0 C++11
simulation
framework (scheduler,

diagnostics, ...)
Some RTOS

FORTRAN

Ring0 C++11 OS
Interface

CPUs
FlightSafety.

FlightSafety Simulation

ACCEPTANCE

* FAA certified C++11 simulator currently in training
* More are on the way

 All FlightSafety simulators in 2015 will probably use
C++11

FlightSafety Simulation FlightSafety.

C++: AFOREIGN VOCABULARY

* Developers may not be programmers first
* Flight simulation modeler
+ VOR, ILS, DME, EFIS, HOT, PFD, APU, EOM, ...

* DI, DO, Al, AO, ARINC 429/629, MIL-STD1553, ARINC
664/AFDX, CAN, DR-11w, ...

« C++ developer
* RAIl, SFINAE, NSDMI, RTTI, CRTP, ...

FlightSafety Simulation FlightSafety.

Late homework will not be excepted

« Tuesday: The Joint Strike Fighter Coding Standard:
Using C++ on Mission and Safety Critical Platforms

« See keynotes for more on not using exceptions with
low latency systems

FlightSafety Simulation FlightSafety.

EXCEPTIONS AND MEMORY

« At present, exceptions and memory allocations
should be outside of our simulation models

 We aren’t even close to saturating a mid-range CPU

 If problems get larger to the point of requiring more
processing, our exception usage may be
reevaluated

FlightSafety Simulation FlightSafety.

EXCEPTIONS AND MEMORY

Ring0 C++11
simulation
framework (scheduler,

diagnostics, ...)

Deterministic
simulation models

Some RTOS

_ Exceptions and
Ring0 C++11 OS allocations

Interface

CPUs
FlightSafety.

FlightSafety Simulation

GETTING STARTED

Dha)a ®-ge

N g

 Starting an update development cycle can be huge
« Why would you want to update a working codebase?
« What parts of modern C++ can you use”?
« How can you update the working codebase?
« Who is going to perform the work?
« What should be done first?

FlightSafety Simulation FlightSafety.

WHY UPDATE

* APIs may be bloated and easy to misuse
« Standard C++ may have a replacement

« Toolchain may no longer supported
« Hardware obsolete
* Need to update to 64bit

« Software maintenance costs may already be 60%
* Robert Glass, Facts and Fallacies of Software Engineering

FlightSafety Simulation FlightSafety.

WHY: THE PLANETS ALIGNED

* Our APIs were bloated and easily misused
« Our toolchain was no longer supported

« Our hardware was end of life

* We needed to update to 64bit

* New realtime operating system

« Qur version control system was no longer supported

FlightSafety Simulation FlightSafety.

WHAT CAN YOU ACTUALLY USE

* Depends on compiler support

o www.italiancpp.org/wp-content/uploads/2014/03/CpplSO-Feb2014-
rl.pdf

« WWW.Ccpprocks.com
« https://developer.mozilla.org/en-US/docs/Using CXX in Mozilla code
« https://wiki.apache.org/stdcxx/C%2B%2B0OxCompilerSupport

« Additional considerations
« C++11 support in 3" party libraries
» Limited to compiler supplied with operating system

FlightSafety Simulation FlightSafety.

http://www.italiancpp.org/wp-content/uploads/2014/03/CppISO-Feb2014-r1.pdf
http://www.italiancpp.org/wp-content/uploads/2014/03/CppISO-Feb2014-r1.pdf
http://www.italiancpp.org/wp-content/uploads/2014/03/CppISO-Feb2014-r1.pdf
http://www.italiancpp.org/wp-content/uploads/2014/03/CppISO-Feb2014-r1.pdf
http://www.italiancpp.org/wp-content/uploads/2014/03/CppISO-Feb2014-r1.pdf
http://www.italiancpp.org/wp-content/uploads/2014/03/CppISO-Feb2014-r1.pdf
http://www.italiancpp.org/wp-content/uploads/2014/03/CppISO-Feb2014-r1.pdf
http://www.cpprocks.com/
https://developer.mozilla.org/en-US/docs/Using_CXX_in_Mozilla_code
https://developer.mozilla.org/en-US/docs/Using_CXX_in_Mozilla_code
https://developer.mozilla.org/en-US/docs/Using_CXX_in_Mozilla_code
https://wiki.apache.org/stdcxx/C++0xCompilerSupport

