Lock-Free Programming

/\’\
7 ": 4

.

N

N

Lock-Free Programming

Herb Sutter

Why Lock-Free Code?

» Concurrency and scalability.
Eliminate/reduce blocking/waiting in algorithms and data structures.

» Avoid the troubles with (b)locking:
{
lock_guard<mutex> lock1{ mutTablel };
lock_guard<mutex> lock2{ mutTable2 };
tablel.erase(x);
table2.insert(x);
}// release mutTable2 and mutTablel
Races: Forgot to lock, or locked the wrong thing.
Deadlock: Locked in incompatible orders on different threads.

Simplicity vs. scalability (convoying, priority inversion)? Coarse-grained
locking is simpler to program, but creates bottlenecks to kill scalability.

Not composable. In today’s world, this is a deadly sin.

© 2014 by Herb Sutter Date updated: September 13, 2014
except material otherwise referenced. Page: 1

Lock-Free Programming

Important assumptions

(1) You have already measured performance/scalability
and proven you have a high-contention data structure,
before resorting to the techniques described in this talk.

(2) You will measure again after you write a
hopefully-more-concurrent replacement using these
techniques to ensure that it is actually an improvement.

Lock-Free

© 2014 by Herb Sutter Date updated: September 13, 2014
except material otherwise referenced. Page: 2

Lock-Free Programming

Roadmap

» Two Basic Tools

Transactional thinking + atomic<T>

» Basic Example: Double-Checked Locking
It’s pretty easy to do right, but you still have to do it right

» Producer-Consumer Variations

Using locks, locks + lock-free, and fully lock-free

» A Singly Linked List: This Stuff Is Harder Than It Looks
Just find, push_front, and pop: How hard could it be?

enter critical region

Lock-Free Fundamental #1 exit critical region

» Your key concept: Think in transactions (ACID).
Atomicity:

A transaction is all-or-nothing; “commit” is atomic. Other code must
not be able to see the data in a partially-updated state (i.e., a corrupt
state).

[LF] Publish each change using one atomic write (read-modify-write).
Consistency, Isolation, Durability:

A transaction takes the data from one consistent state to another.

Two transactions never simultaneously operate on the same data.

A committed transaction is never overwritten by second transaction
that did not see the results of the first transaction. (The “lost update”
problem.)

[LF] Make sure concurrent updates don’t interfere with each other
(especially think about deletes!) or with concurrent readers.

© 2014 by Herb Sutter Date updated: September 13, 2014
except material otherwise referenced. Page: 3

Lock-Free Programming

Lock-Free Fundamental #2

» Your key tool: The ordered atomic variable.
C++11 “atomic<T>" and C11 “atomic_*".
Java “volatile T” and Atomic* (e.g., AtomicLong).
.NET “volatile T”.
» Semantics and operations:
Each individual read and write is atomic, no locking required.
Reads/writes are guaranteed not to be reordered.
Compare-and-swap (CAS)... conceptually an atomic execution of:
bool atomic<T>::compare_exchange_strong(T& expected, T desired) {
if(this->value == expected) { this->value = desired; return true; }
else /* it’s not */ { expected = this->value; return false; }
}
+ compare_exchange_weak for use in loops (is allowed to fail spuriously)
+ exchange for when a “blind write” that returns the old value is sufficient
» Notes:
Limited to certain types that can be manipulated atomically.
An ‘atomic T” may not have the same layout (e.g., alignment) as a plain T.

atomic<T> Notes

» Lock-free vs. lock-based implementations:

If Tis a small type, including most built-ins, atomic<T> is implemented
without locks (typically, platform-specific instructions).

For larger types, atomic<T> is implemented using a lock.
» Initialization: Remember to explicitly initialize — atomic<int> ai{ 0 };

» Interleaving: The state of the atomic<T> can change at any time between
successive calls on this thread due to interleaved calls on other threads.

» Granularity: Logical transactions often operate on multiple objects, or on
multiple calls to the same object. Example:

atomic<int> accountl_balance = ..., account2_balance = ..,;

accountl_balance += amount;

account2_balance —= amount;

Those two lines still need to be externally locked, if some invariant
doesn’t hold in between the two calls.

© 2014 by Herb Sutter Date updated: September 13, 2014
except material otherwise referenced. Page: 4

Lock-Free Programming

Aside: Three Levels of “Lock-Freedom”

» Wait-free (strongest, “no one ever waits”): Every operation will
complete in a bounded #steps no matter what else is going on.

Guaranteed system-wide throughput + starvation-freedom.
» Lock-free (“someone makes progress”): Every step taken achieves
global progress (for some sensible definition of progress).
Guaranteed system-wide throughput.
All wait-free algorithms are lock-free, but not vice versa.
» Obstruction-free (weakest, “progress if no interference”): At any point,

a single thread executed in isolation (i.e., with all obstructing threads
suspended) for a bounded number of steps will complete its operation.

No thread can be blocked by delays or failures of other threads.

Doesn’t guarantee progress while two or more threads run concurrently
(e.g., deadlock is impossible, but livelock could be possible).

All lock-free algorithms are obstruction-free, but not vice versa.

Informally, “lock-free” ~ “doesn’t use mutexes” == any of these.

Roadmap

» Two Basic Tools

Transactional thinking + atomic<T>

» Basic Example: Double-Checked Locking
It’s pretty easy to do right, but you still have to do it right

» Producer-Consumer Variations

Using locks, locks + lock-free, and fully lock-free

» A Singly Linked List: This Stuff Is Harder Than It Looks
Just find, push_front, and pop: How hard could it be?

© 2014 by Herb Sutter Date updated: September 13, 2014
except material otherwise referenced. Page: 5

Lock-Free Programming

Widget* Widget::Instance() {

if(pInstance == nullptr) { /] 1:
lock_guard<mutex> lock{ mutW };// 2:
if(pInstance == nullptr) { // 3:

plnstance = new Widget(); // 4:

}
} /1'5:
return plnstance; // 6:

}

1: Test plnstance atomically.
2: Then, if that fails, take the lock.

Correct Double-Checked Locking

» The Double-Checked Locking (DCL) pattern (un-“broken”).
atomic<Widget*> Widget::pInstance{ nullptr };

» Four key points, involving both atomicity and ordering:

3-4a: Then repeat the test and construct the object.
4b: Then assign its this pointer atomically to pInstance.

first check

acquire lock (crit sec enter)
second check

create and assign

release lock (crit sec exit)
return pointer

Slight Optimization

Widget* Widget::Instance() {
Widget* p = pInstance;
if(p == nullptr) { /] 1:
lock_guard<mutex> lock{ mutWw };// 2:
if((p = plnstance) == nullptr){ //3:
plnstance = p = new Widget(); //4:
}

} /15:
return p; // 6:

}

it isn’t required to, and
it’s not common yet AFAIK.

» This may be slightly faster (1 vs. 2 atomic loads in the main case):
atomic<Widget*> Widget::pInstance{ nullptr };

» The compiler is allowed to do this optimization for you, but:

first check

acquire lock (crit sec enter)
second check

create and assign

release lock (crit sec exit)
return pointer

© 2014 by Herb Sutter
except material otherwise referenced.

