
Adventures in Updating a Legacy

Vintage Codebase
Billy Baker

billy.baker@flightsafety.com

FlightSafety International Simulation Systems

Photos courtesy of Dan Littmann

VINTAGE

• Flight simulation must recreate diverse environments
• Ada, C, C++, Fortran, Jovial, PLM, Pascal

• PowerPC, Motorola 68k, AMD 29050, 16/32bit x86, 1750A

• The simulation must either stimulate, simulate or

emulate real instruments

SIMULATION OF OLD

C

FORTRAN

1 2 … N CPUs

Some *NIX

User mode C

scheduler and

diagnostics support

Deterministic

simulation models

• CPUs became fast enough that only one CPU was

needed

• Simulation framework switched from C to C++

• A deterministic real-time flight simulation could run

on a desktop/laptop OS by linking with different

libraries

SIMULATION OF YESTERDAY

SIMULATION OF YESTERDAY

C

FORTRAN

1 CPUs

Some RTOS

Ring0 C++98/03

scheduler, drivers

and diagnostics

support

Deterministic

simulation models

C++

• Integrate binaries that run on
• 6 little endian, 16bit CISC CPUs with 20bit segmented memory

addressing and 60Hz scheduling

• 4 big endian, 32bit CISC CPUs with 50Hz scheduling

• Backplane shared memory

• Serial, DMA, timers, Ethernet

• Solution developed with C++98/03 with some TR1

elements

• Return to multicore roots

EXAMPLE: BIGGER PROBLEMS

• Make it all work on a multicore system with

C++11/14
• without forgetting history of PDP-11s

• decltype, lambdas, rvalue-references/move

semantics, nullptr, range-based for loops, auto,

static_assert

• atomics, type traits, chrono, lock_guard, addressof,

unique_ptr, regex, tuple

SIMULATION OF TODAY

SIMULATION OF TODAY

C

FORTRAN

CPUs

Some RTOS

Ring0 C++11 OS

interface

Deterministic

simulation models

C++

1 2 … N

Ring0 C++11

simulation

framework (scheduler,

diagnostics, …)

• FAA certified C++11 simulator currently in training

• More are on the way

• All FlightSafety simulators in 2015 will probably use

C++11

ACCEPTANCE

• Developers may not be programmers first
• Flight simulation modeler

• VOR, ILS, DME, EFIS, HOT, PFD, APU, EOM, …

• DI, DO, AI, AO, ARINC 429/629, MIL-STD1553, ARINC

664/AFDX, CAN, DR-11w, …

• C++ developer

• RAII, SFINAE, NSDMI, RTTI, CRTP, …

C++: A FOREIGN VOCABULARY

Late homework will not be excepted

• Tuesday: The Joint Strike Fighter Coding Standard:

Using C++ on Mission and Safety Critical Platforms

• See keynotes for more on not using exceptions with

low latency systems

EXCEPTIONS AND MEMORY

• At present, exceptions and memory allocations

should be outside of our simulation models

• We aren‟t even close to saturating a mid-range CPU

• If problems get larger to the point of requiring more

processing, our exception usage may be

reevaluated

EXCEPTIONS AND MEMORY

C

FORTRAN

CPUs

Some RTOS

Ring0 C++11 OS

interface

Deterministic

simulation models

C++

1 2 … N

Ring0 C++11

simulation

framework (scheduler,

diagnostics, …)

Exceptions and

allocations

GETTING STARTED

• Starting an update development cycle can be huge
• Why would you want to update a working codebase?

• What parts of modern C++ can you use?

• How can you update the working codebase?

• Who is going to perform the work?

• What should be done first?

