cppcon @®

Modernizing Legacy C++
Code

JAMES MCNELLIS KATE GREGORY
MICROSOFT VISUAL C++ GREGORY CONSULTING LIMITED
@JAMESMCNELLIS @GREGCONS

cppcon &)

What is
legacy code?

cppcon

int output (
FILE* stream,
char const* format,

va_list arguments

)

/] ...

#ifdef UNICODE cppceon

int _woutput (

#else /* UNICODE */

int _output (

#endif /* _UNICODE */
FILE* stream,
_TCHAR const* format,

va_list arguments

)

/] ...

#ifdef UNICODE Cppcon

#ifdef POSITIONAL_PARAMETERS
int _woutput_p (
#else /* POSITIONAL_PARAMETERS */
int _woutput (
#endif /* POSITIONAL_PARAMETERS */
#else /* UNICODE */
#ifdef POSITIONAL_PARAMETERS
int _output_p (
#else /* POSITIONAL_PARAMETERS */
int _output (
#endif /* POSITIONAL_PARAMETERS */
#endif /* UNICODE */

FILE* stream,

_TCHAR const* format,

va_list arguments

)

/] ...

#ifdef _UNICODE

#ifndef FORMAT_VALIDATIONS

#ifdef _SAFECRT_IMPL

int _woutput (

#else /* _SAFECRT_IMPL */

int _woutput 1 (

#endif /* SAFECRT_IMPL */
FILE* stream,

#telse /* FORMAT_VALIDATIONS */

#ifdef POSITIONAL_ PARAMETERS

#ifdef SAFECRT_IMPL

int _woutput p (

#else /* _SAFECRT_IMPL */

int _woutput_p 1 (

#endif /* SAFECRT_IMPL */
FILE* stream,

#telse /* POSITIONAL PARAMETERS */

#ifdef _SAFECRT_IMPL

int _woutput_s (

#else /* _SAFECRT_IMPL */

int _woutput_s 1 (

#endif /* SAFECRT_IMPL */
FILE* stream,

#endif /* POSITIONAL_PARAMETERS */

#tendif /* FORMAT_VALIDATIONS */

#else /* _UNICODE */

#tifndef FORMAT_VALIDATIONS

#ifdef SAFECRT_IMPL

int _output (

#else /* SAFECRT_IMPL */

int output_1 (

#endif /* SAFECRT_IMPL */
FILE* stream,

#else /* FORMAT_VALIDATIONS */

#ifdef POSITIONAL_PARAMETERS

#ifdef SAFECRT_IMPL

int _output_p (

#else /* SAFECRT_IMPL */

int _output_p_1 (

#tendif /* SAFECRT_IMPL */

FILE* stream,

#else /* POSITIONAL_PARAMETERS */

#ifdef _SAFECRT_IMPL C p p C O n @

int _output_s (
#else /* _SAFECRT_IMPL */
int output_ s 1 (
#endif /* _SAFECRT_IMPL */
FILE* stream,
#endif /* POSITIONAL_PARAMETERS */
#endif /* FORMAT_VALIDATIONS */
#endif /* _UNICODE */
_TCHAR const* format,
#ifndef _SAFECRT_IMPL
_locale_t locale,
#endif /* _SAFECRT_IMPL */

va_list arguments

)

/] ...

error4: /* make sure locidpair is reusable */ Cppcon @

locidpair->stream = NULL;
error3: /* close pstream (also, clear ph_open[i2] since the stream
* close will also close the pipe handle) */
(void)fclose(pstream);
ph_open[12] = ©;
pstream = NULL;
error2: /* close handles on pipe (if they are still open) */
if (ph_open[il])
_close(phdls[il]);
if (ph_open[i2])
_close(phdls[i2]);
done: 5}
__finally {
_munlock(_POPEN_LOCK);

errorl:

return pstream;

