(Costless) Software Abstractions for Parallel Architectures

Joel Falcou

numscale

Unlocked software performance

O

CppCon—-01/07/2014

O |numscale
Context

Decades of hardware improvements

Scientific Computing now drives most hardware innovations

Current Solution: Parallel architectures

Machines become more and more complex

e
O |numscale
Context

Decades of hardware improvements

Scientific Computing now drives most hardware innovations
Current Solution: Parallel architectures

Machines become more and more complex

Example : A simple laptop
CPU: Intel Core i5-2410M (2.3 GHz) : 4 logical cores, AVX

4 logical cores
SIMD Extensions: SSE2-SSE4.2, AVX

GPU: NVIDIA GeForce GT 520M (48 CUDA cores)

2 of 40
e

O |numscale

The Real Challenge of HPC

(N
Single Core Era \ (Multi-Core/SIMD Era \ (Heterogenous Era

Performance Performance Performance

A A z‘u

@

Sequential

Distributed

Sequential

I I ~
> Lt Lt
Expressiveness Expressiveness Expressiveness
\ J \ J \),

©O)|numscale
Designing tools for Scientific Computing

Challenges

©O)|numscale
Designing tools for Scientific Computing

Challenges

Be non-disruptive

©O)|numscale
Designing tools for Scientific Computing

Challenges

Be non-disruptive

Domain driven optimizations

©O)|numscale
Designing tools for Scientific Computing

Challenges

Be non-disruptive

Domain driven optimizations

Provide intuitive API for the user

©O)|numscale
Designing tools for Scientific Computing

Challenges

Be non-disruptive
Domain driven optimizations

Provide intuitive API for the user

Support a wide architectural landscape

©O)|numscale
Designing tools for Scientific Computing

Challenges

Be non-disruptive
Domain driven optimizations
Provide intuitive API for the user

Support a wide architectural landscape

Be efficient

©O)|numscale
Designing tools for Scientific Computing

Challenges

Be non-disruptive

Domain driven optimizations

Provide intuitive API for the user
Support a wide architectural landscape

Be efficient

Our Approach

©O)|numscale
Designing tools for Scientific Computing

Challenges

Be non-disruptive

Domain driven optimizations

Provide intuitive API for the user
Support a wide architectural landscape

Be efficient

Our Approach

Design tools as C++ libraries (1)

©O)|numscale
Designing tools for Scientific Computing

Challenges

Be non-disruptive

Domain driven optimizations

Provide intuitive API for the user
Support a wide architectural landscape

Be efficient

Our Approach

Design tools as C++ libraries (1)
Design these libraries as Domain Specific Embedded Language (DSEL) (2+3)

©O)|numscale
Designing tools for Scientific Computing

Challenges

Be non-disruptive

Domain driven optimizations

Provide intuitive API for the user
Support a wide architectural landscape

Be efficient

Our Approach

Design tools as C++ libraries (1)
Design these libraries as Domain Specific Embedded Language (DSEL) (2+3)

Use Parallel Skeletons as parallel components (4)

O |numscale

Designing tools for Scientific Computing

Challenges

Be non-disruptive

Domain driven optimizations

Provide intuitive API for the user
Support a wide architectural landscape

Be efficient

Our Approach

Design tools as C++ libraries (1)
Design these libraries as Domain Specific Embedded Language (DSEL) (2+3)
Use Parallel Skeletons as parallel components (4)

Use Generative Programming to deliver performance (5)

4 of 40
e
[

MﬂI(E@,IIIIIIEI:T AND EFFICIENT
FﬂllﬂllEl PROGRAMS

O)|numscale
Spotting abstraction when you see one

Why Parallel Programming Models ?

Unstructured parallelism is error-prone

Low level parallel tools are non-composable

O)|numscale
Spotting abstraction when you see one

Why Parallel Programming Models ?

Unstructured parallelism is error-prone

Low level parallel tools are non-composable

Available Models

Performance centric: P-RAM, LOG-P, BSP
Data centric: HTA, PGAS

Pattern centric: Actors, Skeletons

O)|numscale
Spotting abstraction when you see one

Why Parallel Programming Models ?

