
(Costless) Software Abstractions for Parallel Architectures

numscale
Unlocked software performance

Joel Falcou

NumScale SAS – LRI - INRIA

CppCon – 01/07/2014

numscale
Unlocked software performance

Context

Decades of hardware improvements

� Scientic Computing now drives most hardware innovations
� Current Solution: Parallel architectures
� Machines become more and more complex

Example : A simple laptop

� CPU: Intel Core i5-2410M (2.3 GHz) : 4 logical cores, AVX
� 4 logical cores
� SIMD Extensions: SSE2-SSE4.2, AVX

� GPU: NVIDIA GeForce GT 520M (48 CUDA cores)

2 of 40

numscale
Unlocked software performance

Context

Decades of hardware improvements

� Scientic Computing now drives most hardware innovations
� Current Solution: Parallel architectures
� Machines become more and more complex

Example : A simple laptop

� CPU: Intel Core i5-2410M (2.3 GHz) : 4 logical cores, AVX
� 4 logical cores
� SIMD Extensions: SSE2-SSE4.2, AVX

� GPU: NVIDIA GeForce GT 520M (48 CUDA cores)

2 of 40

numscale
Unlocked software performance

The Real Challenge of HPC

Single Core Era

Performance

Expressiveness

C/Fort.

C++

Java

Multi-Core/SIMD Era

Performance

Expressiveness

Sequential

Threads

SIMD

Heterogenous Era

Performance

Expressiveness

Sequential

SIMD

Threads

GPU
Phi

Distributed

3 of 40

numscale
Unlocked software performance

Designing tools for Scientic Computing

Challenges

1. Be non-disruptive

2. Domain driven optimizations

3. Provide intuitive API for the user

4. Support a wide architectural landscape

5. Be efficient

Our Approach

� Design tools as C++ libraries (1)
� Design these libraries as Domain Specic Embedded Language (DSEL) (2+3)
� Use Parallel Skeletons as parallel components (4)
� Use Generative Programming to deliver performance (5)

4 of 40

numscale
Unlocked software performance

Designing tools for Scientic Computing

Challenges

1. Be non-disruptive

2. Domain driven optimizations

3. Provide intuitive API for the user

4. Support a wide architectural landscape

5. Be efficient

Our Approach

� Design tools as C++ libraries (1)
� Design these libraries as Domain Specic Embedded Language (DSEL) (2+3)
� Use Parallel Skeletons as parallel components (4)
� Use Generative Programming to deliver performance (5)

4 of 40

numscale
Unlocked software performance

Designing tools for Scientic Computing

Challenges

1. Be non-disruptive

2. Domain driven optimizations

3. Provide intuitive API for the user

4. Support a wide architectural landscape

5. Be efficient

Our Approach

� Design tools as C++ libraries (1)
� Design these libraries as Domain Specic Embedded Language (DSEL) (2+3)
� Use Parallel Skeletons as parallel components (4)
� Use Generative Programming to deliver performance (5)

4 of 40

numscale
Unlocked software performance

Designing tools for Scientic Computing

Challenges

1. Be non-disruptive

2. Domain driven optimizations

3. Provide intuitive API for the user

4. Support a wide architectural landscape

5. Be efficient

Our Approach

� Design tools as C++ libraries (1)
� Design these libraries as Domain Specic Embedded Language (DSEL) (2+3)
� Use Parallel Skeletons as parallel components (4)
� Use Generative Programming to deliver performance (5)

4 of 40

numscale
Unlocked software performance

Designing tools for Scientic Computing

Challenges

1. Be non-disruptive

2. Domain driven optimizations

3. Provide intuitive API for the user

4. Support a wide architectural landscape

5. Be efficient

Our Approach

� Design tools as C++ libraries (1)
� Design these libraries as Domain Specic Embedded Language (DSEL) (2+3)
� Use Parallel Skeletons as parallel components (4)
� Use Generative Programming to deliver performance (5)