IFileDialog *pfd = NULL; Cppcon @

HRESULT hr = CoCreateInstance(CLSID FileOpenDialog, NULL, CLSCTX INPROC SERVER, IID PPV_ARGS(&pfd));
if (SUCCEEDED(hr)) {
IFileDialogEvents *pfde = NULL;
hr = CDialogEventHandler CreateInstance(IID PPV_ARGS(&pfde));
if (SUCCEEDED(hr)) {
DWORD dwCookie;
hr = pfd->Advise(pfde, &dwCookie);
if (SUCCEEDED(hr)) {
DWORD dwFlags;
hr = pfd->GetOptions(&dwFlags);
if (SUCCEEDED(hr)) {
hr = pfd->SetOptions(dwFlags | FOS FORCEFILESYSTEM);
if (SUCCEEDED(hr)) {
hr = pfd->SetFileTypes(ARRAYSIZE(c_rgSaveTypes), c_rgSaveTypes);
if (SUCCEEDED(hr)) {
hr = pfd->SetFileTypeIndex(INDEX_WORDDOC);
if (SUCCEEDED(hr)) {
hr = pfd->SetDefaultExtension(L"doc;docx");
if (SUCCEEDED(hr)) {

cppcon

Legacy C++ Code

...Code that doesn’t follow what we’d consider today to be best C++ development practices.

...It’s not necessarily “old” code, but it often is.

cppcon &)

So what can we do about it?

Increase the warning level;, compile as C++

Rid yourself of the preprocessor
Learn to love RAII

Introduce exceptions, but carefuly
Embrace const

Cast properly (and rarely!)

Use the right loop—or avoid loops where possible

template<class... Typesl, (:F)F)(:()f\ (:)

class Kx arg,

size t... _Ix,
size t _Ix next,
class... Types2,
class... Rest>

struct Tuple cat2<tuple< Typesl...>, Kx_ arg, Arg idx< Ix...>, _Ix next,
tuple< Types2...>, Rest...>
: _Tuple cat2«<
tuple< Typesl..., Types2...>,
typename _Cat_arg idx< Kx_arg,
typename _Make arg idx< Types2...>::type>::type,
_Arg idx<_IXx..., _Repeat for< Ix next, Types2>::value...>,
_Ix next + 1,
_Rest...>
{// determine tuple cat's return type and Kx/ Ix indices

s

cppcon

You may also want to attend...

Making C++ Code Beautiful

C++ Test-driven Development: Unit Testing, Code Assistance, and Refactoring

Pragmatic Unit Testing in C++

Resources

con

REFACTORING

IMPROVING THE DESIGN
OF EXiSTING CODE

MARTIN FOWLER

With Cantribations by Kent Beck, John Brant,
William Opdyke, snd Don Roberts

Foreword by Erich Gamma
Object Technology International Inc

oock F
JACOBSON

§ RUMBRUGH

Robert C. Martin Series

EFFECTIVELY
WITH

LEGACY CODE

Michael C. Feathers

Modern C++ Programming

with Test-Driven Development

Code Better,
Sleep Better

‘.\j
-

=

Jeff Langr

Foreword by Robert C. Martin
(Uncle Bob)

Edited by Michael Swaine

cppcon &)

't you do nothing else...

cppcon &)

Turn up the Warning Level

For Visual C++, use /W4 (not /Wall)

Lots of usually-bad things are valid C++

The compiler really wants to help you

Enabling warnings can be done incrementally

int £0); cppcon
int g()

{

int status = 0;

if ((status = f()) != 09)
goto fail;
goto fail;

if ((status = g()) != 09)
goto fail;

return 0;

fail:
return status;

int £(); Cppcon
int g()

{

int status = 0;
if ((status = f()) != 0)

goto fail;
goto fail;

if ((status = f()) !=0) // warning C4702: unreachable code
goto fail;

return 0; // warning C4702: unreachable code

fail:
return status;

int £(); C:F)F)(:C)r](:)

int g()
{

int status = 0;

if ((status = f()) != 0)
goto fail;
goto fail;

if ((status = f()) !=0) // warning: will never be executed [-Wunreachable-code]
goto fail;
return 0; // warning: will never be executed [-Wunreachable-code]
fail:

return status;

cppcon

int x = 3;
if (x = 2)

std: :cout << "x is 2" << std::endl;

cppcon

int x = 3;
if (2 = x)
{

std: :cout << "x is 2" << std::endl;

cppcon

int x = 3;
if (x = 2) // warning C4706: assignment within conditional expression

std: :cout << "x is 2" << std::endl;

cppcon

Compile as C++

If you have C code, convert it to C++

...you will get better type checking

...you can take advantage of more “advanced” C++ features

Conversion process is usually quite straightforward

void fill array(unsigned int* array, unsigned int count) CppCOh
{

for (unsigned int i1 = @; i != count; ++1i)
array[i] = 1i;

int main()

{

double data[10];
fill array(data, 10); // Valid C!

cppcon @®

The Terrible, Horrible,
No Good, Very Bad
Preprocessor

cppcon

Conditional Compilation

Every #if, #ifdef, #ifndef, #elif, and #else...

