
Lock-Free Programming

© 2014 by Herb Sutter
except material otherwise referenced.

Date updated: September 13, 2014
Page: 1

Lock-Free Programming

Herb Sutter

Why Lock-Free Code?

 Concurrency and scalability.
 Eliminate/reduce blocking/waiting in algorithms and data structures.

 Avoid the troubles with (b)locking:
{

lock_guard<mutex> lock1{ mutTable1 };
lock_guard<mutex> lock2{ mutTable2 };
table1.erase(x);
table2.insert(x);

} // release mutTable2 and mutTable1
 Races: Forgot to lock, or locked the wrong thing.

 Deadlock: Locked in incompatible orders on different threads.

 Simplicity vs. scalability (convoying, priority inversion)? Coarse-grained
locking is simpler to program, but creates bottlenecks to kill scalability.

 Not composable. In today’s world, this is a deadly sin.

Lock-Free Programming

© 2014 by Herb Sutter
except material otherwise referenced.

Date updated: September 13, 2014
Page: 2

Important assumptions

(1) You have already measured performance/scalability
and proven you have a high-contention data structure,
before resorting to the techniques described in this talk.

(2) You will measure again after you write a
hopefully-more-concurrent replacement using these

techniques to ensure that it is actually an improvement.

h
tt
p
:/
/w

w
w

.f
lic

k
r.

c
o
m

/p
h

o
to

s
/w

a
llr

e
v
o
lu

ti
o

n
/4

6
9

5
7

8
4

2
/

Locks Lock-Free

Single-Threaded

Lock-Free Programming

© 2014 by Herb Sutter
except material otherwise referenced.

Date updated: September 13, 2014
Page: 3

Roadmap

 Two Basic Tools

 Transactional thinking + atomic<T>

 Basic Example: Double-Checked Locking

 It’s pretty easy to do right, but you still have to do it right

 Producer-Consumer Variations

 Using locks, locks + lock-free, and fully lock-free

 A Singly Linked List: This Stuff Is Harder Than It Looks

 Just find, push_front, and pop: How hard could it be?

Lock-Free Fundamental #1

 Your key concept: Think in transactions (ACID).

 Atomicity:

 A transaction is all-or-nothing; “commit” is atomic. Other code must
not be able to see the data in a partially-updated state (i.e., a corrupt
state).

 [LF] Publish each change using one atomic write (read-modify-write).

 Consistency, Isolation, Durability:

 A transaction takes the data from one consistent state to another.

 Two transactions never simultaneously operate on the same data.

 A committed transaction is never overwritten by second transaction
that did not see the results of the first transaction. (The “lost update”
problem.)

 [LF] Make sure concurrent updates don’t interfere with each other
(especially think about deletes!) or with concurrent readers.

enter critical region

exit critical region

Lock-Free Programming

© 2014 by Herb Sutter
except material otherwise referenced.

Date updated: September 13, 2014
Page: 4

Lock-Free Fundamental #2
 Your key tool: The ordered atomic variable.

 C++11 “atomic<T>” and C11 “atomic_*”.
 Java “volatile T” and Atomic* (e.g., AtomicLong).
 .NET “volatile T”.

 Semantics and operations:
 Each individual read and write is atomic, no locking required.
 Reads/writes are guaranteed not to be reordered.
 Compare-and-swap (CAS)… conceptually an atomic execution of:

bool atomic<T>::compare_exchange_strong(T& expected, T desired) {
if(this->value == expected) { this->value = desired; return true; }
else /* it’s not */ { expected = this->value; return false; }

}
 + compare_exchange_weak for use in loops (is allowed to fail spuriously)
 + exchange for when a “blind write” that returns the old value is sufficient

 Notes:
 Limited to certain types that can be manipulated atomically.
 An ‘atomic T’ may not have the same layout (e.g., alignment) as a plain T.

atomic<T> Notes
 Lock-free vs. lock-based implementations:

 If T is a small type, including most built-ins, atomic<T> is implemented
without locks (typically, platform-specific instructions).

 For larger types, atomic<T> is implemented using a lock.

 Initialization: Remember to explicitly initialize – atomic<int> ai{ 0 };

 Interleaving: The state of the atomic<T> can change at any time between
successive calls on this thread due to interleaved calls on other threads.

 Granularity: Logical transactions often operate on multiple objects, or on
multiple calls to the same object. Example:

atomic<int> account1_balance = …, account2_balance = …;

account1_balance += amount;
account2_balance –= amount;

 Those two lines still need to be externally locked, if some invariant
doesn’t hold in between the two calls.

Lock-Free Programming

© 2014 by Herb Sutter
except material otherwise referenced.

Date updated: September 13, 2014
Page: 5

Aside: Three Levels of “Lock-Freedom”

 Wait-free (strongest, “no one ever waits”): Every operation will
complete in a bounded #steps no matter what else is going on.

 Guaranteed system-wide throughput + starvation-freedom.

 Lock-free (“someone makes progress”): Every step taken achieves
global progress (for some sensible definition of progress).

 Guaranteed system-wide throughput.

 All wait-free algorithms are lock-free, but not vice versa.

 Obstruction-free (weakest, “progress if no interference”): At any point,
a single thread executed in isolation (i.e., with all obstructing threads
suspended) for a bounded number of steps will complete its operation.

 No thread can be blocked by delays or failures of other threads.

 Doesn’t guarantee progress while two or more threads run concurrently
(e.g., deadlock is impossible, but livelock could be possible).

 All lock-free algorithms are obstruction-free, but not vice versa.

Informally, “lock-free”  “doesn’t use mutexes” == any of these.