Unstructured parallelism is error-prone

Low level parallel tools are non-composable

Available Models

Performance centric: P-RAM, LOG-P, BSP
Data centric: HTA, PGAS

Pattern centric: Actors, Skeletons

O |numscale
Parallel Skeletons in a nutshell

Basic Principles [COLE 89]

There are patterns in parallel applications

Those patterns can be generalized in Skeletons

Applications are assembled as combination of such patterns

O |numscale
Parallel Skeletons in a nutshell

Basic Principles [COLE 89]

There are patterns in parallel applications
Those patterns can be generalized in Skeletons

Applications are assembled as combination of such patterns

Functionnal point of view

Skeletons are Higher-Order Functions

Skeletons support a compositionnal semantic

Applications become composition of state-less functions

O |numscale
Classic Parallel Skeletons

Data Parallel Skeletons

map: Apply a n-ary function in SIMD mode over subset of data

fold: Perform n-ary reduction over subset of data

scan: Perform n-ary prefix reduction over subset of data

O |numscale
Classic Parallel Skeletons

Data Parallel Skeletons

map: Apply a n-ary function in SIMD mode over subset of data
fold: Perform n-ary reduction over subset of data

scan: Perform n-ary prefix reduction over subset of data

Task Parallel Skeletons

par: Independant task execution

pipe: Task dependency over time

farm: Load-balancing

O |numscale

Why using Parallel Skeletons

Software Abstraction

Write without bothering with parallel details

Code is scalable and easy to maintain

Debuggable, Provable, Certifiable

O |numscale

Why using Parallel Skeletons

Software Abstraction

Write without bothering with parallel details
Code is scalable and easy to maintain

Debuggable, Provable, Certifiable

Hardware Abstraction

Semantic is set, implementation is free

Composability = Hierarchical architecture

O |numscale

Generative Programming

Domain Specific N (Generative Component [Concrete Application)
Application Description

c?ab—----» -1

Parametric
Sub-components

HEERe
>0y
ALEI®

‘ /

> v

10 of 40

©O)|numscale
Generative Programming as a Tool

Available techniques

Dedicated compilers
External pre-processing tools

Languages supporting meta-programming

11 of 40
e —

©O)|numscale
Generative Programming as a Tool

Available techniques

Dedicated compilers
External pre-processing tools

Languages supporting meta-programming

11 of 40
e —

©O)|numscale
Generative Programming as a Tool

Available techniques

Dedicated compilers
External pre-processing tools

Languages supporting meta-programming

Definition of Meta-programming

Meta-programming is the writing of computer programs that analyse, transform and
generate other programs (or themselves) as their data.

11 of 40

O |numscale

Generative Programming as a Tool

Available techniques

Dedicated compilers
External pre-processing tools

Languages supporting meta-programming

Definition of Meta-programming

Meta-programming is the writing of computer programs that analyse, transform and
generate other programs (or themselves) as their data.

C++ meta-programming

Relies on the C++ TEMPLATE sub-language
Handles types and integral constants at compile-time

Proved to be Turing-complete

I of 40
e
e —

O |numscale

Domain Specific Embedded Languages

What'’s an DSEL ?
DSL = Domain Specific Language

Declarative language, easy-to-use, fitting the domain

DSEL = DSL within a general purpose language

EDSL in C++

Relies on operator overload abuse (Expression Templates)
Carry semantic information around code fragment

Generic implementation become self-aware of optimizations

Exploiting static AST

At the expression level: code generation

At the function level: inter-procedural optimization

12 of 40
e —

O |numscale

Embedded Domain Specific Languages

EDSL in C++
Relies on operator overload abuse — see Boost.PrROTO
Carry semantic information around code fragment

Generic implementation become self-aware of optimizations

Advantages

Allow introduction of DSLs without disrupting dev. chain
Semantic defined as type informations means compile-time resolution

