

Practical Type Erasure

A boost::any Based Configuration Framework

Code: https://github.com/cheinan/any_config

Cheinan Marks

Tag: cppcon2014

Outline

! What is type erasure?
! How does it work?
! boost::any
! Practical type erasure
! Conclusion

Type Erasure

class C
{
public:

template<typename TInject> C(TInject injectedInstance);

void invoke();

};

Type Erasure

class C
{
public:

template<typename TInject> C(TInject injectedInstance)
: m_internalBase(new CInjected<TInject>(injectedInstance)) {}

void invoke() { m_internalBase->DoIt(); }
private:

struct CInternalBase
{

virtual void DoIt() {}
virtual ~CInternalBase() {}

};

template<typename TInjected> struct CInjected : public CInternalBase
{

CInjected(TInjected i) : m_injected(i) {}
virtual void DoIt() { m_injected.Deploy(); }

private:
TInjected m_injected;

};

std::shared_ptr<CInternalBase> m_internalBasePtr;
};

Type Erasure: Implementation

Boost Any
#include <vector>
#include <string>
#include <iostream>
#include <boost/any.hpp>

int main()
{

boost::any a = std::string("Anything?");
std::vector<std::string> v = {"Anything!"};
a = v;
a = 5;

std::cout << boost::any_cast<int>(a) << std::endl;

return 0;
}

cheinan@cppcondev:~/dev$ g++ -std=c++11 any.cpp
cheinan@cppcondev:~/dev$./a.out
5

Practical Type Erasure

! Not a New Idea
! Smart Pointer Deletion
! Heterogeneous Containers
! any_iterator
! std::function

Practical Type Erasure

! Not Magic
! Someone Must Know Type
! Polymorphism Possible, but Ugly
! Use with Caution

– Can produce unmaintainable mess

Has This Happened to You?

Configuration Framework

! Get and Set Properties
! Multiple Back Ends

– .INI or Config File
– Database
– Environment

! Return More Than POD
! No Recompiling

Architecture

! Client-facing Front End Interface
– Return any object or data by key
– Client decides on backend(s) to use
– Compile only used back ends
– Client ignorant of implementation

Architecture

! Back end
– Extendible
– Supports specified types
– Instances created and destroyed
– Multiple instances supported

Architecture

! Generic Front End
! OO Back End

Architecture

! Generic Front End
! OO Back End
! Glue: Type Erasure

– Where the rubber meets the road

http://www.artima.com/cppsource/type_erasure.html

Type Erasure [is] the Glue between OO and Generic Programming

 – Thomas Becker

Client Facing Front End

class CAnyProperty
{
public:
 typedef std::shared_ptr<CAnyHandlerBase> THandlerPtr;

 template<typename T> T Get(const std::string & key) const

 template<typename T> void Set(const std::string & key, const T & value)

 void AddGetHandler(THandlerPtr handler_ptr);

 template<typename T> void SetSetHandler(THandlerPtr handler_ptr)
private:
 typedef std::map<Loki::TypeInfo, std::vector<THandlerPtr> > TGetHandlerMap;
 TGetHandlerMap m_GetHandlerMap;

 typedef std::map<Loki::TypeInfo, THandlerPtr> TSetHandlerMap;
 TSetHandlerMap m_SetHandlerMap;
};

Back End Base Class
class CAnyHandlerBase
{
public:
 CAnyHandlerBase() {}
 virtual ~CAnyHandlerBase() {}

 virtual boost::any Get(const std::string & /*key*/) const
 {
 throw CAnyPropertyException(CAnyPropertyException::eNoGet);
 return boost::any();
 }

 virtual void Set(const std::string & key, const boost::any & /*value*/)
 {
 throw CAnyPropertyException(CAnyPropertyException::eNoSet);
 }

 virtual std::string Name() const = 0; // For error reporting.

 virtual std::vector<Loki::TypeInfo> GetHandledTypes() const = 0;
};

Client Facing Front End

class CAnyProperty
{
public:
 template<typename T> T Get(const std::string & key) const
 {
 return boost::any_cast<T>(x_GetAny(key, typeid(T)));
 }

 template<typename T> void Set(const std::string & key, const T & value)
 {
 x_SetAny(key, value);
 }
};

Glue Getter
boost::any
CAnyProperty::x_GetAny(const std::string & key,
 const Loki::TypeInfo & value_type) const
{
 if (key.empty()) throw CAnyPropertyException(CAnyPropertyException::eEmptyKey);

 TGetHandlerMap::const_iterator handler_list_iter = m_GetHandlerMap.find(value_type);
 if (m_GetHandlerMap.end() == handler_list_iter) {
 throw CAnyPropertyException(CAnyPropertyException::eNoReadHandler,
 value_type.name());
 }

 const TGetHandlerMap::mapped_type & handler_list = handler_list_iter->second;

 CQueryHandler a_query_handler =
 for_each_if(handler_list.begin(), handler_list.end(), CQueryHandler(key));

 if (a_query_handler.GetValue().empty()) {
 throw CAnyPropertyNoKeyException(eKeyNotFound, key);
 }
 boost::any a = a_query_handler.GetValue();
 return a;
}

Glue Getter

template<typename InputIterator, typename Function>
 Function
 for_each_if(InputIterator first, InputIterator last, Function f)
 {
 for (; first != last; ++first)

 if (f(*first)) break;
 return f;
 }

Glue Getter Predicate

class CQueryHandler : public std::unary_function<CAnyProperty::THandlerPtr, bool>
{
public:
 CQueryHandler(const std::string & key) : m_Key(key) {}
 boost::any GetValue() const { return m_Value; }