Date updated: September 13, 2014
Page: 6

Lock-Free Programming

Even Better: There’s a Tool For That

» The general-purpose way to spell lazy initialization in C++11 is:

static unique_ptr<widget> widget::instance;
static std::once_flag widget::create;

widget& widget::get_instance() {
std::call_once(create, [=]{ instance = make_unique<widget>(); });

return instance;

}

No raw *, automatic cleanup, and much lower boilerplate-to-real
code ratio.

Best of All: There’s a Tool For That

» The special-purpose way that you should use when you
can (aka the Meyers Singleton!) is this:

widget& widget::get_instance() {
static widget instance;
return instance;

© 2014 by Herb Sutter Date updated: September 13, 2014
except material otherwise referenced. Page: 7

Lock-Free Programming

Roadmap

» Two Basic Tools

Transactional thinking + atomic<T>

» Basic Example: Double-Checked Locking
It’s pretty easy to do right, but you still have to do it right

» Producer-Consumer Variations

Using locks, locks + lock-free, and fully lock-free

» A Singly Linked List: This Stuff Is Harder Than It Looks
Just find, push_front, and pop: How hard could it be?

Locks and Atomics In Combination

» The key requirement is that access to a given shared
mutable object is synchronized consistently...
Using traditional locking. (Preferred, but sometimes
problematic because locks don’t compose well.)
Using a lock-free atomic<> discipline. (Less deadlock, but this
style tends to be really hard today.)
» ... at every given point in time.
It doesn’t have to be the same for the lifetime of the object.
For example, consider handoff situations:
Threads 1..N share object x, synchronizing via mutex m1.
Then x is handed off and never looked at again by those threads.

Then Threads N+1..M shared x, synchronizing via mutex m2 (or via a
lock-free discipline, or some other way).

© 2014 by Herb Sutter Date updated: September 13, 2014
except material otherwise referenced. Page: 8

Lock-Free Programming

Create and Publish Queue Items:
1 Producer, Many Consumers, Using Locks

» Thread 1 (producer):
while(ThereAreMoreTasks()) {
task = AllocateAndBuildNewTask();
{

lock_guard<mutex> lock{mut}; // enter critical section
queue.push(task);

} // exit critical section
cv.notify(); //
1
{
lock_guard<mutex> lock{mut}; // enter critical section
queue.push(done); // add sentinel; that’s all folks
} // exit critical section
cv.notify(); //

Create and Publish Queue Items:
1 Producer, Many Consumers, Using Locks

» Threads 2..N (consumers):

myTask = null;
while(myTask != done) {

{
lock_guard<mutex> lock{mut}; // enter critical section
while(queue.empty()) // if not ready, don’t busy-wait,
cv.wait(mut); // release and re-enter crit sec
myTask = queue.first(); // take task
if(myTask != done) // remove it if not the sentinel,
queue.pop(); // which others need to see
} // exit critical section

if(myTask !=done)
DoWork(myTask);

© 2014 by Herb Sutter Date updated: September 13, 2014
except material otherwise referenced. Page: 9

Lock-Free Programming

Quick Quiz: Where Must Those Pesky
Lock-Protected Invariants Hold, Again?

» Threads 2..N (consumers):

myTask = null;
while(myTask !=done) {

INVARIANTS HOLD
OCK_guard<mutex> lockymuty; enter critical section
i mQ adv do i
D

INVARIANTS
LV.WdILL MUt | [/
if(myTask !=done) // remove it if not the sentinel,
queue.pop(); // which others need to see

IT(myTask = done
DoWork(myTask);

Questions & Answers

» Why was mut.unlock() not enough to exit the critical section?

Unlock often is enough to exit a critical section, but we have extra
semantics: “We knew” that consumers are waiting on the condition
variable too.

If we don’t cv.notify(), the consumers will never wake up.

» But why cv.notify() on all the critical section exits except one?
Because “we knew” that the condition variable was only to notify of
new additions to the queue.

We don’t need to wake up other consumers when we’ve taken a task
away. They’re only waiting for tasks to arrive.

» Could we make unlock-and-notify a single operation by

default?
What an interesting suggestion! Exercise for the reader...

© 2014 by Herb Sutter Date updated: September 13, 2014
except material otherwise referenced. Page: 10

Lock-Free Programming

Create and Publish Queue Items:
1 Producer, Many Consumers (Locks + LF)

» This variant uses an atomic<Task*> head that points to a lock-
free slist, using lock-free coordination for step 1 (producer —
consumers), then a lock among consumers (sketch):

Thread 1 (producer):
... build task list ... Step 1 release
head = head of task queue; // publish that complete list exists

Threads 2..N (consumers) spin until the list is there, then swarm:
while(myTask == null) {

lock_guard<mutex> lock{mut}; Step 2 critical region
if(head != null) { // check if list exists yet Step 1 acquire
myTask = head; // take task
head = head->next; // remove it
}

}

... = myTask->data;

Note: In a real implementation you’d want to avoid busy-waiting.

Going Fully “Lock-Free”:
Atomic Mail Slots

© 2014 by Herb Sutter Date updated: September 13, 2014
except material otherwise referenced. Page: 11

Lock-Free Programming

A Mail Slot State Machine

Producer

Consumer

Create and Publish Queue Items: ﬁ
1 Producer, Many Consumers, Lock-Free

» 1 Producer thread: Changes any box from null to non-null.
curr=0; // keep a finger on the current mailbox
// Phase 1: Build and distribute tasks

while(ThereAreMoreTasks()) {
task = AllocateAndBuildNewTask();

while(slot[curr] != null) // acquire null: look for next empty slot
curr = (curr+1)%K;
slot[curr] = task; // release non-null: “You have mail!“

sem[curr].signal();
I
// Phase 2: Stuff the mailboxes with “done” signals
numNotified = 0;
while(numNotified < K) {

while(slot[curr] != null) // acquire null: look for next notifiable slot
curr = (curr+1)%K;
slot[curr] = done; // release done: write sentinel

sem[curr].signal();
++numNotified;

© 2014 by Herb Sutter Date updated: September 13, 2014
except material otherwise referenced. Page: 12

Lock-Free Programming

Create and Pub‘a*‘lﬂ t’}:“T“étg‘fC‘ms: ﬁ
LIS Tnis algorithm ‘
1 Producer, Ma wait-free, Lock-Free

» 1 Producer thread: Chan, lock-free, or non-null.

curr=0; . 1 the current mailbo
" obstruction-free? . 1hox

// Phase 1: Build and dis . .
while(ThereAreMoreTasks()) { Phase 1is wait-free

task = AllocateAndBuildNewTask(); up to K active workers
while(slot[curr] != null) // acquire null: look for next empty slot

curr = (curr+1)%K;
slot[curr] = task; // release non-null: “You have mail!“

sem[curr].signal();
I
// Phase 2: Stuff the mailboxes with “done” signals
numNotified = 0;
while(numNotified < K) {

