Persisting C++ Classes in Relational Databases
with ODB

Boris Kolpackov

Code Synthesis

v1.0, Sep 2014

CODE
SYNTHESIS

ODB, an ORM for C++

* Part I: Introduction and Basic Operations
e Part ll: Advanced Technique and Mechanisms

Object Relational Mapping

What’s an ORM, anyway?

Object Relational Mapping

Why ORM?

Object-oriented vs relational mismatch
Type and name safety

Parameter binding and result set extraction
Database schema evolution

Manual Schema Evolution

ALTER TABLE person
ADD COLUMN age
INTEGER UNSIGNED NOT NULL DEFAULT ©

Object Relational Mapping

Why not use an ORM?

* Hides too much

* Shoot yourself in the foot
* Framework

* Fun to roll your own

sword O0CIBindDynamic (OCIBind *bindp,
OCIError *errhp,

void *ictxp,

0CICallbackInBind (icbfp) (
void *ictxp,
0CIBind *bindp,
ub4 iter,
ub4 index,
void **bufpp,
ub4 *alenp,
ubl *piecep,
void **indpp),
void *octxp,

0CICallbackOutBind (ocbfp) (
void *octxp,

0CIBind *bindp,

Object Relational Mapping

Why Relational?

* Mature and reliable
* Tooling, support, and alternatives
* Flexible

ODB, and ORM for C++

What’s ODB?

Three levels

Not a framework

No magic

One-to-one ORM-Database operation mapping

ODB, and ORM for C++

* Automatic generation of database code from C++ classes
e Target multiple databases
* Database schema evolution

-10-

C++ Standards

C++98 and C++11

Rvalue references

Range-based for loop

std:: function and lambdas
C++11 Standard Library integration
C++11 in examples

-11-

Databases

Cross-Database

MySQL

SQLite

PostgreSQL

Oracle

Microsoft SQL Server

-12-

Platforms and Compilers

Cross-Platform

¢ Linux, Windows, Mac OS X, Solaris
* GCC, Visual C++, Clang, Sun Studio C++

-13-

Mobile & Embedded

ODB + SQLite

“Hello, World” example is 500Kb
Cross-compiler friendly

Android, Raspberry Pi guides

-15-

Performance

High-Performance and Low Overhead

Prepared statements, including custom queries
Caching of connections, statements, and buffers
Low-level native database C APlIs

Zero per-object memory overhead

-16-

Performance

High-Performance and Low Overhead

* Prepared statements, including custom queries
Caching of connections, statements, and buffers
Low-level native database C APlIs

e Zero per-object memory overhead

Load performance

* SQLite — 60,000 object per second — 17 us per object
* PostgreSQL — 15,000 objects per second — 65 us per object

-16-

License

Dual-Licensed

GPL + commercial license
Can be used without restrictions within your organization
License exceptions for open source projects

ODB License

* www.codesynthesis.com/products/odb/license.xhtml

-17-

http://www.codesynthesis.com/products/odb/license.xhtml
http://www.codesynthesis.com/products/odb/license.xhtml

C++ Support

ODB is implemented as a GCC plugin

-18-

C++ Support

ODB is implemented as a GCC plugin

* Mature, portable, and readily available
* One of the most complete C++11 implementations

-18-

C++ Support

C++ in, C++ out

-19-

C++ Support

C++ in, C++ out

Use any C++ compiler to build your application

-19-

C++ Support

C++ in, C++ out
Use any C++ compiler to build your application

Yes, even Sun Studio

-19-

C++ Support

Standard C++ In

-20-

C++ Support

Standard C++ In
Standard C++ Out

Persistent Class

enum class status {open, confirmed, closed};

class bug

{
public:

private:
unsigned long long id ;

status status_;
std::string summary_;
std::string description_;

+i

-21-

Persistent Class

#include <odb/core.hxx>

#pragma db object
class bug

{

private:
friend class odb::access;
bug () {}

#pragma db id auto
unsigned long long id ;

status status ;
std::string summary ;
std::string description ;