• APIs may be bloated and easy to misuse
• Standard C++ may have a replacement

• Toolchain may no longer supported

• Hardware obsolete

• Need to update to 64bit

• Software maintenance costs may already be 60%
• Robert Glass, Facts and Fallacies of Software Engineering

WHY UPDATE

• Our APIs were bloated and easily misused

• Our toolchain was no longer supported

• Our hardware was end of life

• We needed to update to 64bit
• New realtime operating system

• Our version control system was no longer supported

WHY: THE PLANETS ALIGNED

• Depends on compiler support
• www.italiancpp.org/wp-content/uploads/2014/03/CppISO-Feb2014-

r1.pdf

• www.cpprocks.com

• https://developer.mozilla.org/en-US/docs/Using_CXX_in_Mozilla_code

• https://wiki.apache.org/stdcxx/C%2B%2B0xCompilerSupport

• …

• Additional considerations
• C++11 support in 3rd party libraries

• Limited to compiler supplied with operating system

WHAT CAN YOU ACTUALLY USE

http://www.italiancpp.org/wp-content/uploads/2014/03/CppISO-Feb2014-r1.pdf
http://www.italiancpp.org/wp-content/uploads/2014/03/CppISO-Feb2014-r1.pdf
http://www.italiancpp.org/wp-content/uploads/2014/03/CppISO-Feb2014-r1.pdf
http://www.italiancpp.org/wp-content/uploads/2014/03/CppISO-Feb2014-r1.pdf
http://www.italiancpp.org/wp-content/uploads/2014/03/CppISO-Feb2014-r1.pdf
http://www.italiancpp.org/wp-content/uploads/2014/03/CppISO-Feb2014-r1.pdf
http://www.italiancpp.org/wp-content/uploads/2014/03/CppISO-Feb2014-r1.pdf
http://www.cpprocks.com/
https://developer.mozilla.org/en-US/docs/Using_CXX_in_Mozilla_code
https://developer.mozilla.org/en-US/docs/Using_CXX_in_Mozilla_code
https://developer.mozilla.org/en-US/docs/Using_CXX_in_Mozilla_code
https://wiki.apache.org/stdcxx/C++0xCompilerSupport

• llvm/clang/lld 3.4 last version built with C++98/03

• Builds using C++11 as of Feb 28, 2014

• “The set of features supported for use in LLVM is the

intersection of those supported in MSVC 2012, GCC

4.7, and Clang 3.1.”

EXAMPLE: LLVM/CLANG/LLD

• Brute force

• Write your own tools
• Possibly using clang‟s LibTooling

• Use existing tools
• Clang-modernize

• Cevelop (www.cevelop.com)

• More being developed every day

HOW TO UPDATE

• Transformations
• Use nullptr

• Use pass by value

• Use range based for loops

• Replace auto_ptr, use auto, and add override

EXAMPLE: clang-modernize

• Our experience
• On Windows, might need to use headers from a different

compiler

• MinGW/MinGW-w64 works well (STL: www.nuwen.net)

• Using nullptr was a common transformation

• Using pass by value was not a common transformation

EXAMPLE: clang-modernize

RISK: clang-modernize

• Important command line options
• -risk

• safe, reasonable (default), risky

• -final-syntax-check

RISK: clang-modernize
#include <cstddef>
class Bar {
public:
 typedef int** iterator;
 iterator begin();
 iterator end();
 size_t size();
 int* operator[](size_t i);
};
int main(int, char**) {
 Bar ct;
 for (size_t i = 0; i < ct.size(); ++i) {
 int* f = ct[i];
 }
}

• risk=safe
• Transform: LoopConvert - Accepted: 0 - Rejected: 1 - Deferred: 0

• risk=reasonable
• Transform: LoopConvert - Accepted: 1

int main(int, char**) {
 Bar ct;
 for (size_t i = 0; i < ct.size(); ++i) {
 int* f = ct[i];
 }
}
int main(int, char**) {
 Bar ct;
 for (auto & elem : ct) { // <-----
 int* f = elem; // <-----
 }
}