4 of 40

numscale
Unlocked software performance

Designing tools for Scientic Computing

Challenges

1. Be non-disruptive

2. Domain driven optimizations

3. Provide intuitive API for the user

4. Support a wide architectural landscape

5. Be efficient

Our Approach

� Design tools as C++ libraries (1)
� Design these libraries as Domain Specic Embedded Language (DSEL) (2+3)
� Use Parallel Skeletons as parallel components (4)
� Use Generative Programming to deliver performance (5)

4 of 40

numscale
Unlocked software performance

Designing tools for Scientic Computing

Challenges

1. Be non-disruptive

2. Domain driven optimizations

3. Provide intuitive API for the user

4. Support a wide architectural landscape

5. Be efficient

Our Approach

� Design tools as C++ libraries (1)
� Design these libraries as Domain Specic Embedded Language (DSEL) (2+3)
� Use Parallel Skeletons as parallel components (4)
� Use Generative Programming to deliver performance (5)

4 of 40

numscale
Unlocked software performance

Designing tools for Scientic Computing

Challenges

1. Be non-disruptive

2. Domain driven optimizations

3. Provide intuitive API for the user

4. Support a wide architectural landscape

5. Be efficient

Our Approach

� Design tools as C++ libraries (1)

� Design these libraries as Domain Specic Embedded Language (DSEL) (2+3)
� Use Parallel Skeletons as parallel components (4)
� Use Generative Programming to deliver performance (5)

4 of 40

numscale
Unlocked software performance

Designing tools for Scientic Computing

Challenges

1. Be non-disruptive

2. Domain driven optimizations

3. Provide intuitive API for the user

4. Support a wide architectural landscape

5. Be efficient

Our Approach

� Design tools as C++ libraries (1)
� Design these libraries as Domain Specic Embedded Language (DSEL) (2+3)

� Use Parallel Skeletons as parallel components (4)
� Use Generative Programming to deliver performance (5)

4 of 40

numscale
Unlocked software performance

Designing tools for Scientic Computing

Challenges

1. Be non-disruptive

2. Domain driven optimizations

3. Provide intuitive API for the user

4. Support a wide architectural landscape

5. Be efficient

Our Approach

� Design tools as C++ libraries (1)
� Design these libraries as Domain Specic Embedded Language (DSEL) (2+3)
� Use Parallel Skeletons as parallel components (4)

� Use Generative Programming to deliver performance (5)

4 of 40

numscale
Unlocked software performance

Designing tools for Scientic Computing

Challenges

1. Be non-disruptive

2. Domain driven optimizations

3. Provide intuitive API for the user

4. Support a wide architectural landscape

5. Be efficient

Our Approach

� Design tools as C++ libraries (1)
� Design these libraries as Domain Specic Embedded Language (DSEL) (2+3)
� Use Parallel Skeletons as parallel components (4)
� Use Generative Programming to deliver performance (5)

4 of 40

numscale
Unlocked software performance

Parallel Programming Ain’t Easy

5 of 40

numscale
Unlocked software performance

Spotting abstraction when you see one

Why Parallel Programming Models ?

� Unstructured parallelism is error-prone
� Low level parallel tools are non-composable

Available Models

� Performance centric: P-RAM, LOG-P, BSP
� Data centric: HTA, PGAS
� Pattern centric: Actors, Skeletons

6 of 40

numscale
Unlocked software performance

Spotting abstraction when you see one

Why Parallel Programming Models ?

� Unstructured parallelism is error-prone
� Low level parallel tools are non-composable

Available Models

� Performance centric: P-RAM, LOG-P, BSP
� Data centric: HTA, PGAS
� Pattern centric: Actors, Skeletons

6 of 40

numscale
Unlocked software performance

Spotting abstraction when you see one

Why Parallel Programming Models ?