Phase 2 is
obstruction-free

while(slot[curr] != null) // acquire null: look for next notifiable slot
curr = (curr+1)%K;
slot[curr] = done; // release done: write sentinel

sem[curr].signal();
++numNotified;

Create and Publish Queue Items: ﬁ
1 Producer, Many Consumers, Lock-Free

» K Consumer threads (mySlot = 0..K-1):
Each changes its own box from non-null to null.
myTask = null;
while(myTask != done) {
while((myTask = slot[mySlot]) == null) // acquire non-null,
sem[mySlot].wait(); // without busy-wait
if(myTask != done) {
slot[mySlot] = null; // release null: tell that we took it

DoWork(myTask); // good practice: prefer to do work
} // outside the critical section

}

© 2014 by Herb Sutter Date updated: September 13, 2014
except material otherwise referenced. Page: 13

Lock-Free Programming

Create and Publish Queue Items: -

1 Producer, Many Consumers, Lock-Free

» K Consumer threads (mySlot = 0..K-1):
Each changes its own box from non-null to null.

myTask = null;
while(myTask != done) {
while((myTask = slotfmySlot]) == nu
sem[mySlot].wait();
if(myTask != done) {

acquire non-null,
// without busy-wait

____slot[mysSlot] = null; Q: Could it make sense to swap
DoWork(myTask); these two lines? Why?
} // outside the critical section

}

© 2014 by Herb Sutter Date updated: September 13, 2014
except material otherwise referenced. Page: 14

Lock-Free Programming

» Two Basic Tools

Transactional thinking + atomic<T>

» Basic Example: Double-Checked Locking
It’s pretty easy to do right, but you still have to do it right

» Producer-Consumer Variations

Using locks, locks + lock-free, and fully lock-free

» A Singly Linked List: This Stuff Is Harder Than It Looks
Just find, push_front, and pop: How hard could it be?

Example: Singly-Linked List

» A singly-linked list (aka “slist<T>") is one of the simplest
possible data structures:

=Gl ul-tl-

head

» Simplifying assumptions:
Only four operations: Construct, destroy, find, push_front.
» Challenge: Write a lock-free implementation that callers
can safely use without any external locks.
C’mon, how hard could it be?

© 2014 by Herb Sutter Date updated: September 13, 2014
except material otherwise referenced. Page: 15

Lock-Free Programming

A Lock-Free Singly-Linked List: First Cut

» Here is the interface declaration, and the internals we’ll use:

template<typename T>
class slist {
public:
slist();
~slist();
T* find(T t) const; // return pointer to first equal T
void push_front(Tt); // insert at the front of the list

private:
struct Node { T t; Node* next; }; // no “atomic” needed here
atomic<Node*> head{ nullptr }; // but “atomic” is needed here:
// “head” is mutable shared data

slist<T> Constructor

» The constructor is easy:

template<typename T>
slist<T>::slist()
{} // or just “=default”

» Concurrency issues:
None.

Note: As usual, the caller has to know he can’t use an object
concurrently while he’s constructing it. But this isn’t an
“external synchronization” issue as much as it’s a lifetime
management issue — he can’t use the slist before it’s
constructed either.

© 2014 by Herb Sutter Date updated: September 13, 2014
except material otherwise referenced. Page: 16

Lock-Free Programming

slist<T> Destructor

» The destructor has to traverse:
template<typename T>
slist<T>::~slist() {
auto first = head.load(); // good habit: access head once
while(first) { // (not needed here, but good habit...)
auto unlinked = first;
first = first->next;
delete unlinked;

}

}

» Concurrency issues:
None.
Note: As usual, the caller has to know he can’t use an object
concurrently while he’s destroying it. But this isn’t an “external
synchronization” issue as much as it’s a lifetime management issue —
he can’t use the slist after it’s destroyed either.

slist<T>::find

» Return a pointer to the first equal element, or nullptr if
there isn’t one:
template<typename T>
T* slist<T>::find(T t) const {
auto p = head.load();
while(p && p->t I=1)
p = p->next;
return p ? &p->t : nullptr;
}
» Concurrency issues:
None.
As long as the constructor and destructor aren’t running, this
can freely run concurrently with other find operations... and
should be safe to run concurrently with insert operations.

© 2014 by Herb Sutter Date updated: September 13, 2014

except material otherwise referenced. Page: 17

Lock-Free Programming

A Look At push_front
» Initial state:

=Gl ul-tl-

head
» Intermediate state:

=-GlE-GN-ul-tl-

head
T ‘
» Final state:
R HE-E-N-s-
ea
T ‘

slist<T>::push_front (Flawed)

» Insert a node with a copy of the given value:

template<typename T>
void slist<T>::push_front(Tt) {

auto p = new Node; // create the new node
p->t=t; // set its element value
p->next = head; // set its place in the list
head = p; // publish it at the head

}
Q: What’s wrong with this code?

© 2014 by Herb Sutter Date updated: September 13, 2014
except material otherwise referenced. Page: 18

Lock-Free Programming

slist<T>::push_front (Flawed)

» Insert a node with a copy of the given value:

template<typename T>
void slist<T>::push_front(Tt) {

auto p = new Node; // create the new node

p->t=t; // set its element value

p->next = head; // set its place in the list

head = p; // publish it at the head
}

Q: What’s wrong with this code?
» Concurrency issues:

None for any readers: The insertion of the new node is atomic. A
concurrent reader will see either the old value or the new value, and
in either case has a valid list to traverse.

Problem for writers: What if two threads try to insert at the same
time?

A Look At the Problem

» Initial state:

Sopd T| ad 71 a7 o T| o

head

» Intermediate state, insertions in progress by two threads:

el el e

head
,J,

» Final state: First is clobbered (and leaked), last one wins.

DT a7 7 7] o

head j
T

© 2014 by Herb Sutter Date updated: September 13, 2014

except material otherwise referenced. Page: 19

Lock-Free Programming

slist<T>::push_front

» Insert a node with a copy of the given value:

template<typename T>
void slist<T>::push_front(Tt) {

auto p = new Node; // create the new node
p->t=t; // set its element value
p->next = head; // set its place in the list and
while('head.compare_exchange_weak(p->next, p))
{} // try to swap it in until successful

}
The “CAS loop” is a common construction in lock-free code.
Loop until “we get to be the one” to update head from ‘expected’ to ‘desired’.

» Concurrency issues:

None for any readers: The insertion of the new node is atomic. A
concurrent reader will see either the old value or the new value, and in
either case has a valid list to traverse.

None for writers: The CAS loop makes concurrent writers safe (for now).

Well, that was easy...

So how about adding just one more little member function?

© 2014 by Herb Sutter Date updated: September 13, 2014
except material otherwise referenced. Page: 20

Lock-Free Programming

Revised Example: Pop Goes the List

» We'll stick with our singly-linked list, one of the simplest
possible data structures:

=Gl GN-ul-tl-

head

» Simplifying assumptions:
Original operations: Construct, destroy, find, push_front.
New operation: pop to erase the first element from the list.
» Same challenge: Write a lock-free implementation that
callers can safely use without any external locks.
C’'mon, how hard could it be?