Roadmap

 Two Basic Tools

 Transactional thinking + atomic<T>

 Basic Example: Double-Checked Locking

 It’s pretty easy to do right, but you still have to do it right

 Producer-Consumer Variations

 Using locks, locks + lock-free, and fully lock-free

 A Singly Linked List: This Stuff Is Harder Than It Looks

 Just find, push_front, and pop: How hard could it be?

Lock-Free Programming

© 2014 by Herb Sutter
except material otherwise referenced.

Date updated: September 13, 2014
Page: 6

Correct Double-Checked Locking

 The Double-Checked Locking (DCL) pattern (un-“broken”).
atomic<Widget*> Widget::pInstance{ nullptr };

Widget* Widget::Instance() {
if(pInstance == nullptr) { // 1: first check

lock_guard<mutex> lock{ mutW };// 2: acquire lock (crit sec enter)
if(pInstance == nullptr) { // 3: second check

pInstance = new Widget(); // 4: create and assign
}

} // 5: release lock (crit sec exit)
return pInstance; // 6: return pointer

}

 Four key points, involving both atomicity and ordering:
 1: Test pInstance atomically.

 2: Then, if that fails, take the lock.

 3-4a: Then repeat the test and construct the object.

 4b: Then assign its this pointer atomically to pInstance.

Slight Optimization

 This may be slightly faster (1 vs. 2 atomic loads in the main case):
atomic<Widget*> Widget::pInstance{ nullptr };

Widget* Widget::Instance() {
Widget* p = pInstance;
if(p == nullptr) { // 1: first check

lock_guard<mutex> lock{ mutW };// 2: acquire lock (crit sec enter)
if((p = pInstance) == nullptr) { // 3: second check

pInstance = p = new Widget(); // 4: create and assign
}

} // 5: release lock (crit sec exit)
return p; // 6: return pointer

}

 The compiler is allowed to do this optimization for you, but:
 it isn’t required to, and

 it’s not common yet AFAIK.

Lock-Free Programming

© 2014 by Herb Sutter
except material otherwise referenced.

Date updated: September 13, 2014
Page: 7

Even Better: There’s a Tool For That

 The general-purpose way to spell lazy initialization in C++11 is:

static unique_ptr<widget> widget::instance;

static std::once_flag widget::create;

widget& widget::get_instance() {

std::call_once(create, [=]{ instance = make_unique<widget>(); });

return instance;

}

 No raw *, automatic cleanup, and much lower boilerplate-to-real

code ratio.

Best of All: There’s a Tool For That

 The special-purpose way that you should use when you
can (aka the Meyers Singleton!) is this:

widget& widget::get_instance() {

static widget instance;
return instance;

}

Lock-Free Programming

© 2014 by Herb Sutter
except material otherwise referenced.

Date updated: September 13, 2014
Page: 8

Roadmap

 Two Basic Tools

 Transactional thinking + atomic<T>

 Basic Example: Double-Checked Locking

 It’s pretty easy to do right, but you still have to do it right

 Producer-Consumer Variations

 Using locks, locks + lock-free, and fully lock-free

 A Singly Linked List: This Stuff Is Harder Than It Looks

 Just find, push_front, and pop: How hard could it be?

Locks and Atomics In Combination

 The key requirement is that access to a given shared
mutable object is synchronized consistently…
 Using traditional locking. (Preferred, but sometimes

problematic because locks don’t compose well.)

 Using a lock-free atomic<> discipline. (Less deadlock, but this
style tends to be really hard today.)

 … at every given point in time.
 It doesn’t have to be the same for the lifetime of the object.

 For example, consider handoff situations:
 Threads 1..N share object x, synchronizing via mutex m1.

 Then x is handed off and never looked at again by those threads.

 Then Threads N+1..M shared x, synchronizing via mutex m2 (or via a
lock-free discipline, or some other way).

Lock-Free Programming

© 2014 by Herb Sutter
except material otherwise referenced.

Date updated: September 13, 2014
Page: 9

Create and Publish Queue Items:

1 Producer, Many Consumers, Using Locks

 Thread 1 (producer):

while(ThereAreMoreTasks()) {
task = AllocateAndBuildNewTask();
{

lock_guard<mutex> lock{mut}; // enter critical section
queue.push(task);

} // exit critical section
cv.notify(); //

}

{
lock_guard<mutex> lock{mut}; // enter critical section
queue.push(done); // add sentinel; that’s all folks

} // exit critical section
cv.notify(); //

Create and Publish Queue Items:

1 Producer, Many Consumers, Using Locks

 Threads 2..N (consumers):

myTask = null;
while(myTask != done) {

{
lock_guard<mutex> lock{mut}; // enter critical section
while(queue.empty()) // if not ready, don’t busy-wait,

cv.wait(mut); // release and re-enter crit sec

myTask = queue.first(); // take task
if(myTask != done) // remove it if not the sentinel,

queue.pop(); // which others need to see
} // exit critical section

if(myTask != done)
DoWork(myTask);

}

Lock-Free Programming

© 2014 by Herb Sutter
except material otherwise referenced.

Date updated: September 13, 2014
Page: 10

Quick Quiz: Where Must Those Pesky

Lock-Protected Invariants Hold, Again?

 Threads 2..N (consumers):

myTask = null;
while(myTask != done) {

{
lock_guard<mutex> lock{mut}; // enter critical section
while(queue.empty()) // if not ready, don’t busy-wait,

cv.wait(mut); // release and re-enter crit sec

myTask = queue.first(); // take task
if(myTask != done) // remove it if not the sentinel,

queue.pop(); // which others need to see
} // exit critical section

if(myTask != done)
DoWork(myTask);

}

INVARIANTS HOLD

INVARIANTS HOLD

INVARIANTS HOLD

INVARIANTS HOLD

Questions & Answers

 Why was mut.unlock() not enough to exit the critical section?