};

-22-

Persistent Class

#include <odb/core.hxx>

#pragma db object
class bug

{

private:
friend class odb::access;
bug () {}

#pragma db id auto
unsigned long long id ;

status status ;
std::string summary ;
std::string description ;

};

-22-

Persistent Class

#include <odb/core.hxx>

#pragma db object
class bug

{

private:
friend class odb::access;
bug () {}

#pragma db id auto
unsigned long long id ;

status status ;
std::string summary ;
std::string description ;

};

-22-

Persistent Class

#include <odb/core.hxx>

#pragma db object
class bug

{

private:
friend class odb::access;

bug () {}

#pragma db id auto
unsigned long long id ;

status status ;
std::string summary ;
std::string description ;

};

-22-

Persistent Class

#include <odb/core.hxx>

#pragma db object
class bug

{

private:
friend class odb::access;
bug () {}

#pragma db id auto
unsigned long long id ;

status status ;
std::string summary ;
std::string description ;

};

-22-

Persistent Class

#include <odb/core.hxx>

#pragma db object
class bug

{

private:
friend class odb::access;
bug () {}

#pragma db id auto
unsigned long long id ;

status status ;
std::string summary ;
std::string description ;

};

-22-

Persistent Class

#pragma db object
class bug

{
public:

unsigned long long id () const;
void id (unsigned long long);

status get status () const;
status& setStatus ();

std::string& summary please ();
private:

#pragma db id auto
unsigned long long id ;

-23-

Persistent Class

#pragma db object
class bug

{
public:

unsigned long long id () const;
void id (unsigned long long);

status get status () const;
status& setStatus ();

std::string& summary please ();
private:

#pragma db id auto
unsigned long long id ;

-23-

Persistent Class

class bug
{
private:
unsigned long long id ;

}
#ifdef ODB COMPILER
pragma db object(bug)

pragma db member(bug::id) id auto
#endif

-24-

Persistent Class

// bug.hxx
class bug

{

private:
unsigned long long id ;

};...

// bug-mapping.hxx
#pragma db object(bug)
#pragma db member(bug::id) id auto

-25-

Workflow

C++ Header

#include

C++ Source

C++ Compiler

-26-

Workflow

#include

C++ Header (<=

Y

ODB Compiler]

C++ Source

C++ Compiler

-26-

Workflow

#include
C++ Header (<=
\ 4
()
ODB Compiler
C++ Source C++ Header

C++ Source

C++ Compiler

-26-

Workflow

#include
C++ Header (<=
\ 4
.
ODB Compiler
l l)
Database
Schema C++ Source C++ Header

C++ Source

C++ Compiler

-26-

Workflow

#include

C++ Header (<=

Y

ODB Compiler

l l

Database
Schema

C++ Source C++ Header

#include
-~

C++ Source

C++ Compiler

-26-

Workflow

#include

C++ Header (<=

Y

ODB Compiler

l l

Database
Schema

C++ Source C++ Header

l

#include
-~

C++ Source

C++ Compiler

-26-

ODB Compiler

$ odb --database pgsqgl bug.hxx

-27-

ODB Compiler

$ odb --database pgsqgl bug.hxx

$ 1s
bug . hxx
bug-odb. cxx
bug-odb.hxx
bug-odb.ixx

-27-

ODB Compiler

$ odb -I/opt/boost-latest -DENABLE LASER BEAMS ...

-28-

ODB Compiler

$ odb -I/opt/boost-latest -DENABLE LASER BEAMS ...

$ odb --std c++11 --default-pointer std::shared ptr ...