EXAMPLE: LLVM/CLANG/LLD

 llvm/clang/lld 3.4 last version built with C++98/03
* Builds using C++11 as of Feb 28, 2014

* “The set of features supported for use in LLVM is the
Intersection of those supported in MSVC 2012, GCC
4.7, and Clang 3.1.7

FlightSafety Simulation FlightSafety.

HOW TO UPDATE

 Brute force

* Write your own tools

» Possibly using clang’s LibTooling
« Use existing tools

« Clang-modernize

« Cevelop (www.cevelop.com)
* More being developed every day

FlightSafety Simulation FlightSafety.

EXAMPLE: clang-modernize

* Transformations
« Use nullptr
» Use pass by value
« Use range based for loops
* Replace auto_ptr, use auto, and add override

FlightSafety Simulation FlightSafety.

EXAMPLE: clang-modernize

« Our experience

* On Windows, might need to use headers from a different
compiler

 MiInGW/MinGW-w64 works well (STL: www.nuwen.net)
» Using nullptr was a common transformation
» Using pass by value was not a common transformation

FlightSafety Simulation FlightSafety.

RISK: clang-modernize

* Important command line options
e -risk
» safe, reasonable (default), risky
» -final-syntax-check

FlightSafety Simulation FlightSafety

RISK: clang-modernize

#include <cstddef>
class Bar {
public:
typedef int** iterator;
iterator begin();
iterator end();
size_t size();
int* operator[](size_t 1);
}s
int main(int, char**) {
Bar ct;
for (size_t i = 0; 1 < ct.size(); ++i) {
int* f = ct[i];
}
}

FlightSafety Simulation FlightSafety.

RISK: clang-modernize
* risk=safe
« Transform: LoopConvert - Accepted: O - Rejected: 1 - Deferred: O

* risk=reasonable
« Transform: LoopConvert - Accepted: 1

int main(int, char**) {
Bar ct;
for (size_t i = 0; i < ct.size(); ++i) {
int* f = ct[i];
}
}
int main(int, char**) {
Bar ct;
for (auto & elem : ct) { // <-----
int* f = elem; // <=====
}
}

FlightSafety Simulation FlightSafety.

RISK 2: clang-modernize

#include <cstddef>

class Bar {

public:
typedef int** 1iterator;
iterator begin();
iterator end(Q);
size_t size();

int& operator[](size_t 1); /] <-—---
}s
int main(int, char**) {

Bar ct;

for (size_t i = 0; 1 < ct.size(); ++i) {

int* £ = &ct[i]; /) <-—----

}

}

FlightSafety Simulation FlightSafety.

RISK 2: clang-modernize
* risk=safe
« Transform: LoopConvert - Accepted: O - Rejected: 1 - Deferred: O

* risk=reasonable
« Transform: LoopConvert - Accepted: 1

int main(int, char**) {
Bar ct;
for (size_t i = 0; i < ct.size(); ++i) {
int* f = &ct[i];
}
}
int main(int, char**) {
Bar ct;
for (auto & elem : ct) { // <-----
int* f = &elem; // <----- Compile error: cannot convert from int** to int*
}
}

FlightSafety Simulation FlightSafety.

RISK 3: clang-modernize

#include <cstddef>
class Bar {
public:
typedef int** 1iterator;
iterator begin();
iterator end();
size_t size();
int& operator[](size_t 1);
}s
int main(int, char**) {
Bar ct;
for (size_t i = 0; 1 < ct.size(); ++i) {
int* f = (int*)&ct[i]; /) <----- danger!
}
}

FlightSafety Simulation FlightSafety.