 Unlock often is enough to exit a critical section, but we have extra
semantics: “We knew” that consumers are waiting on the condition
variable too.

 If we don’t cv.notify(), the consumers will never wake up.

 But why cv.notify() on all the critical section exits except one?

 Because “we knew” that the condition variable was only to notify of
new additions to the queue.

 We don’t need to wake up other consumers when we’ve taken a task
away. They’re only waiting for tasks to arrive.

 Could we make unlock-and-notify a single operation by
default?

 What an interesting suggestion! Exercise for the reader…

Lock-Free Programming

© 2014 by Herb Sutter
except material otherwise referenced.

Date updated: September 13, 2014
Page: 11

Step 2 critical region

Step 1 release

Step 1 acquire

Create and Publish Queue Items:

1 Producer, Many Consumers (Locks + LF)

 This variant uses an atomic<Task*> head that points to a lock-
free slist, using lock-free coordination for step 1 (producer 
consumers), then a lock among consumers (sketch):
 Thread 1 (producer):

… build task list …
head = head of task queue; // publish that complete list exists

 Threads 2..N (consumers) spin until the list is there, then swarm:
while(myTask == null) {

lock_guard<mutex> lock{mut};
if(head != null) { // check if list exists yet

myTask = head; // take task
head = head->next; // remove it

}
}
… = myTask->data;

Note: In a real implementation you’d want to avoid busy-waiting.

Going Fully “Lock-Free”:

Atomic Mail Slots

Lock-Free Programming

© 2014 by Herb Sutter
except material otherwise referenced.

Date updated: September 13, 2014
Page: 12

A Mail Slot State Machine

Consumer

Producer
Start

End

Empty Task Done

Create and Publish Queue Items:

1 Producer, Many Consumers, Lock-Free

 1 Producer thread: Changes any box from null to non-null.
curr = 0; // keep a finger on the current mailbox
// Phase 1: Build and distribute tasks
while(ThereAreMoreTasks()) {

task = AllocateAndBuildNewTask();
while(slot[curr] != null) // acquire null: look for next empty slot

curr = (curr+1)%K;
slot[curr] = task; // release non-null: “You have mail!“
sem[curr].signal();

}
// Phase 2: Stuff the mailboxes with “done” signals
numNotified = 0;
while(numNotified < K) {

while(slot[curr] != null) // acquire null: look for next notifiable slot
curr = (curr+1)%K;

slot[curr] = done; // release done: write sentinel
sem[curr].signal();
++numNotified;

}

Lock-Free Programming

© 2014 by Herb Sutter
except material otherwise referenced.

Date updated: September 13, 2014
Page: 13

Create and Publish Queue Items:

1 Producer, Many Consumers, Lock-Free

 1 Producer thread: Changes any box from null to non-null.
curr = 0; // keep a finger on the current mailbox
// Phase 1: Build and distribute tasks
while(ThereAreMoreTasks()) {

task = AllocateAndBuildNewTask();
while(slot[curr] != null) // acquire null: look for next empty slot

curr = (curr+1)%K;
slot[curr] = task; // release non-null: “You have mail!“
sem[curr].signal();

}
// Phase 2: Stuff the mailboxes with “done” signals
numNotified = 0;
while(numNotified < K) {

while(slot[curr] != null) // acquire null: look for next notifiable slot
curr = (curr+1)%K;

slot[curr] = done; // release done: write sentinel
sem[curr].signal();
++numNotified;

}

Phase 1 is wait-free
up to K active workers

Phase 2 is
obstruction-free

Q: Is this algorithm
wait-free,

lock-free, or
obstruction-free?

Create and Publish Queue Items:

1 Producer, Many Consumers, Lock-Free

 K Consumer threads (mySlot = 0..K-1):
Each changes its own box from non-null to null.

myTask = null;

while(myTask != done) {

while((myTask = slot[mySlot]) == null) // acquire non-null,
sem[mySlot].wait(); // without busy-wait

if(myTask != done) {

slot[mySlot] = null; // release null: tell that we took it

DoWork(myTask); // good practice: prefer to do work
} // outside the critical section

}

Lock-Free Programming

© 2014 by Herb Sutter
except material otherwise referenced.

Date updated: September 13, 2014
Page: 14

Create and Publish Queue Items:

1 Producer, Many Consumers, Lock-Free

 K Consumer threads (mySlot = 0..K-1):
Each changes its own box from non-null to null.

myTask = null;

while(myTask != done) {

while((myTask = slot[mySlot]) == null) // acquire non-null,
sem[mySlot].wait(); // without busy-wait

if(myTask != done) {

slot[mySlot] = null; // release null: tell that we took it

DoWork(myTask); // good practice: prefer to do work
} // outside the critical section

}

Q: Could it make sense to swap
these two lines? Why?

Lock-Free Programming

© 2014 by Herb Sutter
except material otherwise referenced.

Date updated: September 13, 2014
Page: 15

Roadmap

 Two Basic Tools

 Transactional thinking + atomic<T>

 Basic Example: Double-Checked Locking

 It’s pretty easy to do right, but you still have to do it right

 Producer-Consumer Variations

 Using locks, locks + lock-free, and fully lock-free

 A Singly Linked List: This Stuff Is Harder Than It Looks

 Just find, push_front, and pop: How hard could it be?

Example: Singly-Linked List

 A singly-linked list (aka “slist<T>”) is one of the simplest
possible data structures:

 Simplifying assumptions:

 Only four operations: Construct, destroy, find, push_front.