-28-

ODB Compiler

$ odb --generate-schema -d mysql bug.hxx

-29-

ODB Compiler

$ odb --generate-schema -d mysql bug.hxx

$ 1s

bug. hxx
bug-odb. cxx
bug-odb. hxx
bug-odb.ixx
bug.sql

-29-

ODB Compiler

$ odb --generate-schema -d mysql bug.hxx

$ 1s

bug. hxx
bug-odb. cxx
bug-odb. hxx
bug-odb.ixx
bug.sql

$ cat bug.sql

-29-

ODB Compiler

$ odb --generate-schema -d mysql bug.hxx

$ 1s
bug . hxx
bug-odb. cxx
bug-odb. hxx
bug-odb.ixx
bug.sql

$ cat bug.sql

CREATE TABLE bug (
id BIGINT UNSIGNED NOT NULL PRIMARY KEY AUTO INCREMENT,
status ENUM('open’, ’'confirmed’, ’'closed’) NOT NULL,
summary TEXT NOT NULL,
description TEXT NOT NULL)

-29-

Database

#include <odb/pgsql/database.hxx>
odb: :pgsql: :database db (”bugger”, // user

"secret”, // password
"bugs”); // database

-30-

Database

#include <odb/pgsql/database.hxx>

odb: :pgsql: :database db (”bugger”, // user
"secret”, // password
"bugs”); // database

#include <odb/sqlite/database.hxx>

odb::sqlite: :database db ("bugs.db”); // database

-30-

Database

#include <odb/pgsql/database.hxx>

odb: :pgsql: :database db (”bugger”, // user
"secret”, // password
"bugs”); // database

#include <odb/sqlite/database.hxx>

odb::sqlite: :database db ("bugs.db”); // database

#include <odb/database.hxx>

void do it (odb::database& db);

-30-

Database Schema

e Automatically generated
* Map to a custom schema

-31-

Generated Schema

e Standalone SQL file
* Embedded into generated C++

-32-

Generated Schema

e Standalone SQL file
* Embedded into generated C++

#include <odb/schema-catalog.hxx>
transaction t (db.begin ());

schema catalog::create schema (db);
t.commit ();

-32-

Custom Schema

* Map classes to tables
* Map data members to columns
* Map C++ types to database types

-33-

Custom Schema

* Map classes to tables
* Map data members to columns
* Map C++ types to database types

#pragma db object table(”bugs”)
class bug

{

#pragma db id auto column(”bug id”)
unsigned long long id ;

#pragma db column(”bug status”) type(”SMALLINT")
status status_;

-33-

Making Objects Persistent

bug b (open,

"Support for DB2"”,

"0DB does not yet support IBM DB2.");
transaction t (db.begin ());
db.persist (b);

t.commit ();

-34-

Making Objects Persistent

bug b (open,
"Support for DB2"”,
"0DB does not yet support IBM DB2.");

transaction t (db.begin ());

t.commit ();

-34-

Transactions

try
transaction t (db.begin ());

db.persist (bl);
db.persist (b2);

t.commit ();

}

catch (const odb::connection lost&)

{
// Try again.

-35-

Transactions

try
transaction t (db.begin ());

db.persist (bl);
db.persist (b2);

t.commit ();

}

catch (const odb::connection lost&)

{
// Try again.

-35-

Transactions

try
transaction t (db.begin ());

db.persist (bl);
db.persist (b2);

t.commit ();

}

catch (const odb::connection lost&)

{
// Try again.

-35-

Making Objects Persistent

bug b (open,
"Support for DB2”,
"0DB does not yet support IBM DB2.");

transaction t (db.begin ());

unsigned long long id = db.persist (b);

t.commit ();

-36-

Making Objects Persistent

bug b (open,
"Support for DB2”,
"0DB does not yet support IBM DB2.");

transaction t (db.begin ());
t.tracer (odb::stderr tracer);

unsigned long long id = db.persist (b);

t.commit ();

-36-

Making Objects Persistent

bug b (open,
"Support for DB2”,
"0DB does not yet support IBM DB2.");

transaction t (db.begin ());
t.tracer (odb::stderr tracer);

unsigned long long id = db.persist (b);

t.commit ();

=> INSERT INTO bug (
id,
status,
summary,
description)
VALUES (DEFAULT, $1, $2, $3)
QETURNING id