A Lock-Free Singly-Linked List: First Cut

» Here is the interface declaration, and the internals we’ll use:

template<typename T>
class slist {
public:

slist();

~slist();

T* find(T t) const; // return pointer to first equal T

void push_front(Tt); // insert at the front of the list

void pop_front(); // remove first element

private:

struct Node { T t; Node* next; }; // no “atomic” needed here

atomic<Node*> head{ nullptr }; // butit’s needed here, because
// “head” is mutable shared data

© 2014 by Herb Sutter Date updated: September 13, 2014
except material otherwise referenced. Page: 21

Lock-Free Programming

A Look At pop

» Initial state:

=Gl ul-tl-

head
» Intermediate state:

I—*I—»I—*

head

» Final state:

_/\HI—*I—»I—'

head

» Remove the first node:

template<typename T>
void slist<T>::pop_front() {

auto p = head.load();
if(p) head = p->next;

delete p;
}
Q: What’s wrong with this code?

slist<T>::pop (Flawed)

// remember current first node
// set head to the second node
// and clean up old first node

© 2014 by Herb Sutter
except material otherwise referenced.

Date updated: September 13, 2014
Page: 22

Lock-Free Programming

slist<T>::pop (Flawed)

» Remove the first node:

template<typename T>
void slist<T>::pop_front() {

auto p = head.load(); // remember current first node
if(p) head = p->next; // set head to the second node
delete p; // and clean up old first node

}
Q: What’s wrong with this code?
» Concurrency issues:

Problem for readers: What if a concurrent reader doing a find() is
pointing to the first node and about to read its next pointer?

Problem for writers: What if a concurrent writer is trying to insert?
What if a concurrent writer is trying to erase?

slist<T>::pop (Attempt #2, Still Flawed)

» Remove the first node:

template<typename T>
void slist<T>::pop_front() {

auto p = head.load(); // important: read head once
while(p && 'head.compare_exchange_weak(p, p->next))

{} // NB: relies on short-circuit eval
delete p; // and clean up

}
Q: What’s wrong with this code?

© 2014 by Herb Sutter Date updated: September 13, 2014
except material otherwise referenced. Page: 23

Lock-Free Programming

slist<T>::pop (Attempt #2, Still Flawed)

» Remove the first node:

template<typename T>
void slist<T>::pop_front() {

auto p = head.load(); // important: read head once
while(p && 'head.compare_exchange_weak(p, p->next))

{} // NB: relies on short-circuit eval
delete p; // and clean up

}
Q: What’s wrong with this code?
» Concurrency issues:

Same problem for readers: What if a concurrent reader doing a find()
is pointing to the first node and about to read its next pointer?

Subtle problem for writers: What if a concurrent writer is trying to

insert? What if a concurrent writer is trying to erase? Let’s look at the
“ABA problem”...

The “ABA Problem”
» Original state: — el e
© 2014 by Herb Sutter Date updated: September 13, 2014

except material otherwise referenced. Page: 24

Lock-Free Programming

» Step 1 of deletion:
p = head;
__temp = p->next;

The “ABA Problem”

Lopg 7| g T ad T| o T| o

p _ _temp

» Step 1 of deletion:
p = head;
__temp = p->next;

» Concurrently, another
thread deletes the
p two nodes.

The “ABA Problem”

Lome T ag T ad T| o T o

p _ _temp

- >Eli-Ea-

o A e

© 2014 by Herb Sutter
except material otherwise referenced.

Date updated: September 13, 2014

Page: 25

Lock-Free Programming

p = head;

p two nodes.

» Step 1 of deletion:

__temp = p->next;

» Concurrently, another
thread deletes the

» Then someone inserts a
new node, and the
allocator reuses the
same memory block.

The “ABA Problem”

=B N E-us—

p _ _temp

>Eiis- s

o A o

2.Ee NEE-Em-
=S

_ temp

p = head;

» Step 1 of deletion:

__temp = p->next;

» Concurrently, another

The “ABA Problem”

Sops T ad 7| ad T| o T| g

p _ _temp

thread deletes the
p two nodes.

Then someone inserts a
new node, and the
allocator reuses the
same memory block.

Step 2 (CAS) “succeeds”:
head.c_e_w(p, __temp);
delete p;

and we’re in trouble.

- T e Tl

i e
@%f

"

© 2014 by Herb Sutter

except material otherwise referenced.

Date updated: September 13, 2014
Page: 26

Lock-Free Programming

ABA Solutions (sketch)

» We need to solve the ABA issue: Two nodes with the same address,
but different identities (existing at different times).
» Option 1: Use lazy garbage collection.
Solves the problem. Memory can’t be reused while pointers to it exist.

But: Not an option (yet) in portable C++ code, and destruction of nodes
becomes nondeterministic.

» Option 2: Use reference counting (garbage collection).

» Option 3: Make each pointer unique by appending a serial number,
and increment the serial number each time it’s set.

This way we can always distinguish between A and A'.

But: Requires an atomic compare-and-swap on a value that’s larger than
the size of a pointer. Not available on all hardware & bit-nesses.

» Option 4: Use hazard pointers.
Maged Michael and Andrei Alexandrescu have covered this in detail.
But: It’s very intricate. Tread with caution.

Solves the problem in cases without cycles. Again, avoids memory reuse.

Delete-While-Traversing Solutions (sketch)

» We also need to resolve the deletion issue: We can’t delete a
node if a concurrent reader/writer might be pointing to it.
A concurrent member function, like find.
() A concurrent users of a T* we handed out.
» Option 1: Use lazy garbage collection.

Solves the problem because memory can’t be reused while any
pointers to it exist. However, destruction of nodes becomes
nondeterministic.

» Option 2: Use reference counting (garbage collection).
Solves the problem in cases without cycles.

» Option 3: Never actually delete a node (only logically delete).
Can work when deleting is rare.

» Option 4: Put auxiliary nodes in between actual nodes.

Contains a next pointer only, no data. These links don’t move.
Enables operations on adjacent nodes to run without interference.

© 2014 by Herb Sutter Date updated: September 13, 2014

except material otherwise referenced.

Page: 27

Lock-Free Programming

Psst...

Interested in a correct slist that fell off the
back of my friend’s truck, for cheap?

A Lock-Free Singly-Linked List: Second Cut

» Judicious tweaks to eliminate raw *: ref counting + reference.
template<typename T> class slist {
struct Node { T t; shared_ptr<Node> next; };
atomic<shared_ptr<Node>>head; //NOTE: actual syntax different

public:
slist() =default;
~slist() =default;

class reference { /*..*/ };

Q: How would you implement
class reference?

auto find(T t) const { class reference {
auto p = head.load(); shared_ptr<Node> p;
while(p && p->t I=t) public:
p = p->next; reference(shared_ptr<Node> p_) : p{p_}{}
return reference(move(p) & operator*() {return p->t; }
} T* operator->() { return &p->t; }
ki
© 2014 by Herb Sutter Date updated: September 13, 2014

except material otherwise referenced. Page: 28

Lock-Free Programming

A Lock-Free Singly-Linked List: Second Cut

» Continued:

void push_front(Tt){
auto p = make_shared<Node>();
p->t=t;
p->next = head;
while('head.compare_exchange_weak(p->next, p))

{}
}

void pop_front() {
auto p = head.load();
while(p && 'head.compare_exchange_weak(p, p->next))

{}
} Q: Where is the “delete”?