Access to a large selection of runtime binding

13040
e —

O)|numscale
Expression Templates in A Nutshell

YO DAWG, I'HEARD YOU LIKE
LANGUAGE

SO TPUT A LANGUAGE IN ‘"IIIII LANGUAGE
SO YOU CAN COMPILE WHILEYOU COMPILE

14 of 40

O |numscale

Expression Templates

[matrix x(h,w),a(h,w),b(h,w);
x = cos(a) + (b*a);
\ /
) v
expr<assign
,expr<matrix&>
,expr<plus
; expr<cos
,expr<matrixé&>
>
, expr<multiplies o @ @
,expr<matrix&> > 4
,expr<matrixé&> "
> #pragma omp parallel for
>(x,a,b); for (int j=0;j<h;++j)
{
. for (int i=0;i<w;++i)
A q {
Arbitrary Transforms applied a q a4
= rorny the me:a—ASTpP * P> x(j,i) = cos(a(j,i))
\) + (b(3,i)
* a(j, i)
)i
}
U

15 of 40

Architecture Aware Generative Programming

Domain Specific
Application Description

ral

O

Generative Component

Parametric
b

Domain Specific
D

Architecture
c

<&

16 of 40

Parametric
Architectural
Sub-components

Concrete Application

O |numscale

Parallel DSEL in practice

Objectives

Apply DSEL generation techniques for different kind of hardware
Demonstrate low cost of abstractions

Demonstrate applicability of skeletons

17 of 40
e —

O |numscale

Parallel DSEL in practice

Objectives

Apply DSEL generation techniques for different kind of hardware
Demonstrate low cost of abstractions

Demonstrate applicability of skeletons

Our contribution
BSP++ : Generic C++ BSP for shared/distributed memory
Quaff: DSEL for skeleton programming
Boost.SIMD: DSEL for portable SIMD programming
NT2: MatLAB like DSEL for scientific computing

17 of 40
e —

O |numscale

Parallel DSEL in practice

Objectives

Apply DSEL generation techniques for different kind of hardware
Demonstrate low cost of abstractions

Demonstrate applicability of skeletons

Our contribution
BSP++ : Generic C++ BSP for shared/distributed memory
Quaff: DSEL for skeleton programming
Boost.SIMD: DSEL for portable SIMD programming
NT2: MatLAB like DSEL for scientific computing

17 of 40
e —

O |numscale

NT?

A Scientific Computing Library

Provide a simple, MaTLAB-like interface for users
Provide high-performance computing entities and primitives

Easily extendable

Components

Use Boost.SIMD for in-core optimizations
Use recursive parallel skeletons

Code is made independant of architecture and runtime

18 of 40
e —

-
O)|numscale
The Numerical Template Toolbox

Comparison to other libraries

z
5
L)

Feature Armadillo | Blaze | Eigen | MTL | uBlas
MartLAB-like API v
BLAS/LAPACK binding v
MAGMA binding — — - — —
SSE2+ support
AVX support

AVX2 support
Xeon Phi support — — — — -

\
<
<
<

v
v

ANEN

Altivec support — —
ARM support — —

NEN
!
|

Threading support — — — — =
CUDA support — —

|
|
|
|
|
ANENIENENIENENENENIENENEN

19 of 40
e —

O)|numscale
The Numerical Template Toolbox

Principles

table<T, S> is a simple, multidimensional array object that exactly mimics
MATLAB array behavior and functionalities

500+ functions usable directly either on table or on any scalar values as in MATLAB

20 0f 40
e —

O)|numscale
The Numerical Template Toolbox

Principles

table<T, S> is a simple, multidimensional array object that exactly mimics
MATLAB array behavior and functionalities

500+ functions usable directly either on table or on any scalar values as in MATLAB

How does it works

Take a .mfile, copy to a . cpp file

20 0f 40
e —

O)|numscale
The Numerical Template Toolbox

Principles

table<T, S> is a simple, multidimensional array object that exactly mimics
MATLAB array behavior and functionalities

500+ functions usable directly either on table or on any scalar values as in MATLAB

How does it works

Take a .mfile, copy to a . cpp file
Add #include <nt2/nt2.hpp>and do cosmetic changes

20 0f 40
e —

O)|numscale
The Numerical Template Toolbox

Principles

table<T, S> is a simple, multidimensional array object that exactly mimics
MATLAB array behavior and functionalities

500+ functions usable directly either on table or on any scalar values as in MATLAB

How does it works

Take a .mfile, copy to a . cpp file
Add #include <nt2/nt2.hpp>and do cosmetic changes
Compile the file and link with 1ibnt2.a

20 0f 40
e —

O)|numscale
The Numerical Template Toolbox

Principles

table<T, S> is a simple, multidimensional array object that exactly mimics
MATLAB array behavior and functionalities

500+ functions usable directly either on table or on any scalar values as in MATLAB

How does it works

Take a .mfile, copy to a . cpp file
Add #include <nt2/nt2.hpp>and do cosmetic changes

Compile the file and link with 1ibnt2.a
nnn

PROFIT!