Loading Persistent Objects
transaction t (db.begin ());

std::shared ptr<bug> b (db.load<bug> (id));

t.commit ();

-37-

Loading Persistent Objects

transaction t (db.begin ());

bug b;
db.load (id, b);

t.commit ();

-37-

Loading Persistent Objects
transaction t (db.begin ());
std::shared ptr<bug> b (db.load<bug> (id));

bug b;
db.load (id, b);

t.commit ();

=> SELECT
status,
summary,
description
FROM bug WHERE id = $1

-37-

Updating Persistent Objects

transaction t (db.begin ());

std::shared ptr<bug> b (db.load<bug> (id));
b->status (confirmed);

db.update (b);

t.commit ();

-38-

Updating Persistent Objects

transaction t (db.begin ());

std::shared ptr<bug> b (db.load<bug> (id));
b->status (confirmed);
db.update (b);

t.commit ();

=> UPDATE bug SET
status = $1,
summary = $2,
description = $3
WHERE id = $4

-38-

Querying the Database

typedef odb::query<bug> query;
typedef odb::result<bug> result;

-39-

Querying the Database

typedef odb::query<bug> query;
typedef odb::result<bug> result;

result r = ...

for (result::iterator i (r.begin()); i != r.end(); ++1i)

-39-

Querying the Database

typedef odb::query<bug> query;
typedef odb::result<bug> result;

result r = ...

for (bug& b: r)

-39-

Querying the Database

typedef odb::query<bug> query;
typedef odb::result<bug> result;

transaction t (db.begin ());

result r (db.query<bug> (query::status == open));

t.commit ();

-40-

Querying the Database

typedef odb::query<bug> query;
typedef odb::result<bug> result;

transaction t (db.begin ());
result r (db.query<bug> (query::status == open));

for (const bug& b: r)
cout << b.id () << " " << b.summary () << endl;

t.commit ();

-40-

Querying the Database

typedef odb::query<bug> query;
transaction t (db.begin ());

for (auto& b: db.query<bug> (query::status == open))

t.commit ();

-41-

Querying the Database

typedef odb::query<bug> query;
transaction t (db.begin ());

for (auto& b: db.query<bug> (query::status == open))
t.commit ();

=> SELECT
id
status,
summary,
description
FROM bug WHERE status = $1

-41-

Querying the Database

db.query<bug> (query::status == open ||
query::status == confirmed);

status s;
query g (query::status == query:: ref (s));

s = open;
db.query<bug> (q); // status == open

s = closed;

db.query<bug> (q); // status == closed

n

db.query<bug> ("status = + query:: val (open));

n”

db.query<bug> ("stats = " + query:: val (123));

-42-

Querying the Database

db.query<bug> (query::status == open ||
query: :status == confirmed);

status s;
query g (query::status == query:: ref (s));

s = open;
db.query<bug> (q); // status == open

s = closed;

db.query<bug> (q); // status == closed

n

db.query<bug> ("status = + query:: val (open));

n”

db.query<bug> ("stats = " + query:: val (123));

-42-

Querying the Database

db.query<bug> (query::status == open ||
query::status == confirmed);

status s;
query q (query::status == query:: ref (s));

s = open;
db.query<bug> (q); // status == open

s = closed;
db.query<bug> (q); // status == closed

n

db.query<bug> ("status = + query:: val (open));

n”

db.query<bug> ("stats = " + query:: val (123));

-42-

Querying the Database

db.query<bug> (query::status == open ||
query::status == confirmed);

status s;
query g (query::status == query:: ref (s));

s = open;
db.query<bug> (q); // status == open

s = closed;

db.query<bug> (q); // status == closed

n

db.query<bug> (”"status = " + query:: val (open));

n”

db.query<bug> ("stats = " + query:: val (123));

-42-

Querying the Database

db.query<bug> (query::status == open ||
query::status == confirmed);

status s;
query g (query::status == query:: ref (s));

s = open;
db.query<bug> (q); // status == open

s = closed;
db.query<bug> (q); // status == closed

n

db.query<bug> ("status = + query:: val (open));

n

db.query<bug> (”stats = " + query:: val (123));