What Happens In the Case of Concurrent...

» Pop » Pop
void pop_front() { void pop_front() {
auto p = head.load(); auto p = head.load();
while(p && while(p &&
lhead.c_e_w(p, p->next)) lhead.c_e_w(p, p->next))
{} {}
} }

» The only competing modifying operations
are head.compare_exchange.

One will happen-before the other, and succeed.
The other will fail, and retry.

ABA can’t happen because no delete+recycling.

© 2014 by Herb Sutter Date updated: September 13, 2014
except material otherwise referenced. Page: 29

Lock-Free Programming

What Happens In the Case of Concurrent...

» Insert » Pop

void push_front(Tt){ void pop_front() {
auto p = make_shared<Node>(); auto p = head.load();
p->t=t; while(p &&
p->next = head; lhead.c_e_w(p, p->next))
while('head.c_e_w(p->next, p)) {}

{} }
}

» The only competing modifying operations
are head.compare_exchange.
One will happen-before the other, and succeed.
The other will fail, and retry.

What Happens In the Case of Concurrent...

» Find » Pop
auto find(T t) const { void pop_front() {
auto p = head.load(); auto p = head.load();
while(p && p->t !1=1) while(p &&
p = p->next; lhead.c_e_w(p, p->next))
return reference(p); {}
} }

» Thanks to ref counting, find keeps its current
node (and successors) alive.

find sees list “as if” pop waited for find to finish!
Important concept: Linearizability.

© 2014 by Herb Sutter Date updated: September 13, 2014
except material otherwise referenced. Page: 30

Lock-Free Programming

A Look At find + pop

» Initial state:

=-GliE-El-Gl-tl-

head

» Find begins and gets partway through the list:

=Gl El-tl-tl-

head

find

» Two pops complete:

7 g Es-am—

find

head

Translation Guide

» What you actually write today.
The “atomic<>”" is a comment, and
remember to write an atomic_* call for
every use of the shared_ptr.

» The code we just saw.

Hopefully a future standard
will allow this...

shared_ptr<T> a;
// remember “atomic” — rely on discipline

atomic<shared_ptr<T>> a;

auto p = a.load(); auto p = atomic_load(&a);

a.compare_exchange_weak(e,d);

atomic_compare_exchange_weak(&a,&e,d);

© 2014 by Herb Sutter
except material otherwise referenced.

Date updated: September 13, 2014
Page: 31

Lock-Free Programming

Roadmap

» Two Basic Tools

Transactional thinking + atomic<T>

» Basic Example: Double-Checked Locking
It’s pretty easy to do right, but you still have to do it right

» Producer-Consumer Variations

Using locks, locks + lock-free, and fully lock-free

» A Singly Linked List: This Stuff Is Harder Than It Looks
Just find, push_front, and pop: How hard could it be?

For More Information

» My site: herbsutter.com

» H. Hinnant. “Multithreading API for C++0X - A Layered Approach”
(ISO C++ committee paper N2094, Sep 2006).
www.open-std.org/jtcl/sc22/wg21/docs/papers/2006/n2094.html

» H. Boehm and L. Crowl. “C++ Atomic Types and Operations” (ISO
C++ committee paper N2145, Jan 2007).
www.open-std.org/jtcl/sc22/wg21/docs/papers/2007/n2145.html

» H. Sutter. “Prism: A Principle-Based Sequential Memory Model for
Microsoft Native Code Platforms” (ISO C++ committee paper N2075,
Sep 2006).
www.open-std.org/jtcl/sc22/wg21/docs/papers/2006/n2075.pdf

» H. Boehm. “A Less Formal Explanation of the Proposed C++
Concurrency Memory Model” (ISO C++ committee paper N2138,
Nov 2006).
www.open-std.org/jtcl/sc22/wg21/docs/papers/2006/n2138.html

© 2014 by Herb Sutter Date updated: September 13, 2014

except material otherwise referenced.

Page: 32

Lock-Free Programming

»

»

»

For More Information

M. Herlihy, V. Luchangco, and M. Moir. “Obstruction-Free
Synchronization: Double-Ended Queues as an Example” (IEEE
International Conference on Distributed Computing Systems
(ICDCS), 2003).
http://www.cs.brown.edu/people/mph/HerlihyLM03/main.pdf

J. Valois. “Lock-Free Linked Lists Using Compare-and-Swap”
(Principles of Distributed Computing (PODC), 1995).

M. Michael and M. Scott. “Correction of a Memory
Management Method for Lock-Free Data Structures” (1995).

J. Valois. “ERRATA Lock-Free Linked Lists Using Compare-and-
Swap” (1995).

H.Boehm. “An Almost Non-Blocking Stack” (Principles of
Distributed Computing (PODC), 2004).
http://www.hpl.hp.com/techreports/2004/HPL-2004-105.pdf
http://www.hpl.hp.com/personal/Hans_Boehm/misc_slides/p
odc.pdf

F

4

»

or More Information

M. Fomitchev and E. Ruppert. “Lock-Free Linked Lists and
Skip Lists” (Principles of Distributed Computing (PODC),
2004).

K. Fraser. “Practical Lock-Freedom” (University of

Cambridge Computer Laboratory Technical Report #579,
2004).

© 2014 by Herb Sutter
except material otherw

Date updated: September 13, 2014

ise referenced.

Page: 33

Lock-Free Programming

Questions?

Bonus Slides

© 2014 by Herb Sutter
except material otherwise referenced.

Date updated: September 13, 2014
Page: 34

Lock-Free Programming

Example 1

» Baseline code.
template <typename T>
struct LowLockQueue {

struct Node {
Node(T val) : value(val), next(nullptr) { }
T value; // objects are held by value

atomic<Node*> next;

|5

first and last point to the before-the-first and last nodes
divider points to a boundary between producer and consumer

Node *first, *last; // for producer only
atomic<Node*> divider; // shared: P/C boundary
atomic<bool> producerlLock; // shared by producers
atomic<bool> consumerlLock; // shared by consumers

Example 1 (continued)

» Construct.
public:
LowLockQueue() {
first = divider = last = new Node(T());
producerLock = consumerLock = false;

}

» Destroy.

~LowLockQueue() {
while(first = nullptr) {
Node* tmp = first;
first = tmp->next;
delete tmp;
!
}

© 2014 by Herb Sutter Date updated: September 13, 2014
except material otherwise referenced. Page: 35

Lock-Free Programming

Example 1 (continued)

» Consume returns the value in the first unconsumed node.