20 0f 40
e —

NT2 - From MATLAB ...

Al = 1:1000;
A2 = A1 + randn(size(A1));

X = Lu(AT*A1’);

rms = sqrt(sum(sqr(AT(:) - A2(:))) / numel(A1l));

21 of 40

O |numscale

NT2 - .. to C++

table<double> A1 = _(1.,1000.);
table<double> A2 = A1 + randn(size(A1));

table<double> X = lu(mtimes (A1, trans(Al));

double rms = sqrt(sum(sqr(A1(_) - A2(_))) / numel(Al));

22 of 40
e —

O)|numscale
Parallel Skeletons extraction process

A = B / sum(C+D);

23 of 40

O)|numscale
Parallel Skeletons extraction process

A = B / sum(C+D);

,,,,,,,,,,,,,,,

24 of 40

O)|numscale
From data to task parallelism

Limits of the fork-join model

Synchronization cost due to implicit barriers
Under-exploitation of potential parallelism

Poor data locality and no inter-statement optimization

25 0f 40
e —

O |numscale

From data to task parallelism

Limits of the fork-join model

Synchronization cost due to implicit barriers
Under-exploitation of potential parallelism

Poor data locality and no inter-statement optimization

From Skeletons to Actors

Upgrade NT? to enable task parallelism
Adapt current skeletons for taskification
Use Futures (sTp or HPX)to automatically create pipelines

Derive a dependency graph between statements

25 of 40

O)|numscale
Parallel Skeletons extraction process - Take 2

A = B / sum(C+D);

transform

~ o

_—— e e = o

26 of 40

O |numscale

Parallel Skeletons extraction process - Take 2

A =B / sum(C+D);

I I
Spawnertransform, OpenMPil ,,,,,, _
I

! AR SN |
I

I

|

I

5 2)p=) =
|
|
@ et s
' WOrkeryransform, simd

workerfo14, simd

27 of 40

O |numscale

Sigma-Delta Motion Detection

Context

Mono-modal algorithm based on background substraction

Use local gaussian model of lightness variation to detect motion
Target applications: robotic, video survey and analytics, defence
Challenge: Very low arithmetic density

Challenge: Integer-based implementation with small range

28 of 40

O |numscale

Motion Detection
NT2? Code

table<char> sigma_delta(table<char>& background
, table<char> const& frame
, table<char>& variance

)

// Estimate Raw Movement
background = selinc(background < frame
, seldec(background > frame, background)

)
table<char> diff = dist(background, frame);

// Compute Local Variance
table<char> sig3 = muls(diff,3);

var = if_else(diff != @
, selinc(variance < sig3
, seldec(var > sig3, variance)

)

, variance

)5

// Generate Movement Label
return if_zero_else_one(diff < variance);

29 of 40

e
O |numscale
Motion Detection

Performance
18
SCALAR mmmmm
HALF CORE
er FULL CORE s |
SIMD —
JRTIP2008 m=mmi
"r SIMD + HALF CORE i
SIMD + FULL CORE e
12 |]
€
o
£ 10]
°
> bl
1% o o
3 0 : 3 |
o

512x512 1024x1024
Image Size (N x N)

30 of 40

O |numscale

Black and Scholes Option Pricing

NT? Code

table<float> blackscholes(table<float> const& Sa, table<float> const& Xa
table<float> const& Ta
, table<float> const& ra, table<float> const& va