 /// Execute the handler function and look for a return value.
 bool operator() (CAnyProperty::THandlerPtr handler_ptr)
 {
 assert(m_Value.empty());
 m_Value = handler_ptr->Get(m_Key);

 return ! m_Value.empty();
 }

private:
 std::string m_Key;
 boost::any m_Value;
};

Glue Setter
void CAnyProperty::x_SetAny(const std::string & key,
 const boost::any & value)
{
 if (key.empty()) {
 throw CAnyPropertyException(CAnyPropertyException::eEmptyKey);
 }

 Loki::TypeInfo value_type(value.type());
 TSetHandlerMap::iterator handler_iter = m_SetHandlerMap.find(value_type);
 if (handler_iter == m_SetHandlerMap.end()) {
 throw CAnyPropertyException(CAnyPropertyException::eNoWriteHandler,
 value_type.name());
 }

 THandlerPtr handler_ptr = handler_iter->second;
 assert(handler_ptr);

 handler_ptr->Set(key, value);
}

Glue Handlers

inline void CAnyProperty::AddGetHandler(CAnyProperty::THandlerPtr handler_ptr)
{
 std::vector<Loki::TypeInfo> handled_types = handler_ptr->GetHandledTypes();
 for(auto type_iter : handled_types) {
 TGetHandlerMap::mapped_type & handler_list = m_GetHandlerMap[type_iter];
 handler_list.push_back(handler_ptr);
 }
}

 template<typename T> void SetSetHandler(THandlerPtr handler_ptr)
 {
 m_SetHandlerMap[Loki::TypeInfo(typeid(T))] = handler_ptr;
 }

Back End Base Class
class CAnyHandlerBase
{
public:
 CAnyHandlerBase() {}
 virtual ~CAnyHandlerBase() {}

 virtual boost::any Get(const std::string & /*key*/) const
 {
 throw CAnyPropertyException(CAnyPropertyException::eNoGet);
 return boost::any();
 }

 virtual void Set(const std::string & key, const boost::any & /*value*/)
 {
 throw CAnyPropertyException(CAnyPropertyException::eNoSet);
 }

 virtual std::string Name() const = 0; // For error reporting.

 virtual std::vector<Loki::TypeInfo> GetHandledTypes() const = 0;
};

Back End Simple Handler
template <typename TValue>
class CAnyPropertyHandlerMemory : public CAnyHandlerBase
{
public:
 virtual boost::any Get(const std::string & key) const
 {
 boost::any value;
 typename std::map<std::string, TValue>::const_iterator it = m_Map.find(key);
 if (it != m_Map.end()) { value = it->second; }
 return value;
 }
 virtual void Set(const std::string & key, const boost::any & value)
 {
 m_Map[key] = boost::any_cast<TValue> (value);
 }
 virtual std::vector<Loki::TypeInfo> GetHandledTypes() const
 {
 return CreateTypeVector<TValue>()();
 }
private:
 std::map<std::string, TValue> m_Map;
};

Backend Env Handler
boost::any CAnyHandlerEnv::Get(const std::string & key) const
{
 boost::any value;
 char* env_value = ::getenv(key.c_str());
 if (env_value) {
 value = std::string(env_value);
 }
 return value;
}

void CAnyHandlerEnv::Set(const std::string & key, const boost::any & value)
{
 std::string env_value(key + "=" + boost::any_cast<std::string> (value));
 int putenvReturn = ::putenv(const_cast<char*>(env_value.c_str()));
 if (putenvReturn) { throw CAnyPropertyException(...); }
}

std::vector<Loki::TypeInfo> CAnyHandlerEnv::GetHandledTypes() const
{
 return CreateTypeVector<std::string>()();
}

Back End JSON Handler
{
 "firstName": "Homer",
 "lastName": "Simpson",
 "age": 38,
 "address": {
 "streetAddress": "742 Evergreen Terrace",
 "city": "Springfield",
 "state": "OR",
 "postalCode": "96522"
 },
 "phoneNumber": [
 {
 "type": "home",
 "number": "939 555-1234"
 },
 {
 "type": "fax",
 "number": "636 555-4567"
 }
],
}

Back End JSON Handler
class CAnyHandlerJSON : public CAnyHandlerBase
{
 ...
 std::map<std::string, boost::any> m_values;
};

CAnyHandlerJSON::CAnyHandlerJSON(const std::string& jsonFileName)
{

...
m_values["firstName"] = topObject["firstName"].get_value<std::string>();
m_values["lastName"] = topObject["lastName"].get_value<std::string>();
m_values["age"] = topObject["age"].get_value<int>();

std::map<std::string, std::string> addressMap;
...
m_values["address"] = addressMap;

std::vector<SPhoneNumber> phoneVector;
...
m_values["phone"] = phoneVector;

}

Back End Real Life
class IConnection;
class CGPAttrHandlerBuildrunID : public CGPAttrHandlerBase
{
public:
 virtual boost::any Get(const std::string & key) const;

 virtual std::string Name() const;
 virtual std::vector<Loki::TypeInfo> GetHandledTypes() const;

 CGPAttrHandlerBuildrunID();
private:
 void x_ConnectToDatabase();
 int x_GetBuildID() const;
 std::string x_ConstructSQL() const;

 CGPipeProperty m_Environment;

 std::string m_Database;
 std::string m_Username;
 std::string m_Password;

 std::auto_ptr<IConnection> m_Connection;
};

Additional Applications

! Heterogeneous Factory
! Registry

Conclusions

! No Magic Bullet
– Someone will have to cast

! Helps Expose Clean Interfaces
– Even when internals are dirty

! Glues OO and Generic Code

Acknowledgements

! Mike Dicuccio
! Andrei Alexandrescu
! Kevlin Henney
! Scott Meyers
! Edvard Munch