-42-

Deleting Persistent Objects

transaction t (db.begin ());

db.erase<bug> (id);

t.commit ();

-43-

Deleting Persistent Objects

transaction t (db.begin ());

bug b = ...;
db.erase (b);

t.commit ();

-43-

Deleting Persistent Objects

transaction t (db.begin ());

db.erase query<bug> (query::status == closed);

t.commit ();

-43-

Deleting Persistent Objects

transaction t (db.begin ());

db.erase<bug> (id);

bug b = ...;

db.erase (b);

db.erase query<bug> (query::status == closed);

t.commit ();

=> DELETE FROM bug WHERE id

-43-

Adding Timestamps

#pragma db object
class bug

{

#pragma db id auto
unsigned long long id ;
status status_;

std::string summary ;
std::string description_;

+

-44-

Adding Timestamps

#pragma db object
class bug

{

+

#pragma db id auto
unsigned long long id ;

status status_;
std::string summary_;
std::string description_;

boost::posix time::ptime created ;
boost: :posix time::ptime updated ;

-44-

Profiles

Generic integration mechanism

Covers smart pointers, containers, and value types
ODB includes profiles for Boost and Qt

You can add your own profiles

odb -d pgsql -p boost bug.hxx

odb -d pgsql -p gt bug.hxx

-45-

Boost Profile

* yuid
* date time
* optional

-46-

NULL Semantics

#pragma db object
class bug

{

boost::optional<std::string> description ;

b

CREATE TABLE bug (

description TEXT NULL)

-47-

Qt Profile

e Basic types: QString, QUuid, QByteArray
e Date-time types: QDate, QTime, QDateTime

-48-

Adding Creation and Modification Dates (Qt)

#pragma db object
class Bug

{

#pragma db id auto
unsigned long long id ;

Status status_;
QString summary ;
QString description ;

QDateTime created ;

QDateTime updated ;
}

-49-

Containers

Standard: vector, list, set, map, etc
C++11: array, unordered (hashtable), etc
Boost: unordered, multi_ index

Qt: QList, QVector, QMap, QSet, QHash, etc
Easy to support custom containers

-50-

Adding Comments and Tags

#pragma db object
class bug

{

#pragma db id auto
unsigned long long id ;

status status_;
std::string summary_;
std::string description_;

boost::posix time::ptime created ;
boost::posix time::ptime updated ;

std: :vector<std::string> comments ;
std: :unordered set<std::string> tags ;
}

-51-

Adding Comments and Tags (Qt)

#pragma db object
class Bug

{

+i

#pragma db id auto
unsigned long long id ;

Status status_;
QString summary ;
QString description_;

QDateTime created ;
QDateTime updated ;

QList<QString> comments ;
QHash<QString> tags_;

-52-

Composite Value Types

Class or struct type

Mapped to more than one database column

Contains composite values, containers, pointers to objects
Can be used as an object id

-53-

Extending Comments

#pragma db value
class comment

{

std::string text ;
boost: :posix time::ptime created ;

};
#pragma db object

class bug

{

std: :vector<comment> comments_;

};

-54-

Relationships

Relationships are represented as pointers to objects
Standard: raw, auto ptr, trl::shared ptr
C++11: std::shared ptr, std::unique ptr
Boost: boost::shared ptr

Qt: QSharedPointer

Easy to support custom smart pointers

-55-

Adding User Object

#pragma db object
class user

{
#pragma db id
std::string email ;
std::string first ;

std::string last ;
}

-56-

Adding Bug Reporter

#pragma db object
class bug

{

std: :shared ptr<user> reporter ;

};

-57-

Adding Bug Reporter

#pragma db object
class bug

{

std: :shared ptr<user> reporter ;

};

unidirectional to-one relationship

-57-

Adding Bug List

#pragma db object
class user

{

};

#pragma db id

std

std:
std:

std::

c:string email ;

:string first name_;
:string last name_ ;