RISK: clang-modernize

RISK 2: clang-modernize
#include <cstddef>
class Bar {
public:
 typedef int** iterator;
 iterator begin();
 iterator end();
 size_t size();
 int& operator[](size_t i); // <-----
};
int main(int, char**) {
 Bar ct;
 for (size_t i = 0; i < ct.size(); ++i) {
 int* f = &ct[i]; // <-----
 }
}

int main(int, char**) {
 Bar ct;
 for (size_t i = 0; i < ct.size(); ++i) {
 int* f = &ct[i];
 }
}
int main(int, char**) {
 Bar ct;
 for (auto & elem : ct) { // <-----
 int* f = &elem; // <----- Compile error: cannot convert from int** to int*
 }
}

RISK 2: clang-modernize
• risk=safe

• Transform: LoopConvert - Accepted: 0 - Rejected: 1 - Deferred: 0

• risk=reasonable
• Transform: LoopConvert - Accepted: 1

RISK 3: clang-modernize
#include <cstddef>
class Bar {
public:
 typedef int** iterator;
 iterator begin();
 iterator end();
 size_t size();
 int& operator[](size_t i);
};
int main(int, char**) {
 Bar ct;
 for (size_t i = 0; i < ct.size(); ++i) {
 int* f = (int*)&ct[i]; // <----- danger!
 }
}

int main(int, char**) {
 Bar ct;
 for (size_t i = 0; i < ct.size(); ++i) {
 int* f = &ct[i];
 }
}

int main(int, char**) {
 Bar ct;
 for (auto & elem : ct) { // <-----
 int* f = (int*)&elem; // <----- Runtime errors most likely
 }
}

RISK 3: clang-modernize
• risk=safe

• Transform: LoopConvert - Accepted: 0 - Rejected: 1 - Deferred: 0

• risk=reasonable
• Transform: LoopConvert - Accepted: 1

RISK: THE ENGINES ARE BLEEDING

• Don‟t be blinded by your tools

• Reviewing only the red rather than the whole line led

to broken code

WHO WILL DO THE WORK:

TRANSITIONS

/* no include statements */
int main(int argc, char** argv) {
 double r = pow(2.0, 3.0);
 printf(“%f\n”, r);
 return 0;
}
Result:
0.000000 (msvc)
8.000000 (clang, gcc)

WHO: C PROGRAMMER

• cl /W4 pow.c
• warning C4013: 'pow' undefined; assuming extern returning int

• warning C4013: 'printf' undefined; assuming extern returning int

• clang –c pow.c
pow.c:2:13: warning: implicitly declaring library function 'pow' with type
 'double (double, double)„
 double r = pow(2.0, 3.0);
 ^
pow.c:2:13: note: include the header <math.h> or explicitly provide a
 declaration for 'pow„
pow.c:3:2: warning: implicitly declaring library function 'printf' with type
 'int (const char *, ...)„
 printf("%f\n", r);
 ^
pow.c:3:2: note: include the header <stdio.h> or explicitly provide a
 declaration for 'printf'

WHO: C PROGRAMMER

extern void y(char*);
void do_y(char* p) { // better name – do_y_and_modify_memory
 y(p);
 p[0] = „\0‟;
}

void x() {
 do_y(“oops”);
}

WHO: C PROGRAMMER (TAKE 2)

• C++03 deprecated string literal to char* conversion

• C++11, Annex C states that conversion is invalid

• g++: warning: deprecated conversion from string constant to 'char*‟

class Foo {
public:
 ~Foo() {
 release(b1);
 ...
 release(bN);
 }
private:
 Bar b1;
 ...
 Bar bN;
};

WHO: C PROGRAMMER (TAKE 3)

• Bar probably needs a destructor calling release() so that

adding another Bar does not require dtor changes

void foo() {
 Bar b = *new Bar();
 ...
}

WHO: JAVA PROGRAMMER

• No memory leak if copy constructor deals with the

allocation (Richard Smith)
• Don‟t do this

void foo() {
 Bar b; // the easy solution
 ...
}

class E {
public:
 virtual enum { NO, YES }; // virtual what? Wrong!
};
E e;

WHO: ??? PROGRAMMER

• Some versions of one vendor‟s compiler have no

problems with this
• Future version: warning „virtual „: ignored on left of ‟‟ when no

variable is declared

• g++: error: 'virtual' can only be specified for functions

• Internal changes may be easier

• Start with something you know
• Lock/wait free data structures may not be the best place to start

• Replace boost:: with std:: or ???