...increases complexity

...makes code harder to understand and maintain

#ifdef UNICODE

int _woutput(

#else /* UNICODE */
int _output(

#endif /* UNICODE */

FILE* stream,
_TCHAR const* format,
va_list arguments
)

{
/] ...

cppcon

template <typename Character> (:F)F)(:C)r\(:)

static int common_output(

FILE* stream,

Character const* format,

va_list arguments

)
{

/] ...
}
int output(FILE* stream, char const* format, va list const arguments)
{

return common_output(stream, format, arguments);
}

int woutput(FILE* stream, wchar_t const* format, va list const arguments)

return common_output(stream, format, arguments);

cppcon &)

Sometimes #ifdefs are okay...

Sometimes conditional compilation makes sense...
> 32-bit vs. 64-bit code
> DEBUG vs non-_DEBUG (or NDEBUG) code
> Code for different compilers or target platforms

> Code for different languages (e.g. C vs. C++ using __cplusplus)

...but try to keep code within regions simple
> Try to avoid nesting #ifdefs (and refactor to reduce nesting)

> Hifdef entire functions, if possible, rather than just parts of functions

cppcon

Macros

Macros pose numerous problems for maintainability...

...they don’t obey the usual name lookup rules

...they are evaluated before the compiler has type information

Macros are used far more frequently than necessary

cppcon &)

RAIl ana
Scope Reduction

IFileDialog *pfd = NULL; cppcon @
HRESULT hr = CoCreateInstance(CLSID FileOpenDialog, NULL, IID PPV_ARGS(&pfd));
if (SUCCEEDED(hr)) {
IFileDialogEvents *pfde = NULL;
hr = CDialogEventHandler CreateInstance(IID PPV_ARGS(&pfde));
if (SUCCEEDED(hr)) {
DWORD dwCookie;
hr = pfd->Advise(pfde, &dwCookie);
if (SUCCEEDED(hr)) {
DWORD dwFlags;
hr = pfd->GetOptions(&dwFlags);
if (SUCCEEDED(hr)) {
hr = pfd->SetOptions(dwFlags | FOS FORCEFILESYSTEM);
if (SUCCEEDED(hr)) {
hr = pfd->SetFileTypes(ARRAYSIZE(c rgSaveTypes), c_rgSaveTypes);
if (SUCCEEDED(hr)) {
hr = pfd->SetFileTypeIndex(INDEX WORDDOC);
if (SUCCEEDED(hr)) {
hr = pfd->SetDefaultExtension(L"doc;docx");
if (SUCCEEDED(hr)) {

IFileDialog *pfd = NULL; CZF)F)(:()r1 (:)
HRESULT hr = CoCreateInstance(CLSID FileOpenDialog, NULL, IID PPV_ARGS(&pfd));

if (FAILED(hr))
return hr;

IFileDialogEvents *pfde = NULL;
hr = CDialogEventHandler CreateInstance(IID PPV_ARGS(&pfde));
if (FAILED(hr))

return hr;

DWORD dwCookie;
hr = pfd->Advise(pfde, &dwCookie);
if (FAILED(hr))

return hr;

DWORD dwFlags;
hr = pfd->GetOptions(&dwFlags);
if (FAILED(hr))

return hr;

) cppcon

psiResult->Release();

}
}
}
}
}
}
}
pfd->Unadvise(dwCookie);
}
pfde->Release();
}
pfd->Release();

}

return hr;

void f(size t const buffer size) Cppcon
{

void* bufferl = malloc(buffer size);
if (bufferl != NULL)

{
void* buffer2 = malloc(buffer size);
if (buffer2 != NULL)
{
// ...code that uses the buffers...
free(buffer2);
}
free(bufferl);
}

void f(size t const buffer size) Cppcon
{

raii_container bufferl(malloc(buffer size));
if (bufferl = nullptr)
return;

raii container buffer2(malloc(buffer size));
if (buffer2 == nullptr)
return;

// ...code that uses the buffers...

void f(size t const buffer size) Cppcon
{

std: :vector<char> bufferl(buffer size);
std::vector<char> buffer2(buffer size);

// ...code that uses the buffers...