:vector<std: :shared ptr<bug>> reported bugs ;

-58-

Adding Bug List

#pragma db object
class user

{

};

#pragma db id

std

std
std

std

c:string email ;

c:string first name ;
::string last _name ;

::vector<std: :shared ptr<bug>> reported bugs ;

bidirectional many-to-one relationship

-58-

We Have a Problem

#pragma db object
class user

{

std::vector<std::shared ptr<bug>> reported bugs ;
b
#pragma db object

class bug

{

std::shared ptr<user> reporter_;

+i

-59-

We Have a Problem

#pragma db object
class user

{

std: :vector<std: :weak ptr<bug>> reported bugs ;
}
#pragma db object

class bug

{

std::shared ptr<user> reporter_;

+

-60-

Another Problem

CREATE TABLE bug (

reporter TEXT NULL,

CONSTRAINT reporter fk
FOREIGN KEY (reporter)
REFERENCES user (email));

CREATE TABLE user reported bugs (
bug id BIGINT NULL,
CONSTRAINT bug id fk

FOREIGN KEY (bug id)
REFERENCES bug (id));

-61-

Another Problem

CREATE TABLE bug (

reporter TEXT NULL,

CONSTRAINT reporter fk
FOREIGN KEY (reporter)
REFERENCES user (email));

CREATE TABLE user reported bugs (
bug id BIGINT NULL,
CONSTRAINT bug id fk

FOREIGN KEY (bug_id)
REFERENCES bug (id));

-61-

Another Problem

#pragma db object
class user

{
#pragma db inverse(reporter)
std::vector<std: :weak ptr<bug>> reported bugs ;
b
#pragma db object
class bug

{

std::shared ptr<user> reporter_;

}i

-62-

Adding Bug Reporter and Bug List (Qt)

#pragma db object
class User

{

#pragma db inverse(reporter)
QList<QWeakPointer<Bug>> reportedBugs ;
b

#pragma db object

class Bug

{

QSharedPointer<User> reporter_;

¥

-63-

Relationships in Queries

typedef odb::query<bug> query;

db.query<bug> (query::reporter->last == "Doe”);

-64-

Multi-Database Support

* Static
* Dynamic

-65-

Multi-Database Support

* Static
* Dynamic
* Mixed

-65-

Multi-Database Support

$ odb -m static -d common -d sqlite -d pgsql bug.hxx

-66-

Multi-Database Support

$ odb -m static -d common -d sqlite -d pgsql bug.hxx

$ 1s

bug . hxx

bug-odb.cxx bug-odb-sglite.cxx bug-odb-pgsql.cxx
bug-odb.hxx bug-odb-sqlite.hxx bug-odb-pgsql.cxx
bug-odb.ixx bug-odb-sglite.ixx bug-odb-pgsql.cxx

-66-

Static Multi-Database Support

#include "bug-odb-pgsql.hxx”
#include "bug-odb-sglite.hxx”

odb: :pgsql::database store (...);
odb: :sqlite: :database cache (...);

std::shared ptr<bug> b;

{
odb: :transaction t (cache.begin ());
b = cache.find<bug> (id);
t.commit ();

}

if (b == nullptr)

{
odb: :transaction t (store.begin ());
b = store.load<bug> (id);
t.commit ();

} -67-

Static Multi-Database Support

#include "bug-odb-pgsql.hxx”
#include "bug-odb-sglite.hxx”

odb: :pgsql: :database store (...);
odb::sqlite: :database cache (...);

std::shared ptr<bug> b;

{
odb: :transaction t (cache.begin ());
b = cache.find<bug> (id);
t.commit ();

}

if (b == nullptr)

{

odb: :transaction t (store.begin ());
b = store.load<bug> (id);
t.commit ();

} -67-

Static Multi-Database Support

#include "bug-odb-pgsql.hxx”
#include "bug-odb-sglite.hxx”

odb: :pgsql::database store (...);
odb: :sqlite: :database cache (...);

std::shared ptr<bug> b;