� Unstructured parallelism is error-prone
� Low level parallel tools are non-composable

Available Models

� Performance centric: P-RAM, LOG-P, BSP
� Data centric: HTA, PGAS
� Pattern centric: Actors, Skeletons

6 of 40

numscale
Unlocked software performance

Parallel Skeletons in a nutshell

Basic Principles [COLE 89]

� There are patterns in parallel applications
� Those patterns can be generalized in Skeletons
� Applications are assembled as combination of such patterns

Functionnal point of view

� Skeletons are Higher-Order Functions
� Skeletons support a compositionnal semantic
� Applications become composition of state-less functions

7 of 40

numscale
Unlocked software performance

Parallel Skeletons in a nutshell

Basic Principles [COLE 89]

� There are patterns in parallel applications
� Those patterns can be generalized in Skeletons
� Applications are assembled as combination of such patterns

Functionnal point of view

� Skeletons are Higher-Order Functions
� Skeletons support a compositionnal semantic
� Applications become composition of state-less functions

7 of 40

numscale
Unlocked software performance

Classic Parallel Skeletons

Data Parallel Skeletons

� map: Apply a n-ary function in SIMD mode over subset of data
� fold: Perform n-ary reduction over subset of data
� scan: Perform n-ary prex reduction over subset of data

Task Parallel Skeletons

� par: Independant task execution
� pipe: Task dependency over time
� farm: Load-balancing

8 of 40

numscale
Unlocked software performance

Classic Parallel Skeletons

Data Parallel Skeletons

� map: Apply a n-ary function in SIMD mode over subset of data
� fold: Perform n-ary reduction over subset of data
� scan: Perform n-ary prex reduction over subset of data

Task Parallel Skeletons

� par: Independant task execution
� pipe: Task dependency over time
� farm: Load-balancing

8 of 40

numscale
Unlocked software performance

Why using Parallel Skeletons

Software Abstraction

� Write without bothering with parallel details
� Code is scalable and easy to maintain
� Debuggable, Provable, Certiable

Hardware Abstraction

� Semantic is set, implementation is free
� Composability ⇒ Hierarchical architecture

9 of 40

numscale
Unlocked software performance

Why using Parallel Skeletons

Software Abstraction

� Write without bothering with parallel details
� Code is scalable and easy to maintain
� Debuggable, Provable, Certiable

Hardware Abstraction

� Semantic is set, implementation is free
� Composability ⇒ Hierarchical architecture

9 of 40

numscale
Unlocked software performance

Generative Programming

Domain Specific
Application Description

Generative Component Concrete Application

Translator

Parametric
Sub-components

10 of 40

numscale
Unlocked software performance

Generative Programming as a Tool

Available techniques

� Dedicated compilers
� External pre-processing tools
� Languages supporting meta-programming

Denition of Meta-programming
Meta-programming is the writing of computer programs that analyse, transform and
generate other programs (or themselves) as their data.

C++ meta-programming

� Relies on the C++  sub-language
� Handles types and integral constants at compile-time
� Proved to be Turing-complete

11 of 40

numscale
Unlocked software performance

Generative Programming as a Tool

Available techniques

� Dedicated compilers
� External pre-processing tools
� Languages supporting meta-programming

Denition of Meta-programming
Meta-programming is the writing of computer programs that analyse, transform and
generate other programs (or themselves) as their data.

C++ meta-programming

� Relies on the C++  sub-language
� Handles types and integral constants at compile-time
� Proved to be Turing-complete

11 of 40

numscale
Unlocked software performance

Generative Programming as a Tool

Available techniques

� Dedicated compilers
� External pre-processing tools
� Languages supporting meta-programming

Denition of Meta-programming
Meta-programming is the writing of computer programs that analyse, transform and
generate other programs (or themselves) as their data.

C++ meta-programming

� Relies on the C++  sub-language
� Handles types and integral constants at compile-time
� Proved to be Turing-complete

11 of 40

numscale
Unlocked software performance

Generative Programming as a Tool

Available techniques

� Dedicated compilers
� External pre-processing tools
� Languages supporting meta-programming

Denition of Meta-programming
Meta-programming is the writing of computer programs that analyse, transform and
generate other programs (or themselves) as their data.