RISK 3: clang-modernize
* risk=safe
« Transform: LoopConvert - Accepted: O - Rejected: 1 - Deferred: O

* risk=reasonable
« Transform: LoopConvert - Accepted: 1

int main(int, char**) {
Bar ct;
for (size_t i = 0; i < ct.size(); ++i) {
int* f = &ct[i];
}
}
int main(int, char**) {
Bar ct;
for (auto & elem : ct) { // <-----
int* f = (int*)&elem; /) <----- Runtime errors most likely
}
}

FlightSafety Simulation FlightSafety.

RISK: THE ENGINES ARE BLEEDING

* Don’t be blinded by your tools

* Reviewing only the red rather than the whole line led
to broken code

= int*-f
&> > int*-f-

(int*)&elem;
- (int*)&ct[i];«

FlightSafety Simulation FlightSafety.

WHO WILL DO THE WORK:
TRANSITIONS

FlightSafety Simulation FlightSafety.

WHO: C PROGRAMMER

/* no include statements */

int main(int argc, char** argv) {
double r = pow(2.0, 3.0);
printf(“%f\n”’, r);
return 0;

}

Result:
0.000000 (msvc)
8.000000 (clang, gcc)

* cl /W4 pow.c

« warning C4013: 'pow' undefined; assuming extern returning int
« warning C4013: 'printf' undefined; assuming extern returning int

FlightSafety Simulation FlightSafety.

WHO: C PROGRAMMER

« clang —c pow.c
pow.c:2:13: warning: implicitly declaring library function 'pow' with type
‘double (double, double)’
double r = pow(2.0, 3.0);
N

pow.c:2:13: note: include the header <math.h> or explicitly provide a
declaration for 'pow’

pow.c:3:2: warning: implicitly declaring library function 'printf' with type
'Int (const char *, ...)’
printf("%f\n", r);
N

pow.c:3:2: note: include the header <stdio.h> or explicitly provide a
declaration for 'printf’

FlightSafety Simulation FlightSafety.

WHO: C PROGRAMMER (TAKE 2)

extern void y(char®);

void do_y(char* p) { // better name - do_y_and_modify_memory
y(p);

} p[0] = *\O";

void x() {
do_y(“oops™);
}

C++03 deprecated string literal to char* conversion
C++11, Annex C states that conversion is invalid

g++: warning: deprecated conversion from string constant to ‘char®

FlightSafety Simulation FlightSafety.

WHO: C PROGRAMMER (TAKE 3)

class Foo {
public:

~Foo() {
release(bl);

release(bN);

}

private:
Bar bl;

Bar bN:
}s;

« Bar probably needs a destructor calling release() so that
adding another Bar does not require dtor changes

FlightSafety Simulation FlightSafety.

WHO: JAVA PROGRAMMER

void foo() {
Bar b = *new Bar();

}

 No memory leak if copy constructor deals with the
allocation (Richard Smith)
« Don'’t do this

void foo() {
Bar b; // the easy solution

FlightSafety Simulation FlightSafety.

WHO: ??? PROGRAMMER

class E {
public:
virtual enum { NO, YES }; // virtual what? wrong!
}s
E e,

« Some versions of one vendor’s compiler have no
problems with this

» Future version: warning ‘virtual *: ignored on left of ” when no
variable is declared

* g+t error: 'virtual' can only be specified for functions

FlightSafety Simulation FlightSafety.

WHAT SHOULD BE DONE FIRST

 Internal changes may be easier

« Start with something you know
» Lock/wait free data structures may not be the best place to start

* Replace boost:: with std:: or ???

FlightSafety Simulation FlightSafety.

FIRST: boost:: to std:: to 7?77

« What if your platform isn’t an officially supported
boost platform?
« Linux, MacOS, QNX, Windows are listed on boost.org
« What if compiler’s std::thread and std::mutex won't

work on your platform?
» As well as most other operating system interfaces
« filesystem
* networking?