 Challenge: Write a lock-free implementation that callers
can safely use without any external locks.

 C’mon, how hard could it be?

head

T T T T

Lock-Free Programming

© 2014 by Herb Sutter
except material otherwise referenced.

Date updated: September 13, 2014
Page: 16

A Lock-Free Singly-Linked List: First Cut

 Here is the interface declaration, and the internals we’ll use:
template<typename T>
class slist {
public:

slist();

~slist();

T* find(T t) const; // return pointer to first equal T

void push_front(T t); // insert at the front of the list

private:
struct Node { T t; Node* next; }; // no “atomic” needed here

atomic<Node*> head{ nullptr }; // but “atomic” is needed here:
// “head” is mutable shared data

slist(slist&) =delete;
void operator=(slist&) =delete;

};

slist<T> Constructor

 The constructor is easy:

template<typename T>
slist<T>::slist()

{ } // or just “=default”

 Concurrency issues:

 None.

 Note: As usual, the caller has to know he can’t use an object
concurrently while he’s constructing it. But this isn’t an
“external synchronization” issue as much as it’s a lifetime
management issue – he can’t use the slist before it’s
constructed either.

Lock-Free Programming

© 2014 by Herb Sutter
except material otherwise referenced.

Date updated: September 13, 2014
Page: 17

slist<T> Destructor

 The destructor has to traverse:
template<typename T>
slist<T>::~slist() {

auto first = head.load(); // good habit: access head once
while(first) { // (not needed here, but good habit...)

auto unlinked = first;
first = first->next;
delete unlinked;

}
}

 Concurrency issues:
 None.
 Note: As usual, the caller has to know he can’t use an object

concurrently while he’s destroying it. But this isn’t an “external
synchronization” issue as much as it’s a lifetime management issue –
he can’t use the slist after it’s destroyed either.

slist<T>::find

 Return a pointer to the first equal element, or nullptr if
there isn’t one:

template<typename T>
T* slist<T>::find(T t) const {

auto p = head.load();
while(p && p->t != t)

p = p->next;

return p ? &p->t : nullptr;
}

 Concurrency issues:
 None.

 As long as the constructor and destructor aren’t running, this
can freely run concurrently with other find operations… and
should be safe to run concurrently with insert operations.

Lock-Free Programming

© 2014 by Herb Sutter
except material otherwise referenced.

Date updated: September 13, 2014
Page: 18

A Look At push_front

 Initial state:

 Intermediate state:

 Final state:

head

T T T T

head

T T T T

T

head

T T T T

T

slist<T>::push_front (Flawed)

 Insert a node with a copy of the given value:
template<typename T>
void slist<T>::push_front(T t) {

auto p = new Node; // create the new node
p->t = t; // set its element value
p->next = head; // set its place in the list
head = p; // publish it at the head

}

 Q: What’s wrong with this code?

Lock-Free Programming

© 2014 by Herb Sutter
except material otherwise referenced.

Date updated: September 13, 2014
Page: 19

slist<T>::push_front (Flawed)

 Insert a node with a copy of the given value:
template<typename T>
void slist<T>::push_front(T t) {

auto p = new Node; // create the new node
p->t = t; // set its element value
p->next = head; // set its place in the list
head = p; // publish it at the head

}

 Q: What’s wrong with this code?

 Concurrency issues:
 None for any readers: The insertion of the new node is atomic. A

concurrent reader will see either the old value or the new value, and
in either case has a valid list to traverse.

 Problem for writers: What if two threads try to insert at the same
time?

A Look At the Problem

 Initial state:

 Intermediate state, insertions in progress by two threads:

 Final state: First is clobbered (and leaked), last one wins.

head

T T T T

T

head

T T T T

T

T

head

T T T T

T

Lock-Free Programming

© 2014 by Herb Sutter
except material otherwise referenced.

Date updated: September 13, 2014
Page: 20

slist<T>::push_front

 Insert a node with a copy of the given value:
template<typename T>
void slist<T>::push_front(T t) {

auto p = new Node; // create the new node

p->t = t; // set its element value

p->next = head; // set its place in the list and

while(!head.compare_exchange_weak(p->next, p))
{ } // try to swap it in until successful

}

 The “CAS loop” is a common construction in lock-free code.
 Loop until “we get to be the one” to update head from ‘expected’ to ‘desired’.

 Concurrency issues:
 None for any readers: The insertion of the new node is atomic. A

concurrent reader will see either the old value or the new value, and in
either case has a valid list to traverse.

 None for writers: The CAS loop makes concurrent writers safe (for now).

Well, that was easy…

So how about adding just one more little member function?

Lock-Free Programming

© 2014 by Herb Sutter
except material otherwise referenced.

Date updated: September 13, 2014
Page: 21

Revised Example: Pop Goes the List

 We’ll stick with our singly-linked list, one of the simplest
possible data structures:

 Simplifying assumptions:

 Original operations: Construct, destroy, find, push_front.

 New operation: pop to erase the first element from the list.

 Same challenge: Write a lock-free implementation that
callers can safely use without any external locks.

 C’mon, how hard could it be?

head

T T T T

A Lock-Free Singly-Linked List: First Cut

 Here is the interface declaration, and the internals we’ll use:
template<typename T>
class slist {
public:

slist();
~slist();
T* find(T t) const; // return pointer to first equal T
void push_front(T t); // insert at the front of the list
void pop_front(); // remove first element

private:
struct Node { T t; Node* next; }; // no “atomic” needed here
atomic<Node*> head{ nullptr }; // but it’s needed here, because

// “head” is mutable shared data
slist(slist&) =delete;
void operator=(slist&) =delete;

};

Lock-Free Programming

© 2014 by Herb Sutter
except material otherwise referenced.