void f(size_t const buffer_size) (:F)F)(:C)r](:)
{

std::unique ptr<char[]> bufferl(new (std::nothrow) char[buffer size]);
if (bufferl == nullptr)
return;

std::unique ptr<char[]> buffer2(new (std::nothrow) char[buffer size]);
if (buffer2 == nullptr)
return;

// ...code that uses the buffers...

struct free delete (:F)F)(:C)r](:)

{
void operator()(void* p) const { free(p); }

¥
void f(size t const buffer size)
{
std::unique ptr<void, free delete> bufferl(malloc(buffer size));
if (bufferl == nullptr)
return;
std::unique ptr<void, free delete> buffer2(malloc(buffer size));
if (buffer2 == nullptr)
return;
// ...code that uses the buffers...
}

HRESULT BasicFileOpen() (:F)F)(:C)r](:)

{
IFileDialog *pfd = NULL;
HRESULT hr = CoCreateInstance(
CLSID FileOpenDialog,
NULL,
CLSCTX_INPROC_SERVER,
IID_PPV_ARGS(&pfd));

if (SUCCEEDED(hr))

{
pfd->Release();

return hr;

struct iunknown_delete (:F)F)(:C)r](:)
{

void operator()(IUnknown* p)

{
if (p) { p->Release(); }
}
}s
HRESULT BasicFileOpen()
{
std::unique_ptr<IFileDialog, iunknown_delete> pfd;
HRESULT hr = CoCreateInstance(
CLSID FileOpenDialog,
NULL,
CLSCTX_INPROC_SERVER,
IID_PPV_ARGS(&pfd));
return hr;
}

HRESULT BasicFileOpen()
{
ComPtr<IFileDialog> pfd;
HRESULT hr = CoCreateInstance(
CLSID FileOpenDialog,
NULL,
CLSCTX_INPROC_SERVER,
IID_PPV_ARGS(&pfd));

return hr;

cppcon

cppcon

Keep Functions Linear

Functions that have mostly linear flow are...

...easier to understand

...easier to modify during maintenance and bug fixing

cppcon &)

Use RAIl Everywhere

Code that uses RAll is easier to read, write, and maintain
> RAIl frees you from having to worry about resource management

> Functions that use RAIll can freely return at any time
> Single-exit and goto-based cleanup should never be used anymore

RAIl is an essential prerequisite for introducing exceptions
> But even if you never plan to use exceptions, still use RAII

This is the single easiest way to improve C++ code quality

cppcon &)

Introducing Exceptions

void f(size t const buffer size) Cppcon
{

std: :vector<char> bufferl(buffer size);
std::vector<char> buffer2(buffer size);

// ...code that uses the buffers...

cppcon &)

Introducing Exceptions

Exceptions are the preferred method of runtime error handling
> Used by most modern C++ libraries (including the STL)

> Often we’d like to start using those modern libraries in legacy codebases

Use of well-defined exception boundaries enables introduction of throwing code into legacy
codebases that don’t use exceptions.

extern "C" HRESULT boundary_ function() Cppcon
{

// ... code that may throw ...
return S_OK;

extern "C" HRESULT boundary_ function() Cppcon
{

try

{
// ... code that may throw ...
return S_OK;

}

catch (...)

{
return E_FAIL;

}

extern "C" HRESULT boundary_function() (:F)F)(:C)r](:)
{

try
{

// ... code that may throw ...

return S_OK;
}
catch (my hresult error const& ex) { return ex.hresult(); }
catch (std::bad alloc const&) { return E_OUTOFMEMORY; }
catch (...) { std::terminate(); }

#define TRANSLATE_ EXCEPTIONS_ AT BOUNDARY \ C:F)F)(:C)r](:)
catch (my _hresult _error const& ex) { return ex.hresult(); 7} \
catch (std::bad_alloc const&) { return E_OUTOFMEMORY; } \
catch (...) { std::terminate(); }

extern "C" HRESULT boundary_function()

{
try
{
// ... code that may throw ...
return S_OK;
}

TRANSLATE_EXCEPTIONS_AT_BOUNDARY

inline HRESULT translate thrown_exception_to_hresult() C:F)F)(:C)r](:)

{
try { throw; }

catch (my hresult error const& ex) { return ex.hresult(); }

catch (std::bad alloc const&) { return E_OUTOFMEMORY; }
catch (...) { std::terminate(); }
}
extern "C" HRESULT boundary_function()
{
try
{
// ... code that may throw ...
return S_OK;
}
catch (...) { return translate thrown_exception_to _hresult(); }
}

template <typename Callable> (:F)F)(:C)r\(:)
HRESULT call _and_translate for boundary(Callable&& f)