Note: The entire body of Consume is inside the critical section, so we
get no concurrency among consumers in this code.

bool Consume(T& result) {
while(consumerLock.exchange(true))
{} // acquire exclusivity
if(divider->next = nullptr) { // if queue is nonempty
result = divider->next->value; // copy it back to the caller

divider = divider->next; // publish that we took an item
consumerlock = false; // release exclusivity
return true; // and report success

}

consumerlock = false; // release exclusivity

return talse; // queue was empty

Example 1 (continued)

» Produce adds a new nodeto the tail, then lazily cleans up any
consumed nodes at the front of the list.

Note: Not all of the body of Produce is inside the critical section, so
there is some concurrency among producers in this code.

bool Produce(const T& t) {

Node* tmp = new Node(t); // do work off to the side
while(producerLock.exchange(true))

{} // acquire exclusivity
last = last->next = tmp; // publish the new item
while(first = divider) { // lazy cleanup

Node* tmp = first;
first = first->next;

delete tmp;
producerLock = false; // release exclusivity
Teturn true,
i
|3
© 2014 by Herb Sutter Date updated: September 13, 2014

except material otherwise referenced. Page: 36

Lock-Free Programming

Throughput: Total work, here #objects that can pass through

the queue.
Oversubscription: What happens if there is more CPU-bound
work ready to execute than available hardware to execute it.

Contention: How much threads interfere with each other by

Scalability: Ability to use more hardware (cores) to get more
fighing for resources.

work done.
» These are affected by the effects of:

How Fast Is It?
» Key properties to look for:

cores on
test machine

Example 1 throughput for #producer
threads vs. #consumer threads (items

contain 100 strings)

(Y I EEEEEE I IEEEE 10000

.......

000900000008 [1]
0-..00......‘.. o0

P99 TYS
b b-b-b--4

rYYYTYY Y

SpeaJy} Jawnsuo) §

Q0000 B 00 59 o 00+ 0 0+ 0 0 40 200

25

20

10

Producer threads

11,300

max =

=1,230

min

Example 1 throughput for #producer
threads vs. #consumer threads (items

Example 1 Measurements

contain 10 strings)

99 9999092092999 0209 %9090 %90900
9202029000000 0000000080000
anu-ec--..n-no-n-ec.‘.o
o-.o.--oo.--onuo-a.‘..cn

000000-0-0000-000-00\000.

200000000900 00000008 0000
2000000009 00000000500000
BnleacnnnoOl-welOUHOOOOO
2000092000302 0000020000000
a-»oeu-:nooao-o.oOOOOOOO
o-ou--ao:-nooobbﬂﬁoﬂ
200000000300040000000000
280000800092 0¢00000000000
o-oooo--oohnooonooooooo
l-lnec-no\Ontaoﬂooooooo
o-well--QBOOOODOOOCOOO
20000000390000000009000
280000000000000000000000
20000090000000000000000
5992003000000000000000
200000000000000000000

...-o.-.oo-oooooooooo

-o-o.-anOOOOODOOOOOO
+4222200023000000000000

25

o w =) w

SpEaly) JaWwnsuo) §

0

15

10

Producer threads

= 88,000
18,700

max
min

Page: 37

Date updated: September 13, 2014

© 2014 by Herb Sutter
except material otherwise referenced.

Lock-Free Programming

Ex. 2: Shrinking Consumer Critical Section

» For better performance, add heap-allocation...
... What, what?

Lets us move the copying work out of the critical section.

» Diffs from Example 1 (part 1 of 2):

struct Node {
Node(T* val) : value(val), next(nullptr) { }
T* value;
atomic<Node*> next;

2

LowLockQueue() {
first = divider = last = new Node(nullptr);
producerLock = consumerlLock = false;

}

Ex. 2: Shrinking Cons Crit Sec (continued)

» Diffs from Example 1 (part 2 of 2):

Move the copying of the dequeued object, and the deletion of the value,
outside the critical section.

bool Consume(T& result) {
while(consumerLock.exchange(true))

{} // acquire exclusivity

if(divider->next 1= nullptr) { // if queue is nonempty
T* value = divider->next->value; // take it out
divider->next->value = nullptr; // of the Node
divider = divider->next; // publish that we took an item
consumerLock = false; // release exclusivity
result = *value; // now copy it back to the caller
delete value;
return true; // and report success

}

consumerlock = false; // release exclusivit
return false, 77 queue was empty

© 2014 by Herb Sutter Date updated: September 13, 2014
except material otherwise referenced. Page: 38

Lock-Free Programming

i #coreson

i test machine

Example 1 Measurements

threads vs. #consumer threads (items

25

5 o =

SpeaJy} JAWNSUC) ¥

o

88,000
18,700

w
Y

o ° 900
[] o8 00 1
9o TREK] 1
Hm ° 000000 m
Q a 90000000090 g |
S = .o i
F3ry i |
= [
8B ° W
* g v OC 8|
O MQ a8 |
L £ < 000000 E |
o B LXXY) T |
w 1
w.mo ° g |
e =]) o B |
o 2 - 4 s 2 |
32 e o - a |
[=] m.m 5o -
£ 90 & & |
- 3= M 4 [
- 4 O >0 i
o > -4 " 1
2 a 00 i
g)90000 of
E g »0000¢ Sl
R E »000 sy
w S 1 ATl
! o Il f
E] 4] e o ° 3§
SPEaJy} JAWNSUO) # g ”
w :
29999090900 29209 090990908 m
2929002099290 220999090200 m
2929900908330 s 00000020 ”
- 9990000000805 0808000808500 J]
m 000008000 S ,
= [
T ¥ ”
o ! [
= g
ag g
i m w B |
= oo 2§ |
= :
m = = |
= o E o |
2 F o . El
® 3 - o 2|
3 2L 6 2 &
= ol ¢ =
L3 i
£ o [
- o i
- [=] j
K] g
= :
‘ |
o :
n
n &

max
min

cores on
test machine

Example 2 Measurements

w
]
L]
[4
| » @ []
| 8 E | ®]
| B = ° []
| B = . ®
| 8w
a5 ° °
| ° -
| m ° [))
fcgw ., 43
|25¢ - £
| oam e a8 e
|2e2 ... g
| &
”hmD soe m
[S R S — S &
|3 c
WDM.I .o ° *
lES B see °
s = C - .
T I - R .
”hw P -
lag - .
Ewm . 88
g e A ©3W
w T e ha]
= I
~
} ! | : b o
g 2 a] . ° nm
speaJy Jawnsuo) # m
w
.
"o * 0
s s 0 s s
- @ s 888 K}
mm s 800 e s
= e 000 * 9
.m....a\ son0 e .
58 sa0 s .9
® S5 s L 22020000000)
e O sese - sssss000008 2 §
e £c s 5300000000000000 £
P 2320092000000000 T
W.m n ss 00 2900000000000000 <
£ m KK * 90 B
o 2 * s £
Pa e 2000 °9 = &
mm.m KR ° 8 =
o ¥ 28080 e
ah..#m s 00 0 s o
N oy O sane s 9
hw PR ° 2 w
(=3 =1 s s s L s Lo u
E g e .4 99 S8
ﬂ-l B 4+ 2+ 22003200008 ”;M
i &, L o N
= N
4 E = £ - ° mm
speaJy) Jawnsuo) # £

Date updated: September 13, 2014

© 2014 by Herb Sutter

: 39

Page

except material otherwise referenced.