{
odb: :transaction t (cache.begin ());
b = cache.find<bug> (id);
t.commit ();

}

if (b == nullptr)

{
odb: :transaction t (store.begin ());
b = store.load<bug> (id);
t.commit ();

} -67-

Static Multi-Database Support

#include "bug-odb-pgsql.hxx”
#include "bug-odb-sglite.hxx”

odb: :pgsql::database store (...);
odb: :sqlite: :database cache (...);

std::shared ptr<bug> b;

{
odb: :transaction t (cache.begin ());
b = cache.find<bug> (id);
t.commit ();

}

if (b == nullptr)

{
odb: :transaction t (store.begin ());
b = store.load<bug> (id);
t.commit ();

} -67-

Static Multi-Database Support

#include "bug-odb-pgsql.hxx”
#include "bug-odb-sglite.hxx”

odb: :pgsql::database store (...);
odb: :sqlite: :database cache (...);

std::shared ptr<bug> b;

{
odb: :transaction t (cache.begin ());
b = cache.find<bug> (id);
t.commit ();

}

if (b == nullptr)

{
odb: :transaction t (store.begin ());
b = store.load<bug> (id);
t.commit ();

} -67-

Dynamic Multi-Database Support

#include "bug-odb.hxx"”

std::shared ptr<bug>
find bug (odb::database& db, unsigned long long id)
{
odb: :transaction t (db.begin ());
std::shared ptr<bug> r (db.find<bug> (id));
t.commit ();
return r;

}

odb: :pgsql::database store (...);
odb::sqlite: :database cache (...);

std::shared ptr<bug> b (find bug (cache, id));
if (b == nullptr)
b = find bug (store, id);

-68-

Dynamic Multi-Database Support

#include "bug-odb.hxx"”

std: :shared ptr<bug>
find bug (odb::database& db, unsigned long long id)
{
odb: :transaction t (db.begin ());
std::shared ptr<bug> r (db.find<bug> (id));
t.commit ();
return r;

}

odb: :pgsql::database store (...);
odb::sqlite: :database cache (...);

std::shared ptr<bug> b (find bug (cache, id));
if (b == nullptr)
b = find bug (store, id);

-68-

Dynamic Multi-Database Support

#include "bug-odb.hxx"”

std::shared ptr<bug>
find bug (odb::database& db, unsigned long long id)
{
odb: :transaction t (db.begin ());
std::shared ptr<bug> r (db.find<bug> (id));
t.commit ();
return r;

}

odb: :pgsql::database store (...);
odb::sqlite: :database cache (...);

std: :shared ptr<bug> b (find bug (cache, id));
if (b == nullptr)
b = find bug (store, id);

-68-

Dynamic Multi-Database Support

#include "bug-odb.hxx"”

std::shared ptr<bug>
find bug (odb::database& db, unsigned long long id)
{
odb: :transaction t (db.begin ());
std::shared ptr<bug> r (db.find<bug> (id));
t.commit ();
return r;

}

odb: :pgsql::database store (...);
odb::sqlite: :database cache (...);

std::shared ptr<bug> b (find bug (cache, id));
if (b == nullptr)
b = find bug (store, id);

-68-

Dynamic Loading

void
load db (const std::string& db _name)
{
#ifdef WIN32
string dll ("bug-" + db_name + ".dll");
HMODULE h (LoadLibraryA (dll.c str ()));
#else
string so (”libbug-" + db _name + ".so0”);
void* h (dlopen (so.c_str (), RTLD NOW));
#endif

if (h == 0)
{

// Handle error.
}

}

-69-

Database Schema Evolution

No magic

Simple, easy to understand building blocks
Schema migration

Data migration

-70-

Object Model Version

#pragma db model version(l, 1)
#pragma db object
class bug

{
o

-71-

Object Model Version

#pragma db model version(1l, 1)

#pragma db object
class bug

{
o

#pragma db model version(1l, 2)

#pragma db object
class bug

{

std::string platform_;
b

-71-

Changelog
* XML file (human reviewable)