)
{
table<float> da = sqrt(Ta);
table<float> d1 = log(Sa/Xa) + (sqr(va)*0.5f+ra)xTa/(vax*da);
table<float> d2 = dl-vax*da;

return Sa*normcdf (d1)- Xa*exp(-raxTa)*normcdf (d2);

31 of 40

O |numscale

Black and Scholes Option Pricing

NT? Code with loop fusion

table<float> blackscholes(table<float> const& Sa, table<float> const& Xa
table<float> const& Ta
table<float> const& ra, table<float> const& va

)
{
// Preallocate temporary tables
table<float> da(extent(Ta)), dl(extent(Ta)), d2(extent(Ta)), R(extent(Ta));
// tie merge loop nest and increase cache locality
tie(da,d1,d2,R) = tie(sqrt(Ta)
, log(Sa/Xa) + (sqr(va)x@.5f+ra)*Ta/(vax*da)
, dl-vaxda
, Saxnormcdf (d1)- Xaxexp(-ra*Ta)*normcdf (d2)
)5
return R;
)

31 of 40

O |numscale

Black and Scholes Option Pricing

Performance
150 B scalar [
- SSE2
o
- SSE2, 4 cores
AVX2, 4 cores.
Q 100 7 [
=)
<
>
~
9
(%)
T
50 I
0

1000000

Size

32 of 40

O numscale
Black and Scholes Option Pricing

Performance with loop fusion

150 1 _—)
N =
A
e
AV 4 cores
o 100 - i
=
«
>
<
v
&
50 | i
0 1
1000000
Size
33 of 40

O numscale

LU Decomposition
Algorithm

DGETRF
DGESSM
DTSTRF
DSSSSM

step 5

34 of 40

©O)|numscale
LU Decomposition

Performance
8000 x 8000 LU decomposition
- A
100 S |
w /. - - .
a PR
(@] e T
@ ,’
O oOm *
3 .
g 50 5 //
> S
L
i —a- NT2
& - Intel MKL
0 | | | | | s |]
0 10 20 30 40 50
Number of cores
35 of 40

O |numscale
What we learn

Parallel Computing for Scientist

Software Libraries built as Generic and Generative components can solve a large
chunk of parallelism related problems while being easy to use.

Like regular language, EDSL needs informations about the hardware system

Integrating hardware descriptions as Generic components increases tools portability
and re-targetability

36 0 40
e —

O |numscale
What we learn

Parallel Computing for Scientist

Software Libraries built as Generic and Generative components can solve a large
chunk of parallelism related problems while being easy to use.

Like regular language, EDSL needs informations about the hardware system

Integrating hardware descriptions as Generic components increases tools portability
and re-targetability

New Directions

Toward a global generic approach to parallelism

Turning hacks into language features

36 0 40
e —

O |numscale
Generic Parallelism

Parallel C++ Concepts

Expand function hierarchization to Concepts
e.g : DataParallel, AssociativeOperations, etc.

Use C++ 1y Concept overloading to split skeletons

37 of 40
e —

O |numscale
Generic Parallelism

Parallel C++ Concepts

Expand function hierarchization to Concepts
e.g : DataParallel, AssociativeOperations, etc.

Use C++ 1y Concept overloading to split skeletons

Impact

Less work for the Skeleton users
Extendable through refinement

Static assertion of function properties

37 of 40
e —

O)|numscale
New C++ Language Features

My C++ Christmas Land

Build lazy evaluation into the language
Interactions with generic function is cumbersome

SIMD as part of the standard at type level

38 0 40
e —

O)|numscale
New C++ Language Features

My C++ Christmas Land

Build lazy evaluation into the language
Interactions with generic function is cumbersome

SIMD as part of the standard at type level

Current Work

Can sizeof inspires an ast_of operator
Proposal N4035 for auto customization

Proposal N3571 for standard SIMD computation

38 0 40
e —

O numscale
Perspectives

At tools level

Prototype of single source GPU support
Work on distributed systems
Applications to Big Data

39 of 40
e —

O numscale
Perspectives

At tools level

Prototype of single source GPU support
Work on distributed systems
Applications to Big Data

At language level

Formalize meta-programming
DSEL verification transferance over C++

Interaction with polyhedral model

39 of 40
e —

Thanks for your attention

	Introduction

