Practical Type Erasure

A boost:;:any Based Configuration Framework

Code: https://github.com/cheinan/any_config

Tag: cppcon2014

Cheinan Marks

Outline

« What Is type erasure?
» How does it work?

* poost::any

* Practical type erasure
 Conclusion

Type Erasure

class C

Lo
public:
template<typename TInject> C(TInject injectedinstance);

void invoke();

Type Erasure: Implementation

class C
{
public:
template<typename TInject> C(TInject injectedinstance)
: m_internalBase(new Clnjected<TInject>(injectedInstance)) {}
void invoke() { m_internalBase->Dolt(); }
private:
struct CinternalBase
{
virtual void Dolt() {}
virtual ~ClnternalBase() {}

%

template<typename Tinjected> struct Cinjected : public CinternalBase

{
Clnjected(TInjected i) : m_injected(i) {}
virtual void Dolt() { m_injected.Deploy(); }
private:
TInjected m_injected,
I

std::shared_ptr<CinternalBase> m_internalBasePtr;

Boost Any

#include <vector>
#include <string>
#include <iostream>
#include <boost/any.hpp>

int main()

{
boost::any a = std::string("Anything?");
std::vector<std::string> v = {"Anything!"};
a=Vv,
a=->5;

std::cout << boost::any_cast<int>(a) << std::endl;

return O;

}

cheinan@cppcondev:~/dev$ g++ -std=c++11 any.cpp
cheinan@cppcondev:~/dev$./a.out
5

Practical Type Erasure

* Not a New ldea

« Smart Pointer Deletion

» Heterogeneous Containers
* any lIterator

» std::function

Practical Type Erasure

« Not Magic
« Someone Must Know Type

 Polymorphism Possible, but Ugly

 Use with Caution
- Can produce unmaintainable mess

Has This Happened to You?

string GetString (const string &driver_name, const string ¶m_
*synonyms=NULL)
Utility function to get an element of parameter tree Throws ai

const string & GetString (const string &driver_name, const string ¶m_
This version always defaults to the empty string so that it can

int Getint (const string &driver_name, const string ¶m_nar
Utility function to get an integer element of parameter tree Tt
value)

Uint8 GetDataSize (const string &driver_name, const string ¶
*synonyms=NULL)
Utility function to get an integer element of parameter tree Tt
value) This function understands KB, MB, GB qualifiers at the

bool GetBool (const string &driver_name, const string ¶m_n
*synonyms=NULL)
Utility function to get an integer element of parameter tree Tt
value)

double GetDouble (const string &driver_name, const string ¶n
*synonyms=NULL)
Utility function to get a double element of parameter tree Thr
value)

Configuration Framework

« Get and Set Properties

 Multiple Back Ends

- .INI or Config File
- Database
- Environment

* Return More Than POD
* No Recompiling

Architecture

» Client-facing Front End Interface

- Return any object or data by key

- Client decides on backend(s) to use
- Compile only used back ends

- Client ignorant of implementation

Architecture

« Back enc

- Extendible

- Supports specified types

- Instances created and destroyed
- Multiple instances supported

Architecture

« Generic Front End
« OO Back End

Architecture

« Generic Front End
« OO Back End

 Glue: Type Erasure
- Where the rubber meets the road

http://www.artima.com/cppsource/type_erasure.html
Type Erasure [is] the Glue between OO and Generic Programming

— Thomas Becker

Client Facing Front End

class CAnyProperty

{
public:

typedef std::shared ptr<CAnyHandlerBase> THandlerPtr;

template<typename T> T Get(const std::string & key) const

template<typename T> void Set(const std::string & key, const T & value)

void AddGetHandler(THandlerPtr handler_ptr);

_template<typename T>void SetSetHandler(THandlerPtr handler_ptr)
p”;/yaggdef std::map<Loki::Typelnfo, std::vector<THandlerPtr> > TGetHandlerMap;