* Base model + changeset for each version
» Stored in source code repository

-72-

Changelog

* XML file (human reviewable)
* Base model + changeset for each version
» Stored in source code repository

<changeset version="2">
<alter-table name="bug”">
<add-column name="platform” type="TEXT” null="false”/>
</alter-table>
</changeset>

<model version="1">

</model>

-72-

Schema Migration

SQL files or embedded into C++ code

Pre and Post (bug-002-pre.sql and bug-002-post.sql)
Pre-migration relaxes the schema

Post-migration tightens it back

-73-

Schema Migration

SQL files or embedded into C++ code

Pre and Post (bug-002-pre.sql and bug-002-post.sql)
Pre-migration relaxes the schema

Post-migration tightens it back

Data migration fits between the two

-73-

Schema Migration

/* bug-002-pre.sql */

ALTER TABLE bug
ADD COLUMN platform TEXT NULL;

-74-

Schema Migration

/* bug-002-pre.sql */

ALTER TABLE bug
ADD COLUMN platform TEXT NULL;

/* bug-002-post.sql */

ALTER TABLE bug
ALTER COLUMN platform SET NOT NULL;

-74-

Data Migration

transaction t (db.begin ());
schema catalog::migrate schema pre (db, 2);
for (bug& b: db.query<bug> ())

{
b.platform (”"Unknown”);

db.update (b);
}

schema catalog::migrate schema post (db, 2);

t.commit ();

-75-

Data Migration

transaction t (db.begin ());
schema catalog::migrate schema pre (db, 2);
for (bug& b: db.query<bug> ())

{
b.platform (”Unknown”);

db.update (b);
}

schema catalog::migrate schema post (db, 2);

t.commit ();

-75-

Data Migration

transaction t (db.begin ());
schema catalog::migrate schema pre (db, 2);
for (bug& b: db.query<bug> ())

{
b.platform (”"Unknown”);

db.update (b);
}

schema catalog::migrate schema post (db, 2);

t.commit ();

-75-

Data Migration

schema catalog::data migration function (
2,
[1 (database& db)

{
for (bug& b: db.query<bug> ())

b.platform (”"Unknown”);
db.update (b);
}
1)

transaction t (db.begin ());
schema catalog::migrate (db);
t.commit ();

-76-

Schema Evolution

#pragma db model version(1l, 2)

#pragma db object
class user
{
std::string first ;
std::string last_;
+i

-77-

Schema Evolution

#pragma db model version(1l, 2)

#pragma db object
class user

{
std::string first ;
std::string last_;
+i

#pragma db model version(1l

#pragma db object
class user

{
std::string name_;
};

» 3)

-77-

Changelog Diff

+ <changeset version="3">

+ <alter-table name="user”>

+ <add-column name="name” type="TEXT” null="false”/>
+ <drop-column name="first”/>

+ <drop-column name="last”/>

+ </alter-table>
+ </changeset>

-78-

Data Migration

schema_catalog: :data migration function (
3,
[1 (database& db)

{
for (bug& b: db.query<bug> ())
{
b.name (b.first () + ” ” + b.last ());
db.update (b);
}

});

-79-

Data Migration

schema_catalog: :data migration function (
3,
[1 (database& db)

{
for (bug& b: db.query<bug> ())
{
b.name (b.first () + ” ” + b.last ());
db.update (b);
}

});

-79-

Resources

* ODB Page
* www.codesynthesis.com/products/odb/

e ODB Manual
* www.codesynthesis.com/products/odb/doc/manual.xhtml

* Blog
e www.codesynthesis.com/~boris/blog/

-80-

http://www.codesynthesis.com/products/odb/
http://www.codesynthesis.com/products/odb/
http://www.codesynthesis.com/products/odb/doc/manual.xhtml
http://www.codesynthesis.com/products/odb/doc/manual.xhtml
http://www.codesynthesis.com/~boris/blog/
http://www.codesynthesis.com/~boris/blog/