Lock-Free Programming

Ex. 3: Reducing Head Contention

» Ex. 1 & 2: Producer lazily removed consumed nodes.
Forces producer to touch both ends of the queue.
All threads (producers and consumers) have to touch head.

Even though producers and consumers use different locks and can
run concurrently w.r.t. each other, this results in invisible contention
in the memory system.

» ldea: Let each consumer trim the nodes it consumed.
Which it was touching anyway = better locality.
Bonus: No more divider.
» Diffs from Example 3 (part 1 of 3):
LowLockQueue() {
first = last = new Node(nullptr); // no more divider
producerLock = consumerLock = false;

}

Ex. 3: Reducing Head Contention (cont’d)

» Diffs from Example 3 (part 2 of 3):
bool Consume(T& result) {

while(consumerLock.exchange(true))
{} // acquire exclusivity

if(first->next != nullptr) { // if queue is nonempty
Node* oldFirst = first;
first = first->next;

T* value = first->value; // take it out
first->value = nullptr; // of the Node
consumerlLock = false; // release exclusivity
result = *value; // now copy it back
delete value; // and clean up
delete oldFirst; // both allocations
return true; // and report success

}

consumerLock = false; // release exclusivity

return ralse, 77 quele was empty

}
© 2014 by Herb Sutter Date updated: September 13, 2014

except material otherwise referenced. Page: 40

Lock-Free Programming

Ex. 3: Reducing Head Contention (cont’d)

» Diffs from Example 3 (part 3 of 3):

Producer is simpler.

bool Produce(const T& t) {

// do work off to the side

tmp = new Node(t);
while(producerLock.exchange(true))

*

Node

// acquire exclusivity

{}
last->next

// A: publish the new item
// B: not "last->next"

tmp;

last = tmp;

// release exclusivity

false;

producerLock
return true;

cores on
test machine

Example 2 Measurements

25

25

.-.4.0-..‘....00.7.

--.-oo.n..d'
.-s.oo-oalOOO

...............

SpeaJyy Jawnsuo)

269,000
20,100

sso0ee
20000]
[E R NN]
ml._m so00 ,
o g s0 000] |
.W.;h. 0o]
ﬂa.ﬂ,- ss 00 m
= oo s 1
F8 % coos g |
rmmo s0009 umm
.m..h.u-.ﬂ sss e = |
¥ = B s 8 80 T |
2323 seee g |
hmﬂ 2200 B2 |
@ 3 - s £ |
2 M.m sicis000g000000000 i
ECP see30s0900000000000000-
s ' m "5 1002500000 00000000000]
N oG5 11080 0000000000000000]
LNW B s S 40000000 |
- I A 1 sesss0 e]
Ewc B SRR R .o mwﬁ
ﬁm Y P S 5 S)
~ <t
[~ I T D I Shil
t = <}
n -S|
o 5 &] o vﬂnmﬁ
SPEAJY] JIWNSUO) # £ |
p m
......... 49s0 000800830000 ,
s 8809300000000 000000]
-o-o-.--o--o.n.\.. m
rm s s 8008600088808 80000003500]
me 4o eesessogosestsooedsend S]
.M..-h 990000000000 000000020000]
— 3 1
o 000000003000 09000200000 1
m.$ 2000000003000 00 290000]
0 - aes02000803000080 200000 o |
=]
L D ssssssssssoessoa o90000 2 & |
e £ c 50808008030 0000000000000 .m,
- e = 25002835 592335290000000000 T |
W.m:._ uooooo..o..nﬁo....'..... m”
hum ...-...-..m.-oot....ﬁ.‘ B |
W7 |ses0s000002390000000000¢ 2 a |
Om.m EEER) =
= = 'y 1
£ 9 €]
=3 .]
o]
N g O) W
L > 1
E$ |
=]
g |
m 1
u g N

max
min

Date updated: September 13, 2014

© 2014 by Herb Sutter
except material otherwise referenced.

Page: 41

Lock-Free Programming

Example 3 Measurements

i #coreson
i test machine

Example 3 throughput for #producer
threads vs. #consumer threads (items
contain 10 strings)

< e 20000
R o000
N e 90000
SN e CIC)
20 . N, 90000
B 90000
90000
. 90000
3 . 90000
3 1 . 90000
£ . 90000
- 00000
E Q0000
E 00000
S w 90000
= 00000
00000
R0000000
} I XJ Q000000
s 000000000 900000
000090000
000000000
©20000000000000000000w00
©c00000000000000900000000w900
0
0 5 10 15 20
max = 486,000 #Producer threads
min = 19,200

EEEEIEE) .
EEEEE Y L]
TR 2K L]
R °
20 cTa, e e .
-"“. .
[°
s 0 L]
] .
S 15 o +o
2
£ e s e
5 Y
E * 0
2 Y
§ 10 s o0
: s s 0
e %0
.‘0.
co 0
S 09
L ee00@
000
s000 L]
cos o
}

e 0 00

o0l 1
0

max = 115,000

min = 4,350

«

10

Example 3 throughput for #producer
threads vs. #consumer threads (items
contain 100 strings)

Producer threads

0000000000 0OQROO
@0 00000000000
15

20 25

keep them on separate cac

» Diffs from Example 4:

struct

Ex. 4: Do Nothing... or, “Add Nothing”

» Keep data that is not used together apart.
If variables A and B are liable to be used on different threads,

he line.

Node {

Node(T* val) : value(val), next(nullptr) { }

T* value;
atomic<Node*> next;

|5

Node* first;

atomic<bool> consumerlLock;

Node* last;

atomic<bool> producerLock;

© 2014 by Herb Sutter

except material otherwise referenced.

Date updated: September 13, 2014
Page: 42

Lock-Free Programming

Ex. 4: Do Nothing... or, “Add Nothing”

» Keep data that is not used together apart.

If variables A and B are liable to be used on different threads,
keep them on separate cache line.