Date updated: September 13, 2014
Page: 22

A Look At pop

 Initial state:

 Intermediate state:

 Final state:

head

T T T T

head

T T T T

head

T T T

slist<T>::pop (Flawed)

 Remove the first node:

template<typename T>
void slist<T>::pop_front() {

auto p = head.load(); // remember current first node

if(p) head = p->next; // set head to the second node

delete p; // and clean up old first node
}

 Q: What’s wrong with this code?

Lock-Free Programming

© 2014 by Herb Sutter
except material otherwise referenced.

Date updated: September 13, 2014
Page: 23

slist<T>::pop (Flawed)

 Remove the first node:

template<typename T>
void slist<T>::pop_front() {

auto p = head.load(); // remember current first node

if(p) head = p->next; // set head to the second node

delete p; // and clean up old first node
}

 Q: What’s wrong with this code?

 Concurrency issues:

 Problem for readers: What if a concurrent reader doing a find() is
pointing to the first node and about to read its next pointer?

 Problem for writers: What if a concurrent writer is trying to insert?
What if a concurrent writer is trying to erase?

slist<T>::pop (Attempt #2, Still Flawed)

 Remove the first node:
template<typename T>
void slist<T>::pop_front() {

auto p = head.load(); // important: read head once

while(p && !head.compare_exchange_weak(p, p->next))
{ } // NB: relies on short-circuit eval

delete p; // and clean up
}

 Q: What’s wrong with this code?

Lock-Free Programming

© 2014 by Herb Sutter
except material otherwise referenced.

Date updated: September 13, 2014
Page: 24

slist<T>::pop (Attempt #2, Still Flawed)

 Remove the first node:
template<typename T>
void slist<T>::pop_front() {

auto p = head.load(); // important: read head once

while(p && !head.compare_exchange_weak(p, p->next))
{ } // NB: relies on short-circuit eval

delete p; // and clean up
}

 Q: What’s wrong with this code?

 Concurrency issues:
 Same problem for readers: What if a concurrent reader doing a find()

is pointing to the first node and about to read its next pointer?

 Subtle problem for writers: What if a concurrent writer is trying to
insert? What if a concurrent writer is trying to erase? Let’s look at the
“ABA problem”…

The “ABA Problem”

 Original state: T T T T

Lock-Free Programming

© 2014 by Herb Sutter
except material otherwise referenced.

Date updated: September 13, 2014
Page: 25

The “ABA Problem”

 Step 1 of deletion:
p = head;
__temp = p->next;

T T T T

__tempp

The “ABA Problem”

 Step 1 of deletion:
p = head;
__temp = p->next;

 Concurrently, another
thread deletes the
p two nodes.

T T T T

T T

__tempp

__tempp

Lock-Free Programming

© 2014 by Herb Sutter
except material otherwise referenced.

Date updated: September 13, 2014
Page: 26

The “ABA Problem”

 Step 1 of deletion:
p = head;
__temp = p->next;

 Concurrently, another
thread deletes the
p two nodes.

 Then someone inserts a
new node, and the
allocator reuses the
same memory block.

T T T T

T T

T T T

__tempp

__tempp

__tempp

The “ABA Problem”

 Step 1 of deletion:
p = head;
__temp = p->next;

 Concurrently, another
thread deletes the
p two nodes.

 Then someone inserts a
new node, and the
allocator reuses the
same memory block.

 Step 2 (CAS) “succeeds”:
head.c_e_w(p, __temp);
delete p;

and we’re in trouble.

T T T T

T T

T T T

T T

__tempp

__tempp

__tempp

Lock-Free Programming

© 2014 by Herb Sutter
except material otherwise referenced.

Date updated: September 13, 2014
Page: 27

ABA Solutions (sketch)
 We need to solve the ABA issue: Two nodes with the same address,

but different identities (existing at different times).
 Option 1: Use lazy garbage collection.

 Solves the problem. Memory can’t be reused while pointers to it exist.
 But: Not an option (yet) in portable C++ code, and destruction of nodes

becomes nondeterministic.

 Option 2: Use reference counting (garbage collection).
 Solves the problem in cases without cycles. Again, avoids memory reuse.

 Option 3: Make each pointer unique by appending a serial number,
and increment the serial number each time it’s set.
 This way we can always distinguish between A and A’.
 But: Requires an atomic compare-and-swap on a value that’s larger than

the size of a pointer. Not available on all hardware & bit-nesses.

 Option 4: Use hazard pointers.
 Maged Michael and Andrei Alexandrescu have covered this in detail.
 But: It’s very intricate. Tread with caution.

Delete-While-Traversing Solutions (sketch)

 We also need to resolve the deletion issue: We can’t delete a
node if a concurrent reader/writer might be pointing to it.
 A concurrent member function, like find.
 (!) A concurrent users of a T* we handed out.

 Option 1: Use lazy garbage collection.
 Solves the problem because memory can’t be reused while any

pointers to it exist. However, destruction of nodes becomes
nondeterministic.

 Option 2: Use reference counting (garbage collection).
 Solves the problem in cases without cycles.

 Option 3: Never actually delete a node (only logically delete).
 Can work when deleting is rare.

 Option 4: Put auxiliary nodes in between actual nodes.
 Contains a next pointer only, no data. These links don’t move.

Enables operations on adjacent nodes to run without interference.

Lock-Free Programming

© 2014 by Herb Sutter
except material otherwise referenced.