FlightSafety Simulation FlightSafety.

BUILD IT YOURSELF

 Match the standard
Interfaces as much as
possible for easy
documentation

You Can Build
an M irplane Too!

FlightSafety Simulation FlightSafety.

DO IT YOURSELF: CHRONO

#include <chrono>
#include <cstdint>
struct high_resolution_clock {
typedef std::chrono::duration<int64_t, std::ratio<l, 10000000>>
duration;
typedef duration::rep rep;
typedef duration::period period;
typedef std::chrono::time_point<high_resolution_clock> time_point;
static const bool is_steady = true;

static time_point now();

}s

* now() built on top of IEEE1588, GPS hardware, or
other sources

FlightSafety Simulation FlightSafety.

DO IT YOURSELF: THREAD

« A std::thread interface that, like boost, adds
attributes to constructor. This makes Rate
Monotonic or Earliest Deadline First scheduling
easier

« A std::mutex interface allows usage with
std::lock _guard and std::unique_lock

FlightSafety Simulation FlightSafety.

NONCOPYABLE TO MOVABLE

* Noncopyable probably means pointers in containers

* Double indirection via container may be bad for
cache

FlightSafety Simulation FlightSafety.

NONCOPYABLE: UGH

// suppose Foo 1s not copyable
std: :vector<Foo*> foos;

// initialize could also be a constructor
void initialize() {
// for each foo in configuration file
foos.push_back(new Foo(argl, arg2));
}

« Would have required explicit traversal of foos to
delete each element

« No modern C++ here

FlightSafety Simulation FlightSafety.

NONCOPYABLE: HO-HUM

// suppose Foo 1s not copyable
std::vector<std::unique_ptr<Foo>> foos;

void initialize() {
// for each foo in configuration file
foos.push_back(std: :unique_ptr<Foo>(new Foo(argl, arg2)));

« Automatic cleanup on vector destruction
« C++11 standard library usage

FlightSafety Simulation FlightSafety.

NONCOPYABLE: DOH

// suppose Foo 1s not copyable
std::vector<std::unique_ptr<Foo>> foos;

void initialize() {
// for each foo in configuration file
foos.push_back(std: :make_unique<Foo>(argl, arg2));

« Automatic cleanup on vector destruction

« C++14, now with std::make_unique, standard library
usage

FlightSafety Simulation FlightSafety.

NONCOPYABLE: MOVABLE!

// suppose Foo 1s not copyable but movable
// 1.e. Foo has Foo(Foo&&) constructor
std: :vector<Foo> foos;

void initialize() {
// for each foo in configuration file
foos.emplace_back(argl, arg2);

}

« C++11 standard library and core language usage

FlightSafety Simulation FlightSafety.

BONUS: NETWORKING

* Network byte order moved in Chicago to become
first paper in TS working paper

* Network byte order moved to Library Fundamentals
TS in Issaquah

« LEWG looked at N2175 in Rapperswil as potentially
the starting point for the networking TS

FlightSafety Simulation FlightSafety.

BONUS: ISSUES FROM EMBEDDED

 Renewed interest at Rapperswil
« www.open-std.org/mailman/listinfo/embedded
 Early initialization function

« Main with noreturn attribute
* Power cycle is only way to restart
* No atexit() processing
« Smaller footprint

 Removal of exception and RTTI overhead even
when using the standard library

FlightSafety Simulation FlightSafety.

http://www.open-std.org/mailman/listinfo/embedded
http://www.open-std.org/mailman/listinfo/embedded
http://www.open-std.org/mailman/listinfo/embedded

ENDING THE JOURNEY (FOR NOW

-

Make sure you have test cases.
If you don't try a feature, who will?
If you don’t report a bug, it won't get fixed.

FlightSafety Simulation FlightSafety

