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Context

Decades of hardware improvements

� Scientic Computing now drives most hardware innovations
� Current Solution: Parallel architectures
� Machines become more and more complex

Example : A simple laptop

� CPU: Intel Core i5-2410M (2.3 GHz) : 4 logical cores, AVX
� 4 logical cores
� SIMD Extensions: SSE2-SSE4.2, AVX

� GPU: NVIDIA GeForce GT 520M (48 CUDA cores)
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The Real Challenge of HPC

Single Core Era
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Designing tools for Scientic Computing

Challenges

1. Be non-disruptive

2. Domain driven optimizations

3. Provide intuitive API for the user

4. Support a wide architectural landscape

5. Be efficient

Our Approach

� Design tools as C++ libraries (1)
� Design these libraries as Domain Specic Embedded Language (DSEL) (2+3)
� Use Parallel Skeletons as parallel components (4)
� Use Generative Programming to deliver performance (5)
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Parallel Programming Ain’t Easy
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Spotting abstraction when you see one

Why Parallel Programming Models ?

� Unstructured parallelism is error-prone
� Low level parallel tools are non-composable

Available Models

� Performance centric: P-RAM, LOG-P, BSP
� Data centric: HTA, PGAS
� Pattern centric: Actors, Skeletons
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Parallel Skeletons in a nutshell

Basic Principles [COLE 89]

� There are patterns in parallel applications
� Those patterns can be generalized in Skeletons
� Applications are assembled as combination of such patterns

Functionnal point of view

� Skeletons are Higher-Order Functions
� Skeletons support a compositionnal semantic
� Applications become composition of state-less functions
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Classic Parallel Skeletons

Data Parallel Skeletons

� map: Apply a n-ary function in SIMD mode over subset of data
� fold: Perform n-ary reduction over subset of data
� scan: Perform n-ary prex reduction over subset of data

Task Parallel Skeletons

� par: Independant task execution
� pipe: Task dependency over time
� farm: Load-balancing
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Why using Parallel Skeletons

Software Abstraction

� Write without bothering with parallel details
� Code is scalable and easy to maintain
� Debuggable, Provable, Certiable

Hardware Abstraction

� Semantic is set, implementation is free
� Composability ⇒ Hierarchical architecture
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Generative Programming

Domain Specific
Application Description

Generative Component Concrete Application

Translator

Parametric 
Sub-components
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Generative Programming as a Tool

Available techniques

� Dedicated compilers
� External pre-processing tools
� Languages supporting meta-programming

Denition of Meta-programming
Meta-programming is the writing of computer programs that analyse, transform and
generate other programs (or themselves) as their data.

C++ meta-programming

� Relies on the C++  sub-language
� Handles types and integral constants at compile-time
� Proved to be Turing-complete
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Domain Specic Embedded Languages

What’s an DSEL ?
� DSL = Domain Specic Language
� Declarative language, easy-to-use, tting the domain
� DSEL = DSL within a general purpose language

EDSL in C++
� Relies on operator overload abuse (Expression Templates)
� Carry semantic information around code fragment
� Generic implementation become self-aware of optimizations

Exploiting static AST

� At the expression level: code generation
� At the function level: inter-procedural optimization
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Embedded Domain Specic Languages

EDSL in C++
� Relies on operator overload abuse – see B.P
� Carry semantic information around code fragment
� Generic implementation become self-aware of optimizations

Advantages

� Allow introduction of DSLs without disrupting dev. chain
� Semantic dened as type informations means compile-time resolution
� Access to a large selection of runtime binding
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Expression Templates in A Nutshell
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Expression Templates

matrix x(h,w),a(h,w),b(h,w);

x = cos(a) + (b*a);

expr<assign
    ,expr<matrix&>
    ,expr<plus
         , expr<cos
               ,expr<matrix&>
               > 
         , expr<multiplies
               ,expr<matrix&> 
               ,expr<matrix&>
               >
         >(x,a,b);