Date updated: September 13, 2014
Page: 28

Psst…

Interested in a correct slist that fell off the
back of my friend’s truck, for cheap?

A Lock-Free Singly-Linked List: Second Cut

 Judicious tweaks to eliminate raw *: ref counting + reference.
template<typename T> class slist {

struct Node { T t; shared_ptr<Node> next; };

atomic<shared_ptr<Node>> head; // NOTE: actual syntax different

slist(slist&) =delete;
void operator=(slist&) =delete;

public:
slist() =default;
~slist() =default;

class reference { /*…*/ };

auto find(T t) const {
auto p = head.load();
while(p && p->t != t)

p = p->next;
return reference(move(p));

}

class reference {
shared_ptr<Node> p;

public:
reference(shared_ptr<Node> p_) : p{p_} { }
T& operator*() { return p->t; }
T* operator->() { return &p->t; }

};

Q: How would you implement
class reference?

Lock-Free Programming

© 2014 by Herb Sutter
except material otherwise referenced.

Date updated: September 13, 2014
Page: 29

A Lock-Free Singly-Linked List: Second Cut

 Continued:
void push_front(T t) {

auto p = make_shared<Node>();
p->t = t;
p->next = head;
while(!head.compare_exchange_weak(p->next, p))

{ }
}

void pop_front() {
auto p = head.load();
while(p && !head.compare_exchange_weak(p, p->next))

{ }

}

};

Q: Where is the “delete”?

What Happens In the Case of Concurrent…

 Pop
void pop_front() {

auto p = head.load();
while(p &&

!head.c_e_w(p, p->next))
{ }

}

 Pop
void pop_front() {

auto p = head.load();
while(p &&

!head.c_e_w(p, p->next))
{ }

}

 The only competing modifying operations
are head.compare_exchange.

 One will happen-before the other, and succeed.

 The other will fail, and retry.

 ABA can’t happen because no delete+recycling.

Lock-Free Programming

© 2014 by Herb Sutter
except material otherwise referenced.

Date updated: September 13, 2014
Page: 30

What Happens In the Case of Concurrent…

 Insert
void push_front(T t) {

auto p = make_shared<Node>();
p->t = t;
p->next = head;
while(!head.c_e_w(p->next, p))

{ }
}

 Pop
void pop_front() {

auto p = head.load();
while(p &&

!head.c_e_w(p, p->next))
{ }

}

 The only competing modifying operations
are head.compare_exchange.

 One will happen-before the other, and succeed.

 The other will fail, and retry.

What Happens In the Case of Concurrent…

 Find
auto find(T t) const {

auto p = head.load();
while(p && p->t != t)

p = p->next;
return reference(p);

}

 Pop
void pop_front() {

auto p = head.load();
while(p &&

!head.c_e_w(p, p->next))
{ }

}

 Thanks to ref counting, find keeps its current
node (and successors) alive.

 find sees list “as if” pop waited for find to finish!

 Important concept: Linearizability.

Lock-Free Programming

© 2014 by Herb Sutter
except material otherwise referenced.

Date updated: September 13, 2014
Page: 31

A Look At find + pop

 Initial state:

 Find begins and gets partway through the list:

 Two pops complete:

head

T T T T

head

T T T T

head

T T T

find

find

Translation Guide

 The code we just saw.
 Hopefully a future standard

will allow this…

atomic<shared_ptr<T>> a;

auto p = a.load();

a.compare_exchange_weak(e,d);

 What you actually write today.
 The “atomic<>” is a comment, and

remember to write an atomic_* call for
every use of the shared_ptr.

shared_ptr<T> a;

// remember “atomic” – rely on discipline

auto p = atomic_load(&a);

atomic_compare_exchange_weak(&a,&e,d);

Lock-Free Programming

© 2014 by Herb Sutter
except material otherwise referenced.

Date updated: September 13, 2014
Page: 32

Roadmap

 Two Basic Tools

 Transactional thinking + atomic<T>

 Basic Example: Double-Checked Locking

 It’s pretty easy to do right, but you still have to do it right

 Producer-Consumer Variations

 Using locks, locks + lock-free, and fully lock-free

 A Singly Linked List: This Stuff Is Harder Than It Looks

 Just find, push_front, and pop: How hard could it be?

For More Information

 My site: herbsutter.com

 H. Hinnant. “Multithreading API for C++0X - A Layered Approach”
(ISO C++ committee paper N2094, Sep 2006).
www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2094.html

 H. Boehm and L. Crowl. “C++ Atomic Types and Operations” (ISO
C++ committee paper N2145, Jan 2007).
www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2145.html

 H. Sutter. “Prism: A Principle-Based Sequential Memory Model for
Microsoft Native Code Platforms” (ISO C++ committee paper N2075,
Sep 2006).
www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2075.pdf

 H. Boehm. “A Less Formal Explanation of the Proposed C++
Concurrency Memory Model” (ISO C++ committee paper N2138,
Nov 2006).
www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2138.html

Lock-Free Programming

© 2014 by Herb Sutter
except material otherwise referenced.