C++ meta-programming

� Relies on the C++  sub-language
� Handles types and integral constants at compile-time
� Proved to be Turing-complete

11 of 40

numscale
Unlocked software performance

Domain Specic Embedded Languages

What’s an DSEL ?
� DSL = Domain Specic Language
� Declarative language, easy-to-use, tting the domain
� DSEL = DSL within a general purpose language

EDSL in C++
� Relies on operator overload abuse (Expression Templates)
� Carry semantic information around code fragment
� Generic implementation become self-aware of optimizations

Exploiting static AST

� At the expression level: code generation
� At the function level: inter-procedural optimization

12 of 40

numscale
Unlocked software performance

Embedded Domain Specic Languages

EDSL in C++
� Relies on operator overload abuse – see B.P
� Carry semantic information around code fragment
� Generic implementation become self-aware of optimizations

Advantages

� Allow introduction of DSLs without disrupting dev. chain
� Semantic dened as type informations means compile-time resolution
� Access to a large selection of runtime binding

13 of 40

numscale
Unlocked software performance

Expression Templates in A Nutshell

14 of 40

numscale
Unlocked software performance

Expression Templates

matrix x(h,w),a(h,w),b(h,w);

x = cos(a) + (b*a);

expr<assign
 ,expr<matrix&>
 ,expr<plus
 , expr<cos
 ,expr<matrix&>
 >
 , expr<multiplies
 ,expr<matrix&>
 ,expr<matrix&>
 >
 >(x,a,b);

+

*cos

a ab

=

x

#pragma omp parallel for
for(int j=0;j<h;++j)
{
 for(int i=0;i<w;++i)
 {
 x(j,i) = cos(a(j,i))
 + (b(j,i)
 * a(j,i)
);
 }
}

Arbitrary Transforms applied
on the meta-AST

15 of 40

numscale
Unlocked software performance

Architecture Aware Generative Programming

16 of 40

numscale
Unlocked software performance

Parallel DSEL in practice

Objectives

� Apply DSEL generation techniques for different kind of hardware
� Demonstrate low cost of abstractions
� Demonstrate applicability of skeletons

Our contribution

� BSP++ : Generic C++ BSP for shared/distributed memory
� Quaff: DSEL for skeleton programming
� B.SIMD: DSEL for portable SIMD programming
� NT2: M like DSEL for scientic computing

17 of 40

numscale
Unlocked software performance

Parallel DSEL in practice

Objectives

� Apply DSEL generation techniques for different kind of hardware
� Demonstrate low cost of abstractions
� Demonstrate applicability of skeletons

Our contribution

� BSP++ : Generic C++ BSP for shared/distributed memory
� Quaff: DSEL for skeleton programming
� B.SIMD: DSEL for portable SIMD programming
� NT2: M like DSEL for scientic computing

17 of 40

numscale
Unlocked software performance

Parallel DSEL in practice

Objectives

� Apply DSEL generation techniques for different kind of hardware
� Demonstrate low cost of abstractions
� Demonstrate applicability of skeletons

Our contribution

� BSP++ : Generic C++ BSP for shared/distributed memory
� Quaff: DSEL for skeleton programming
� B.SIMD: DSEL for portable SIMD programming
� NT2: M like DSEL for scientic computing

17 of 40

numscale
Unlocked software performance

NT2

A Scientic Computing Library

� Provide a simple, M-like interface for users
� Provide high-performance computing entities and primitives
� Easily extendable

Components

� Use Boost.SIMD for in-core optimizations
� Use recursive parallel skeletons
� Code is made independant of architecture and runtime

18 of 40

numscale
Unlocked software performance

The Numerical Template Toolbox
Comparison to other libraries

Feature Armadillo Blaze Eigen MTL uBlas NT2

M-like API X − − − − X
BLAS/LAPACK binding X X X X X X
MAGMA binding − − − − − X
SSE2+ support X X X − − X
AVX support X X − − − X
AVX2 support − − − − − X
Xeon Phi support − − − − − X
Altivec support − − X − − X
ARM support − − X − − X
Threading support − − − − − X
CUDA support − − − − − X

19 of 40

numscale
Unlocked software performance

The Numerical Template Toolbox

Principles

� table<T,S> is a simple, multidimensional array object that exactly mimics
M array behavior and functionalities

� 500+ functions usable directly either on table or on any scalar values as in M

How does it works

� Take a .m le, copy to a .cpp le
� Add #include <nt2/nt2.hpp> and do cosmetic changes
� Compile the le and link with libnt2.a

� ??????
� PROFIT!