TGetHandlerMap m_GetHandlerMap;

typedef std::map<Loki::Typelnfo, THandlerPtr> TSetHandlerMap;
TSetHandlerMap m_SetHandlerMap;

Back End Base Class

class CAnyHandlerBase

{

public:

CAnyHandlerBase() {}
virtual ~CAnyHandlerBase() {}

virtual boost::any Get(const std::string & /*key*/) const

{
throw CAnyPropertyException(CAnyPropertyException::eNoGet);

return boost::any();

}

virtual void Set(const std::string & key, const boost::any & /*value*/)

{
throw CAnyPropertyException(CAnyPropertyException::eNoSet);

}

virtual std::string Name() const = O; // For error reporting.

virtual std::vector<Loki::Typelnfo> GetHandledTypes() const = O;

Client Facing Front End

class CAnyProperty

Lo
public:
template<typename T> T Get(const std::string & key) const

{
return boost::any cast<T>(x_GetAny(key, typeid(T)));

}

template<typename T> void Set(const std::string & key, const T & value)

{
X_SetAny(key, value);

}
J

Glue Getter

boost::any
CAnyProperty::x_GetAny(const std::string & key,

const Loki::Typelnfo & value type) const
{

if (key.empty()) throw CAnyPropertyException(CAnyPropertyException::eEmptyKey);

TGetHandlerMap::const_iterator handler_list_iter = m_GetHandlerMap.find(value_type);
if (m_GetHandlerMap.end() == handler_list_iter) {
throw CAnyPropertyException(CAnyPropertyException::eNoReadHandler,
value_type.name());

}

const TGetHandlerMap::mapped_type & handler_list = handler_list_iter->second;

CQueryHandler a_query_handler =
for_each_if(handler_list.begin(), handler_list.end(), CQueryHandler(key));

if (a_query_handler.GetValue().empty()) {
throw CAnyPropertyNoKeyException(eKeyNotFound, key);
}

boost::any a = a_query _handler.GetValue();
return a;

Glue Getter

template<typename Inputlterator, typename Function>
Function
for_each_if(Inputlterator first, Inputlterator last, Function f)
{
for (; first != last; ++first)
if (f(*first)) break;
return f;

}

Glue Getter Predicate

class CQueryHandler : public std::unary_function<CAnyProperty::THandlerPtr, bool>

{

public:
CQueryHandler(const std::string & key) : m_Key(key) {}
boost::any GetValue() const { return m_Value; }

/l/ Execute the handler function and look for a return value.
bool operator() (CAnyProperty::THandlerPtr handler_ptr)
{

assert(m_Value.empty());

m_Value = handler_ptr->Get(m_Key);

return ! m_Value.empty();

}

private:
std::string m_Key;
boost::any m_Value;

%

Glue Setter

void CAnyProperty::x_SetAny(const std::string & key,
const boost::any & value)
{

if (key.empty()) {
throw CAnyPropertyException(CAnyPropertyException::eEmptyKey);
}

Loki::Typelnfo value type(value.type());
TSetHandlerMap::iterator handler_iter = m_SetHandlerMap.find(value_type);
if (handler_iter == m_SetHandlerMap.end()) {
throw CAnyPropertyException(CAnyPropertyException::eNoWriteHandler,
value_type.name());

}

THandlerPtr handler_ptr = handler_iter->second,;
assert(handler_ptr);

handler_ptr->Set(key, value);

Glue Handlers

inline void CAnyProperty::AddGetHandler(CAnyProperty::THandlerPtr handler_ptr)

{
std::vector<Loki::Typelnfo> handled_types = handler_ptr->GetHandledTypes();

for(auto type_iter : handled types) {
TGetHandlerMap::mapped_type & handler_list = m_GetHandlerMap[type_iter];
handler_list.push_back(handler_ptr);
}
}

template<typename T> void SetSetHandler(THandlerPtr handler ptr)
{

}

m_ SetHandlerMap[Loki:: Typelnfo(typeid(T))] = handler_ptr;

Back End Base Class

class CAnyHandlerBase

{

public:

CAnyHandlerBase() {}
virtual ~CAnyHandlerBase() {}

virtual boost::any Get(const std::string & /*key*/) const

{
throw CAnyPropertyException(CAnyPropertyException::eNoGet);

return boost::any();

}

virtual void Set(const std::string & key, const boost::any & /*value*/)

{
throw CAnyPropertyException(CAnyPropertyException::eNoSet);

}

virtual std::string Name() const = O; // For error reporting.

virtual std::vector<Loki::Typelnfo> GetHandledTypes() const = O;

Back End Simple Handler

template <typename TValue>
class CAnyPropertyHandlerMemory : public CAnyHandlerBase
{
public:
virtual boost::any Get(const std::string & key) const
{
boost::any value;
typename std::map<std::string, TValue>::const_iterator it = m_Map.find(key);
if (it!'= m_Map.end()) { value = it->second; }
return value;

}

virtual void Set(const std::string & key, const boost::any & value)

{

m_Mapl[key] = boost::any_ cast<TValue> (value);

}

virtual std::vector<Loki::Typelnfo> GetHandledTypes() const

{

return CreateTypeVector<TValue>()();

}

private:
std::map<std::string, TValue> m_Map;
%

Backend Env Handler

boost::any CAnyHandlerEnv::Get(const std::string & key) const
{
boost::any value;
char* env_value = :.getenv(key.c_str());
if (env_value) {
value = std::string(env_value);

}

return value;

}

void CAnyHandlerEnv::Set(const std::string & key, const boost::any & value)

{

std::string env_value(key + "=" + boost::any cast<std::string> (value));
Int putenvReturn = ::putenv(const_cast<char*>(env_value.c_str()));
If (putenvReturn) { throw CAnyPropertyException(...); }

}

std::vector<Loki::Typelnfo> CAnyHandlerEnv::GetHandledTypes() const
{

return CreateTypeVector<std::string>()();

}

Back End JSON Handler

{

"firstName": "Homer",
"lastName": "Simpson",
"age": 38,
"address": {
"streetAddress": "742 Evergreen Terrace",
"city": "Springfield",
"state": "OR",
"postalCode": "96522"

}

phoneNumber": [
{
"type": "home",
"number": "939 555-1234"
1]
{
"type": "fax",
"number": "636 555-4567"
}

Back End JSON Handler

class CAnyHandlerJSON : public CAnyHandlerBase
{

std::map<std::string, boost::any> m_values;

%

CAnyHandlerJSON::CAnyHandlerJSON(const std::string& jsonFileName)
{

.r.ﬁ_values["firstName"] = topObject["firstName"].get_value<std::string>();
m_values["lastName"] = topObject["lastName"].get_value<std::string>();
m_values['age"] = topObject['age"].get value<int>();
std::map<std::string, std::string> addressMap;

.rH_values["address"] = addressMap;

std::vector<SPhoneNumber> phoneVector;

m_values['phone"] = phoneVector;

Back End Real Life

class IConnection;
class CGPAttrHandlerBuildrunID : public CGPAttrHandlerBase
{
public:
virtual boost::any Get(const std::string & key) const;

virtual std::string Name() const;
virtual std::vector<Loki::Typelnfo> GetHandledTypes() const;

CGPAttrHandlerBuildrunID();
private:

void x_ConnectToDatabase();

int X _GetBuildID() const;

std::string x_ConstructSQL() const;

CGPipeProperty m_Environment;
std::string m_Database;
std::string m_Username;

std::string m_Password;

std::auto_ptr<iConnection> m_Connection;

Additional Applications

» Heterogeneous Factory
» Registry

Conclusions

« No Magic Bullet
- Someone will have to cast

» Helps Expose Clean Interfaces
- Even when internals are dirty

e Glues OO and Generic Code

Acknowledgements

« Mike Dicucclo
« Andrel Alexandrescu

 Kevlin Henney
» Scott Meyers
 Edvard Munch