Date updated: September 13, 2014
Page: 33

For More Information

 M. Herlihy, V. Luchangco, and M. Moir. “Obstruction-Free
Synchronization: Double-Ended Queues as an Example” (IEEE
International Conference on Distributed Computing Systems
(ICDCS), 2003).
http://www.cs.brown.edu/people/mph/HerlihyLM03/main.pdf

 J. Valois. “Lock-Free Linked Lists Using Compare-and-Swap”
(Principles of Distributed Computing (PODC), 1995).

 M. Michael and M. Scott. “Correction of a Memory
Management Method for Lock-Free Data Structures” (1995).

 J. Valois. “ERRATA Lock-Free Linked Lists Using Compare-and-
Swap” (1995).

 H.Boehm. “An Almost Non-Blocking Stack” (Principles of
Distributed Computing (PODC), 2004).
http://www.hpl.hp.com/techreports/2004/HPL-2004-105.pdf
http://www.hpl.hp.com/personal/Hans_Boehm/misc_slides/p
odc.pdf

For More Information

 M. Fomitchev and E. Ruppert. “Lock-Free Linked Lists and
Skip Lists” (Principles of Distributed Computing (PODC),
2004).

 K. Fraser. “Practical Lock-Freedom” (University of
Cambridge Computer Laboratory Technical Report #579,
2004).

Lock-Free Programming

© 2014 by Herb Sutter
except material otherwise referenced.

Date updated: September 13, 2014
Page: 34

Bonus Slides

Lock-Free Programming

© 2014 by Herb Sutter
except material otherwise referenced.

Date updated: September 13, 2014
Page: 35

Example 1

 Baseline code.
template <typename T>
struct LowLockQueue {

struct Node {
Node(T val) : value(val), next(nullptr) { }
T value; // objects are held by value
atomic<Node*> next;

};

 first and last point to the before-the-first and last nodes

 divider points to a boundary between producer and consumer

Node *first, *last; // for producer only

atomic<Node*> divider; // shared: P/C boundary

atomic<bool> producerLock; // shared by producers

atomic<bool> consumerLock; // shared by consumers

Example 1 (continued)

 Construct.
public:

LowLockQueue() {
first = divider = last = new Node(T());
producerLock = consumerLock = false;

}

 Destroy.
~LowLockQueue() {

while(first != nullptr) {
Node* tmp = first;
first = tmp->next;
delete tmp;

}
}

Lock-Free Programming

© 2014 by Herb Sutter
except material otherwise referenced.

Date updated: September 13, 2014
Page: 36

Example 1 (continued)

 Consume returns the value in the first unconsumed node.
 Note: The entire body of Consume is inside the critical section, so we

get no concurrency among consumers in this code.

bool Consume(T& result) {

while(consumerLock.exchange(true))
{ } // acquire exclusivity

if(divider->next != nullptr) { // if queue is nonempty
result = divider->next->value; // copy it back to the caller
divider = divider->next; // publish that we took an item
consumerLock = false; // release exclusivity
return true; // and report success

}

consumerLock = false; // release exclusivity
return false; // queue was empty

}

Example 1 (continued)
 Produce adds a new nodeto the tail, then lazily cleans up any

consumed nodes at the front of the list.
 Note: Not all of the body of Produce is inside the critical section, so

there is some concurrency among producers in this code.
bool Produce(const T& t) {

Node* tmp = new Node(t); // do work off to the side
while(producerLock.exchange(true))

{ } // acquire exclusivity
last = last->next = tmp; // publish the new item
while(first != divider) { // lazy cleanup

Node* tmp = first;
first = first->next;
delete tmp;

}
producerLock = false; // release exclusivity
return true;

}
};

Lock-Free Programming

© 2014 by Herb Sutter
except material otherwise referenced.

Date updated: September 13, 2014
Page: 37

How Fast Is It?

 Key properties to look for:

 Throughput: Total work, here #objects that can pass through
the queue.

 Scalability: Ability to use more hardware (cores) to get more
work done.

 These are affected by the effects of:

 Contention: How much threads interfere with each other by
fighing for resources.

 Oversubscription: What happens if there is more CPU-bound
work ready to execute than available hardware to execute it.

Example 1 Measurements

max = 11,300
min = 1,230

max = 88,000
min = 18,700

cores on
test machine

Lock-Free Programming

© 2014 by Herb Sutter
except material otherwise referenced.

Date updated: September 13, 2014
Page: 38

Ex. 2: Shrinking Consumer Critical Section

 For better performance, add heap-allocation…
… what, what?

 Lets us move the copying work out of the critical section.

 Diffs from Example 1 (part 1 of 2):

struct Node {
Node(T* val) : value(val), next(nullptr) { }
T* value;
atomic<Node*> next;

};

LowLockQueue() {
first = divider = last = new Node(nullptr);
producerLock = consumerLock = false;

}

Ex. 2: Shrinking Cons Crit Sec (continued)

 Diffs from Example 1 (part 2 of 2):
 Move the copying of the dequeued object, and the deletion of the value,

outside the critical section.
bool Consume(T& result) {

while(consumerLock.exchange(true))
{} // acquire exclusivity

if(divider->next != nullptr) { // if queue is nonempty
T* value = divider->next->value; // take it out
divider->next->value = nullptr; // of the Node
divider = divider->next; // publish that we took an item
consumerLock = false; // release exclusivity
result = *value; // now copy it back to the caller
delete value;
return true; // and report success

}
consumerLock = false; // release exclusivity
return false; // queue was empty

}

Lock-Free Programming

© 2014 by Herb Sutter
except material otherwise referenced.

Date updated: September 13, 2014
Page: 39

Example 1 Measurements

max = 11,300
min = 1,230

max = 88,000
min = 18,700

cores on
test machine

Example 2 Measurements

max = 111,000
min = 4,500

max = 269,000
min = 20,100

cores on
test machine

Lock-Free Programming

© 2014 by Herb Sutter
except material otherwise referenced.

Date updated: September 13, 2014
Page: 40

Ex. 3: Reducing Head Contention

 Ex. 1 & 2: Producer lazily removed consumed nodes.
 Forces producer to touch both ends of the queue.

 All threads (producers and consumers) have to touch head.