WHAT SHOULD BE DONE FIRST

• What if your platform isn‟t an officially supported

boost platform?
• Linux, MacOS, QNX, Windows are listed on boost.org

• What if compiler‟s std::thread and std::mutex won‟t

work on your platform?
• As well as most other operating system interfaces

• filesystem

• networking?

FIRST: boost:: to std:: to ???

BUILD IT YOURSELF

• Match the standard

interfaces as much as

possible for easy

documentation

#include <chrono>
#include <cstdint>
struct high_resolution_clock {
 typedef std::chrono::duration<int64_t, std::ratio<1, 10000000>>
duration;
 typedef duration::rep rep;
 typedef duration::period period;
 typedef std::chrono::time_point<high_resolution_clock> time_point;
 static const bool is_steady = true;

 static time_point now();
};

DO IT YOURSELF: CHRONO

• now() built on top of IEEE1588, GPS hardware, or

other sources

• A std::thread interface that, like boost, adds

attributes to constructor. This makes Rate

Monotonic or Earliest Deadline First scheduling

easier

• A std::mutex interface allows usage with

std::lock_guard and std::unique_lock

DO IT YOURSELF: THREAD

• Noncopyable probably means pointers in containers

• Double indirection via container may be bad for

cache

NONCOPYABLE TO MOVABLE

// suppose Foo is not copyable
std::vector<Foo*> foos;

// initialize could also be a constructor
void initialize() {
 // for each foo in configuration file
 foos.push_back(new Foo(arg1, arg2));
}

NONCOPYABLE: UGH

• Would have required explicit traversal of foos to

delete each element

• No modern C++ here

// suppose Foo is not copyable
std::vector<std::unique_ptr<Foo>> foos;

void initialize() {
 // for each foo in configuration file
 foos.push_back(std::unique_ptr<Foo>(new Foo(arg1, arg2)));
}

NONCOPYABLE: HO-HUM

• Automatic cleanup on vector destruction

• C++11 standard library usage

// suppose Foo is not copyable
std::vector<std::unique_ptr<Foo>> foos;

void initialize() {
 // for each foo in configuration file
 foos.push_back(std::make_unique<Foo>(arg1, arg2));
}

NONCOPYABLE: DOH

• Automatic cleanup on vector destruction

• C++14, now with std::make_unique, standard library

usage

// suppose Foo is not copyable but movable
// i.e. Foo has Foo(Foo&&) constructor
std::vector<Foo> foos;

void initialize() {
 // for each foo in configuration file
 foos.emplace_back(arg1, arg2);
}

NONCOPYABLE: MOVABLE!

• C++11 standard library and core language usage

• Network byte order moved in Chicago to become

first paper in TS working paper

• Network byte order moved to Library Fundamentals

TS in Issaquah

• LEWG looked at N2175 in Rapperswil as potentially

the starting point for the networking TS

BONUS: NETWORKING

• Renewed interest at Rapperswil

• www.open-std.org/mailman/listinfo/embedded

• Early initialization function

• Main with noreturn attribute
• Power cycle is only way to restart

• No atexit() processing

• Smaller footprint

• Removal of exception and RTTI overhead even
when using the standard library

BONUS: ISSUES FROM EMBEDDED

http://www.open-std.org/mailman/listinfo/embedded
http://www.open-std.org/mailman/listinfo/embedded
http://www.open-std.org/mailman/listinfo/embedded

ENDING THE JOURNEY (FOR NOW)

Make sure you have test cases.

If you don‟t try a feature, who will?

If you don‟t report a bug, it won‟t get fixed.