» Diffs from Example 4:

struct alignas(CACHE_LINE_SIZE) Node {

Node(T* val) : value(val), next(nullptr) { }

T* value;

atomic<Node*> next;
2
alignas(CACHE_LINE_SIZE) Node* first;
alignas(CACHE_LINE_SIZE) atomic<bool> consumerLock;
alignas(CACHE_LINE_SIZE) Node* last;
alignas(CACHE_LINE_SIZE) atomic<bool> producerLock;

i #coreson
i test machine
Example 3 Measurements -

Example 3 throughput for #producer Example 3 throughput for #producer
threads vs. #consumer threads (items threads vs. #consumer threads (items
contain 10 strings) contain 100 strings)

® ...+o... e 00000 ® .. s 9000000000000 000
...‘o.... o000 00 .. ® 0 0 000000 ®0 0000000
-+ s0000 9000000 , t 9000000000000 00000
.‘\..+.... c000000 ", + 1+ 6000000000000 00000
20 sy s 0000 9000000 20 “%,4 0 00000000000000 o0
.'*.‘--.o 9000000 cy0c0000000000000 LX)
CE R AN 000000 . B ee0o0s0000 20000 o0
.*-'.,_-. 9000000 o'i,'--o-..olbno ° o0
3 cso0mo 0000000 B °®0Be00000000000 o0
S 151 - . o v 000 9000000 15 - - -c0000w0c000 000000000
g .+....‘ 000 ° g e0 00 X) °
5 ©90000 XX} ° 5 co00 LX) °
£ ©20000 ° = XX [X) [)
2 ° 000006 2 - .) 1XJ °
RS + 2000004 §m @)
= ° 00006 = . ss000
‘5000 - 1 20000 ORI
e o 9000 . ° © 0 0 OOMENIEIIEN
° IIIII Db c20000
s « + 0 090D s ° 00
. . 0 00000BOO0O0C 00000
-oo§ ~~~~~~) ©200000000 @
2000000000000000 000000000 ?....0.‘,00
-o.?.........‘.. © 9900000000000 00000 e
0+ — - - . 0 -
o 5 10 15 20 25 [5 10 15 20 25
max = 486,000 # Producer threads max = 115,000 # Producer threads
min=19200 min = 4,350
4
© 2014 by Herb Sutter Date updated: September 13, 2014

except material otherwise referenced. Page: 43

Lock-Free Programming

i #coreson
i test machine
Example 4 Measurements ;
Example 4 throughput for #producer Example 4 throughput for #producer
threads vs. #consumer threads (items threads vs. #consumer threads (items
contain 10 strings) contain 100 strings)
25 25
T 9 e e s 0 0 0000000000000
S e e 0 00000 0R0DRDO02OROPOPCFS
EEE Y 9000090990900 090000
T 9060 00000000000000000
20 20 *N 9 00 00000000000000000
B) 9000000000000 00
P 9000000000000
.8 X 9000000000000
P] ‘e e v 090000000000000
515 Els ++ 9 0000R000000000000000
£ £ © 000000000000 00000000
5 5 ©°000000R0000000000000
g £ ©©900000000000000000°
5 3z ©090000000000000000_ 90
§ 10 § 10 + 2900000000 0000 _ 904
b b4 © 200000000 ~ 9OE
- o 9 00000000 VDD
Ll 000000 RN
000000 It OO0
. . .t 0000 OO
00 900000000000000¢
.00 oG oooooooooooonooo
° 0000000000000000‘00
..........'.....'....
0 0
—0583 000 5 0 5 10 15 20 25
mg’);n—= 23:800 #Producer threads ‘ ma;; ,:nljz'ggg # Producer threads
Direct Comparisons linear scaling } # cores on
i test machine
(3 ”» :
of Examples 1-4 (“Small”)
Relative throughput for Examples 1-4 Relative scaling for Examples 1-4
(items contain 10 strings) (items contain 10 strings)
S0 7 & Example H ¢ Examplel
W Example2 H W Example2
'S A Example3 i A Example3
~ 500000 e @ Exampled 1 . § @ _Exampled
"] . H []
g SR : , £
§ 200000 I A' i ‘ 9 08
h (B N i
E / - 2
£ ‘ d) T
% 300000 | i i 706
] ,a‘i S)
2 S HES =
. : g
s ‘ 1} i 2
2 200000 v % : ¥ o4
d LS £
g B "
[i 2 Y P 02
ey g
.__.‘__ . :
MR
ol — s 0
0 3 [9 12 15 18 U Z.l 700 B B 0 3 b 9 2 15 18 2
#Threads (2/3 Producers, 1/3 Consumers) #Threads (2/3 Producers, 1/3 Consumers)

© 2014 by Herb Sutter Date updated: September 13, 2014
except material otherwise referenced. Page: 44

Lock-Free Programming

Direct Comparisons linear scaling # cores o;:.
i test machine
of Examples 1-4 (“Large”) |

Relative throughput for Examples 1-4 Relative scaling for Examples 1-4
(items contain 100 strings) (items contain 100 strings)
140000 H 12 H
: Example 1 4 Examplel
Example2 ¢ B Example2
Example 3 A Example3
120000 Exampled @ Exampled
100000
80000

F .S
[
-
wughput (scaled to baseline)

Throughput (# queue items per second)

20000 + i’

L T T S S 4
o PSP 0 Ry
0 3 [3 9 2 15 1B u 1-1 7w 3 % 0 3 [9 12 15 18 A 2-4 27 0 3 36
#Threads (2/3 Producers, 1/3 Consumers) | #Threads (2/3 Producers, 1/3 Consumers)
When Fitted linear scaling i # cores on
i test machine
Curves Go Bad -
Relative throughput for Examples 1-4 Relative scaling for Examples 1-4
(items contain 100 strings) (items contain 100 strings)
140000 : 12 :

120000

L
i ’gfg Py

AT
/N

06 +

40000 i " ¢

N,
20000 / 02) \a‘l
- Iy B

Throughput (# queue items per second)
Throughput (scaled to baseline)

4000 ~
: Y0000 | t 9060
0 3 6 9 12 15 13 21 24 n 30 1 36 0 3 6 9 12 15 18 it pL] 27 30 3 36
#Threads (2/3 Producers, 1/3 Consumers) | #Threads (2/3 Producers, 1/3 Consumers)
© 2014 by Herb Sutter Date updated: September 13, 2014

except material otherwise referenced. Page: 45

Lock-Free Programming

What Have We Learned?

» To improve scalability, we need to minimize contention:
Reduce the size of critical sections = more concurrency.

Reduce sharing by isolating threads to use different parts of
the data structure.
Moving cleanup from producer to consumer lets consumers
touch only the head, producers touch only the tail.
Reduce false sharing of different data on the same cache line,
but adding alignment padding.
Separate variables that should be able to be used concurrently by
different threads should be far enough apart in memory.

What Have We Learned? (2)

» To understand scalability, need to know what to measure:

Identify the key different kinds of work: Here, producer threads and
consumer threads. Use stress tests to measure the impact of having
different quantities and combinations of these in our workload.

Identify the different kinds of data: Here, representative “small” and
“large” queue items). Vary those to measure their impact.

Measure total throughput, or items handled per unit time.

Look for scalability, or the change in throughput as we add more

threads. Does using more threads do more total work? Why or why not?
In what directions, and for what combinations of workloads?

Look for contention, or the interference between multiple threads
trying to do work concurrently.

Watch for the cost of oversubscription, and eliminate it either
algorithmically or by limiting the actual amount of concurrency to avoid
it altogether.

Beware of overreliance on automated trendlines / fitted curves.
Apply them only after first examining the raw data.

© 2014 by Herb Sutter Date updated: September 13, 2014

except material otherwise referenced.

Page: 46

Lock-Free Programming

Questions?

© 2014 by Herb Sutter Date updated: September 13, 2014
except material otherwise referenced. Page: 47