 Even though producers and consumers use different locks and can
run concurrently w.r.t. each other, this results in invisible contention
in the memory system.

 Idea: Let each consumer trim the nodes it consumed.
 Which it was touching anyway  better locality.

 Bonus: No more divider.

 Diffs from Example 3 (part 1 of 3):
LowLockQueue() {

first = last = new Node(nullptr); // no more divider

producerLock = consumerLock = false;

}

Ex. 3: Reducing Head Contention (cont’d)

 Diffs from Example 3 (part 2 of 3):
bool Consume(T& result) {

while(consumerLock.exchange(true))
{ } // acquire exclusivity

if(first->next != nullptr) { // if queue is nonempty
Node* oldFirst = first;
first = first->next;
T* value = first->value; // take it out
first->value = nullptr; // of the Node
consumerLock = false; // release exclusivity
result = *value; // now copy it back
delete value; // and clean up
delete oldFirst; // both allocations
return true; // and report success

}
consumerLock = false; // release exclusivity
return false; // queue was empty

}

Lock-Free Programming

© 2014 by Herb Sutter
except material otherwise referenced.

Date updated: September 13, 2014
Page: 41

Ex. 3: Reducing Head Contention (cont’d)

 Diffs from Example 3 (part 3 of 3):

 Producer is simpler.

bool Produce(const T& t) {

Node* tmp = new Node(t); // do work off to the side

while(producerLock.exchange(true))
{ } // acquire exclusivity

last->next = tmp; // A: publish the new item
last = tmp; // B: not "last->next"

producerLock = false; // release exclusivity
return true;

}

Example 2 Measurements

max = 111,000
min = 4,500

max = 269,000
min = 20,100

cores on
test machine

Lock-Free Programming

© 2014 by Herb Sutter
except material otherwise referenced.

Date updated: September 13, 2014
Page: 42

Example 3 Measurements

cores on
test machine

max = 115,000
min = 4,350

max = 486,000
min = 19,200

Ex. 4: Do Nothing… or, “Add Nothing”

 Keep data that is not used together apart.

 If variables A and B are liable to be used on different threads,
keep them on separate cache line.

 Diffs from Example 4:

struct alignas(CACHE_LINE_SIZE) Node {
Node(T* val) : value(val), next(nullptr) { }
T* value;
atomic<Node*> next;

};

alignas(CACHE_LINE_SIZE) Node* first;
alignas(CACHE_LINE_SIZE) atomic<bool> consumerLock;

alignas(CACHE_LINE_SIZE) Node* last;
alignas(CACHE_LINE_SIZE) atomic<bool> producerLock;

Lock-Free Programming

© 2014 by Herb Sutter
except material otherwise referenced.

Date updated: September 13, 2014
Page: 43

Ex. 4: Do Nothing… or, “Add Nothing”

 Keep data that is not used together apart.

 If variables A and B are liable to be used on different threads,
keep them on separate cache line.

 Diffs from Example 4:

struct alignas(CACHE_LINE_SIZE) Node {
Node(T* val) : value(val), next(nullptr) { }
T* value;
atomic<Node*> next;

};

alignas(CACHE_LINE_SIZE) Node* first;
alignas(CACHE_LINE_SIZE) atomic<bool> consumerLock;

alignas(CACHE_LINE_SIZE) Node* last;
alignas(CACHE_LINE_SIZE) atomic<bool> producerLock;

Example 3 Measurements

cores on
test machine

max = 115,000
min = 4,350

max = 486,000
min = 19,200

Lock-Free Programming

© 2014 by Herb Sutter
except material otherwise referenced.

Date updated: September 13, 2014
Page: 44

Example 4 Measurements

cores on
test machine

max = 114,000
min = 4,150

max = 583,000
min = 23,800

Direct Comparisons

of Examples 1-4 (“Small”)

cores on
test machine

linear scaling

Lock-Free Programming

© 2014 by Herb Sutter
except material otherwise referenced.

Date updated: September 13, 2014
Page: 45

Direct Comparisons

of Examples 1-4 (“Large”)

cores on
test machine

linear scaling

When Fitted

Curves Go Bad

cores on
test machine

linear scaling

Lock-Free Programming

© 2014 by Herb Sutter
except material otherwise referenced.

Date updated: September 13, 2014
Page: 46

What Have We Learned?

 To improve scalability, we need to minimize contention:

 Reduce the size of critical sections more concurrency.

 Reduce sharing by isolating threads to use different parts of
the data structure.

 Moving cleanup from producer to consumer lets consumers
touch only the head, producers touch only the tail.

 Reduce false sharing of different data on the same cache line,
but adding alignment padding.

 Separate variables that should be able to be used concurrently by
different threads should be far enough apart in memory.

What Have We Learned? (2)
 To understand scalability, need to know what to measure:

 Identify the key different kinds of work: Here, producer threads and
consumer threads. Use stress tests to measure the impact of having
different quantities and combinations of these in our workload.

 Identify the different kinds of data: Here, representative “small” and
“large” queue items). Vary those to measure their impact.

 Measure total throughput, or items handled per unit time.
 Look for scalability, or the change in throughput as we add more

threads. Does using more threads do more total work? Why or why not?
In what directions, and for what combinations of workloads?

 Look for contention, or the interference between multiple threads
trying to do work concurrently.

 Watch for the cost of oversubscription, and eliminate it either
algorithmically or by limiting the actual amount of concurrency to avoid
it altogether.

 Beware of overreliance on automated trendlines / fitted curves.
Apply them only after first examining the raw data.

Lock-Free Programming

© 2014 by Herb Sutter
except material otherwise referenced.

Date updated: September 13, 2014
Page: 47