20 of 40

numscale
Unlocked software performance

The Numerical Template Toolbox

Principles

� table<T,S> is a simple, multidimensional array object that exactly mimics
M array behavior and functionalities

� 500+ functions usable directly either on table or on any scalar values as in M

How does it works
� Take a .m le, copy to a .cpp le

� Add #include <nt2/nt2.hpp> and do cosmetic changes
� Compile the le and link with libnt2.a

� ??????
� PROFIT!

20 of 40

numscale
Unlocked software performance

The Numerical Template Toolbox

Principles

� table<T,S> is a simple, multidimensional array object that exactly mimics
M array behavior and functionalities

� 500+ functions usable directly either on table or on any scalar values as in M

How does it works
� Take a .m le, copy to a .cpp le
� Add #include <nt2/nt2.hpp> and do cosmetic changes

� Compile the le and link with libnt2.a

� ??????
� PROFIT!

20 of 40

numscale
Unlocked software performance

The Numerical Template Toolbox

Principles

� table<T,S> is a simple, multidimensional array object that exactly mimics
M array behavior and functionalities

� 500+ functions usable directly either on table or on any scalar values as in M

How does it works
� Take a .m le, copy to a .cpp le
� Add #include <nt2/nt2.hpp> and do cosmetic changes
� Compile the le and link with libnt2.a

� ??????
� PROFIT!

20 of 40

numscale
Unlocked software performance

The Numerical Template Toolbox

Principles

� table<T,S> is a simple, multidimensional array object that exactly mimics
M array behavior and functionalities

� 500+ functions usable directly either on table or on any scalar values as in M

How does it works
� Take a .m le, copy to a .cpp le
� Add #include <nt2/nt2.hpp> and do cosmetic changes
� Compile the le and link with libnt2.a

� ??????
� PROFIT!

20 of 40

numscale
Unlocked software performance

NT2 - From M ...

A1 = 1:1000;
A2 = A1 + randn(size(A1));

X = lu(A1*A1’);

rms = sqrt(sum(sqr(A1(:) - A2(:))) / numel(A1));

21 of 40

numscale
Unlocked software performance

NT2 - ... to C++

table <double > A1 = _(1. ,1000.);
table <double > A2 = A1 + randn(size(A1));

table <double > X = lu(mtimes(A1 , trans(A1));

double rms = sqrt(sum(sqr(A1(_) - A2(_))) / numel(A1));

22 of 40

numscale
Unlocked software performance

Parallel Skeletons extraction process

A = B / sum(C+D);

=

A /

B sum

+

C D

fold

transform

23 of 40

numscale
Unlocked software performance

Parallel Skeletons extraction process

A = B / sum(C+D);

; ;

=

A /

B sum

+

C D

fold

transform

=

tmp sum

+

C D

fold

⇒
=

A /

B tmp

transform

24 of 40

numscale
Unlocked software performance

From data to task parallelism

Limits of the fork-join model

� Synchronization cost due to implicit barriers
� Under-exploitation of potential parallelism
� Poor data locality and no inter-statement optimization

From Skeletons to Actors

� Upgrade NT2 to enable task parallelism
� Adapt current skeletons for taskication
� Use Futures ( or HPX)to automatically create pipelines
� Derive a dependency graph between statements

25 of 40

numscale
Unlocked software performance

From data to task parallelism

Limits of the fork-join model

� Synchronization cost due to implicit barriers
� Under-exploitation of potential parallelism
� Poor data locality and no inter-statement optimization