+

*cos

a ab

=

x

#pragma omp parallel for
for(int j=0;j<h;++j)
{
  for(int i=0;i<w;++i)
  {
    x(j,i) = cos(a(j,i)) 
           + (  b(j,i) 
              * a(j,i)
           );
  }
}

Arbitrary Transforms applied
on the meta-AST
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Architecture Aware Generative Programming
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Parallel DSEL in practice

Objectives

� Apply DSEL generation techniques for different kind of hardware
� Demonstrate low cost of abstractions
� Demonstrate applicability of skeletons

Our contribution

� BSP++ : Generic C++ BSP for shared/distributed memory
� Quaff: DSEL for skeleton programming
� B.SIMD: DSEL for portable SIMD programming
� NT2: M like DSEL for scientic computing
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NT2

A Scientic Computing Library

� Provide a simple, M-like interface for users
� Provide high-performance computing entities and primitives
� Easily extendable

Components

� Use Boost.SIMD for in-core optimizations
� Use recursive parallel skeletons
� Code is made independant of architecture and runtime
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The Numerical Template Toolbox
Comparison to other libraries

Feature Armadillo Blaze Eigen MTL uBlas NT2

M-like API X − − − − X
BLAS/LAPACK binding X X X X X X
MAGMA binding − − − − − X
SSE2+ support X X X − − X
AVX support X X − − − X
AVX2 support − − − − − X
Xeon Phi support − − − − − X
Altivec support − − X − − X
ARM support − − X − − X
Threading support − − − − − X
CUDA support − − − − − X
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The Numerical Template Toolbox

Principles

� table<T,S> is a simple, multidimensional array object that exactly mimics
M array behavior and functionalities

� 500+ functions usable directly either on table or on any scalar values as in M

How does it works

� Take a .m le, copy to a .cpp le
� Add #include <nt2/nt2.hpp> and do cosmetic changes
� Compile the le and link with libnt2.a

� ??????
� PROFIT!
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NT2 - From M ...

A1 = 1:1000;
A2 = A1 + randn(size(A1));

X = lu(A1*A1’);

rms = sqrt( sum(sqr(A1(:) - A2(:))) / numel(A1) );
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NT2 - ... to C++

table <double > A1 = _(1. ,1000.);
table <double > A2 = A1 + randn(size(A1));

table <double > X = lu( mtimes(A1 , trans(A1) );

double rms = sqrt( sum(sqr(A1(_) - A2(_))) / numel(A1) );
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Parallel Skeletons extraction process

A = B / sum(C+D);

=

A /

B sum

+

C D

fold

transform
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Parallel Skeletons extraction process

A = B / sum(C+D);

; ;

=

A /

B sum

+

C D

fold

transform

=

tmp sum

+

C D

fold

⇒
=

A /

B tmp

transform
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From data to task parallelism

Limits of the fork-join model

� Synchronization cost due to implicit barriers
� Under-exploitation of potential parallelism
� Poor data locality and no inter-statement optimization

From Skeletons to Actors

� Upgrade NT2 to enable task parallelism
� Adapt current skeletons for taskication
� Use Futures ( or HPX)to automatically create pipelines
� Derive a dependency graph between statements
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Parallel Skeletons extraction process - Take 2

A = B / sum(C+D);

; ;

=

tmp sum

+

C D

fold

=

A /

B tmp

transform
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Parallel Skeletons extraction process - Take 2

A = B / sum(C+D);

fold

=

tmp(3) sum(3)

+

C(:, 3) D(:, 3)
transform

=

A(:, 3) /

B(:, 3) tmp(3)

fold

=

tmp(2) sum(2)

+

C(:, 2) D(:, 2)
transform

=

A(:, 2) /

B(:, 2) tmp(2)

workerfold,simd

=

tmp(1) sum

+

C(:, 1) D(:, 1)
workertransform,simd

=

A(:, 1) /

B(:, 1) tmp(1)

spawnertransform,OpenMP

spawnertransform,OpenMP

;
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Sigma-Delta Motion Detection
Context