From Skeletons to Actors

� Upgrade NT2 to enable task parallelism
� Adapt current skeletons for taskication
� Use Futures ( or HPX)to automatically create pipelines
� Derive a dependency graph between statements

25 of 40

numscale
Unlocked software performance

Parallel Skeletons extraction process - Take 2

A = B / sum(C+D);

; ;

=

tmp sum

+

C D

fold

=

A /

B tmp

transform

26 of 40

numscale
Unlocked software performance

Parallel Skeletons extraction process - Take 2

A = B / sum(C+D);

fold

=

tmp(3) sum(3)

+

C(:, 3) D(:, 3)
transform

=

A(:, 3) /

B(:, 3) tmp(3)

fold

=

tmp(2) sum(2)

+

C(:, 2) D(:, 2)
transform

=

A(:, 2) /

B(:, 2) tmp(2)

workerfold,simd

=

tmp(1) sum

+

C(:, 1) D(:, 1)
workertransform,simd

=

A(:, 1) /

B(:, 1) tmp(1)

spawnertransform,OpenMP

spawnertransform,OpenMP

;

27 of 40

numscale
Unlocked software performance

Sigma-Delta Motion Detection
Context

� Mono-modal algorithm based on background substraction
� Use local gaussian model of lightness variation to detect motion
� Target applications: robotic, video survey and analytics, defence
� Challenge: Very low arithmetic density
� Challenge: Integer-based implementation with small range

28 of 40

numscale
Unlocked software performance

Motion Detection
NT2 Code

table <char > sigma_delta(table <char >& background
, table <char > const& frame
, table <char >& variance
)

{
// Estimate Raw Movement
background = selinc(background < frame

, seldec(background > frame , background)
);

table <char > diff = dist(background , frame);

// Compute Local Variance
table <char > sig3 = muls(diff ,3);

var = if_else(diff != 0
, selinc(variance < sig3

, seldec(var > sig3 , variance)
)

, variance
);

// Generate Movement Label
return if_zero_else_one(diff < variance);

}

29 of 40

numscale
Unlocked software performance

Motion Detection
Performance

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

512x512 1024x1024

c
y
c
le

s
/e

le
m

e
n
t

Image Size (N x N)

x
6
.8

x
1
4
.8

x
1
6
.5

x
2
.1

x
3
.6

x
6
.7

x
1
5
.3

x
1
8

x
2
.3

x
3
.9

9

x
1
0
.8

x
1
0
.8

SCALAR
HALF CORE
FULL CORE

SIMD
JRTIP2008

SIMD + HALF CORE
SIMD + FULL CORE

30 of 40

numscale
Unlocked software performance

Black and Scholes Option Pricing

NT2 Code
table <float > blackscholes(table <float > const& Sa, table <float > const& Xa

, table <float > const& Ta
, table <float > const& ra, table <float > const& va
)

{
table <float > da = sqrt(Ta);
table <float > d1 = log(Sa/Xa) + (sqr(va)*0.5f+ra)*Ta/(va*da);
table <float > d2 = d1-va*da;

return Sa*normcdf(d1)- Xa*exp(-ra*Ta)*normcdf(d2);
}

31 of 40

numscale
Unlocked software performance

Black and Scholes Option Pricing

NT2 Code with loop fusion
table <float > blackscholes(table <float > const& Sa, table <float > const& Xa

, table <float > const& Ta
, table <float > const& ra, table <float > const& va
)

{
// Preallocate temporary tables
table <float > da(extent(Ta)), d1(extent(Ta)), d2(extent(Ta)), R(extent(Ta));

// tie merge loop nest and increase cache locality
tie(da,d1 ,d2,R) = tie(sqrt(Ta)

, log(Sa/Xa) + (sqr(va)*0.5f+ra)*Ta/(va*da)
, d1-va*da
, Sa*normcdf(d1)- Xa*exp(-ra*Ta)*normcdf(d2)
);

return R;
}

31 of 40

numscale
Unlocked software performance

Black and Scholes Option Pricing
Performance

1000000

0

50

100

150

x1
.8

9

x2
.9

1

x5
.5

8

x6
.3

0

Size

cy
cl
e/
va
lu
e

scalar

SSE2

AVX2

SSE2, 4 cores

AVX2, 4 cores

32 of 40

numscale
Unlocked software performance

Black and Scholes Option Pricing
Performance with loop fusion

1000000

0

50

100

150

x2
.2

7

x4
.1

3

x8
.0

5

x1
1.