� Mono-modal algorithm based on background substraction
� Use local gaussian model of lightness variation to detect motion
� Target applications: robotic, video survey and analytics, defence
� Challenge: Very low arithmetic density
� Challenge: Integer-based implementation with small range
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Motion Detection
NT2 Code

table <char > sigma_delta( table <char >& background
, table <char > const& frame
, table <char >& variance
)

{
// Estimate Raw Movement
background = selinc( background < frame

, seldec(background > frame , background)
);

table <char > diff = dist(background , frame);

// Compute Local Variance
table <char > sig3 = muls(diff ,3);

var = if_else( diff != 0
, selinc( variance < sig3

, seldec( var > sig3 , variance)
)

, variance
);

// Generate Movement Label
return if_zero_else_one( diff < variance );

}
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Motion Detection
Performance
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Black and Scholes Option Pricing

NT2 Code
table <float > blackscholes( table <float > const& Sa, table <float > const& Xa

, table <float > const& Ta
, table <float > const& ra, table <float > const& va
)

{
table <float > da = sqrt(Ta);
table <float > d1 = log(Sa/Xa) + (sqr(va)*0.5f+ra)*Ta/(va*da);
table <float > d2 = d1-va*da;

return Sa*normcdf(d1)- Xa*exp(-ra*Ta)*normcdf(d2);
}
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Black and Scholes Option Pricing

NT2 Code with loop fusion
table <float > blackscholes( table <float > const& Sa, table <float > const& Xa

, table <float > const& Ta
, table <float > const& ra, table <float > const& va
)

{
// Preallocate temporary tables
table <float > da(extent(Ta)), d1(extent(Ta)), d2(extent(Ta)), R(extent(Ta));

// tie merge loop nest and increase cache locality
tie(da,d1 ,d2,R) = tie( sqrt(Ta)

, log(Sa/Xa) + (sqr(va)*0.5f+ra)*Ta/(va*da)
, d1-va*da
, Sa*normcdf(d1)- Xa*exp(-ra*Ta)*normcdf(d2)
);

return R;
}
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Black and Scholes Option Pricing
Performance
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Black and Scholes Option Pricing
Performance with loop fusion
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LU Decomposition
Algorithm

A00

A01 A02A10

A20 A11

A21

A12

A22 A11

A12A21

A22

A22

step 1

step 2

step 3

step 4

step 5

step 6

step 7

DGETRF
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DTSTRF

DSSSSM
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LU Decomposition
Performance
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What we learn

Parallel Computing for Scientist

� Software Libraries built as Generic and Generative components can solve a large
chunk of parallelism related problems while being easy to use.

� Like regular language, EDSL needs informations about the hardware system
� Integrating hardware descriptions as Generic components increases tools portability

and re-targetability

New Directions
� Toward a global generic approach to parallelism
� Turning hacks into language features
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Generic Parallelism

Parallel C++ Concepts

� Expand function hierarchization to Concepts
� e.g : DataParallel, AssociativeOperations, etc.
� Use C++1y Concept overloading to split skeletons

Impact

� Less work for the Skeleton users
� Extendable through renement
� Static assertion of function properties
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New C++ Language Features

My C++ Christmas Land

� Build lazy evaluation into the language
� Interactions with generic function is cumbersome
� SIMD as part of the standard at type level

Current Work
� Can sizeof inspires an ast_of operator
� Proposal N4035 for auto customization
� Proposal N3571 for standard SIMD computation
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Perspectives

At tools level

� Prototype of single source GPU support
� Work on distributed systems
� Applications to Big Data

At language level

� Formalize meta-programming
� DSEL verication transferance over C++
� Interaction with polyhedral model
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Thanks for your attention
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