12

Size

cy
cl
e/
va
lu
e

scalar

SSE2

AVX2

SSE2, 4 cores

AVX2, 4 cores

33 of 40

numscale
Unlocked software performance

LU Decomposition
Algorithm

A00

A01 A02A10

A20 A11

A21

A12

A22 A11

A12A21

A22

A22

step 1

step 2

step 3

step 4

step 5

step 6

step 7

DGETRF

DGESSM

DTSTRF

DSSSSM

34 of 40

numscale
Unlocked software performance

LU Decomposition
Performance

0 10 20 30 40 50

0

50

100

Number of cores

M
ed

ia
n

G
FL

O
PS

8000× 8000 LU decomposition

NT2
Intel MKL

35 of 40

numscale
Unlocked software performance

What we learn

Parallel Computing for Scientist

� Software Libraries built as Generic and Generative components can solve a large
chunk of parallelism related problems while being easy to use.

� Like regular language, EDSL needs informations about the hardware system
� Integrating hardware descriptions as Generic components increases tools portability

and re-targetability

New Directions
� Toward a global generic approach to parallelism
� Turning hacks into language features

36 of 40

numscale
Unlocked software performance

What we learn

Parallel Computing for Scientist

� Software Libraries built as Generic and Generative components can solve a large
chunk of parallelism related problems while being easy to use.

� Like regular language, EDSL needs informations about the hardware system
� Integrating hardware descriptions as Generic components increases tools portability

and re-targetability

New Directions
� Toward a global generic approach to parallelism
� Turning hacks into language features

36 of 40

numscale
Unlocked software performance

Generic Parallelism

Parallel C++ Concepts

� Expand function hierarchization to Concepts
� e.g : DataParallel, AssociativeOperations, etc.
� Use C++1y Concept overloading to split skeletons

Impact

� Less work for the Skeleton users
� Extendable through renement
� Static assertion of function properties

37 of 40

numscale
Unlocked software performance

Generic Parallelism

Parallel C++ Concepts

� Expand function hierarchization to Concepts
� e.g : DataParallel, AssociativeOperations, etc.
� Use C++1y Concept overloading to split skeletons

Impact

� Less work for the Skeleton users
� Extendable through renement
� Static assertion of function properties

37 of 40

numscale
Unlocked software performance

New C++ Language Features

My C++ Christmas Land

� Build lazy evaluation into the language
� Interactions with generic function is cumbersome
� SIMD as part of the standard at type level

Current Work
� Can sizeof inspires an ast_of operator
� Proposal N4035 for auto customization
� Proposal N3571 for standard SIMD computation

38 of 40

numscale
Unlocked software performance

New C++ Language Features

My C++ Christmas Land

� Build lazy evaluation into the language
� Interactions with generic function is cumbersome
� SIMD as part of the standard at type level

Current Work
� Can sizeof inspires an ast_of operator
� Proposal N4035 for auto customization
� Proposal N3571 for standard SIMD computation

38 of 40

numscale
Unlocked software performance

Perspectives

At tools level

� Prototype of single source GPU support
� Work on distributed systems
� Applications to Big Data

At language level

� Formalize meta-programming
� DSEL verication transferance over C++
� Interaction with polyhedral model

39 of 40

numscale
Unlocked software performance

Perspectives

At tools level

� Prototype of single source GPU support
� Work on distributed systems
� Applications to Big Data

At language level

� Formalize meta-programming
� DSEL verication transferance over C++
� Interaction with polyhedral model

39 of 40

Thanks for your attention

	Introduction