{
try
{
£(); return S _OK;
}
catch (my hresult error const& ex) { return ex.hresult(); }
catch (std::bad alloc const&) { return E_OUTOFMEMORY; }
catch (...) { std::terminate(); }
}
extern "C" HRESULT boundary_ function()
{
return call and _translate for_boundary([&]
{
// ... code that may throw ...
1)
}

cppcon &)

The Glorious const
Keywora

cppcon &)

Const Correctness

The bare minimum; all APIs should be const correct

If you’re not modifying an object via a pointer or reference, make that pointer or reference const

Member functions that don’t mutate an object should be const

cppcon

Const-Quality Everything

If you write const-correct APIs, that is a good start...

...but you’re missing out on a lot of benefits of ‘const’

bool read byte(unsigned char* result); (:F)F)(:C)r](:)

bool read elements(
void* buffer,
size t element size,
size t element_count)

{
size t buffer_size = element size * element count;
unsigned char* first = static_cast<unsigned char*>(buffer);
unsigned char* last = first + buffer_size;
for (unsigned char* it = first; it != last; ++it)
{
if (!read byte(it))
return false;
}
return true;
}

bool read byte(unsigned char* result); (:F)F)(:C)r\(:)

bool read elements(
void* const buffer,
size t const element size,
size t const element count)

{
size t buffer_size = element size * element count;
unsigned char* first = static_cast<unsigned char*>(buffer);
unsigned char* last = first + buffer_size;
for (unsigned char* it = first; it != last; ++it)
{
if (!read byte(it))
return false;
}
return true;
}

bool read byte(unsigned char* result); (:F)F)(:C)r\(:)

bool read elements(
void* const buffer,
size t const element size,
size t const element count)

{
size t const buffer_size = element size * element count;
unsigned char* first = static_cast<unsigned char*>(buffer);
unsigned char* last = first + buffer_size;
for (unsigned char* it = first; it != last; ++it)
{
if (!read byte(it))
return false;
}
return true;
}

bool read byte(unsigned char* result); (:F)F)(:C)r\(:)

bool read elements(
void* const buffer,
size t const element size,
size t const element count)

{
size t const buffer_size = element size * element count;
unsigned char* const first = static_cast<unsigned char*>(buffer);
unsignhed char* const last = first + buffer_size;
for (unsigned char* it = first; it != last; ++it)
{
if (!read byte(it))
return false;
}
return true;
}

cppcon

Two Recommendations

Const-qualify (almost) everything that can be const-qualified.

Where possible, refactor code to enable more things to be const-qualified

cppcon &)

What shouldn’t be const?

Data members (member variables)

By-value return types

Class-type local variables that may be moved from

Class-type local variables that may be returned

cppcon

C-Style Casts

cppcon

ClassType* ctp = (ClassType*)p;

cppcon

What does a C cast do?

const_cast

static_cast
static_cast + const_cast

reinterpret_cast

reinterpret_cast + const_cast

cppcon @®
ClassType* ctp = (ClassType*)p;

What does this cast do?

If p is a ClassType const*, it does a const_cast

If p is of a type related to ClassType, it does a static_cast

Possibly combined with a const_cast, if required

If p is of a type unrelated to ClassType, it does a reinterpret_cast

Possibly combined with a const_cast, if required

struct A; cppcon

struct B;

void f(B* p)
{

A* ctp = (A*)p;
}

cppcon &)

Eliminate usage of C casts

Absolutely, positively do not use C casts for pointer conversions

Avoid usage of C casts everywhere else too...

...Including for numeric conversions (e.g., double => int)

cppcon &)

Transtorming Loops

int main() cppcon®
{
std::vector<int> v = { 1, 2, 3, 4, 1000, 5, 6, 7, 8 };

// Find the maximum value:
int max_value(INT_MIN);

for (size t i(@); i != v.size(); ++i)
{
if (v[i] > max_value)
max_value = v[i];

std::cout << "Maximum: << max_value << "\n";

int main() cppcon®
{
std::vector<int> v = { 1, 2, 3, 4, 1000, 5, 6, 7, 8 };

// Find the maximum value:
int max_value(INT_MIN);

for (auto it(v.begin()); it != v.end(); ++it)
{
if (*it > max_value)
max_value = *it;

std::cout << "Maximum: << max_value << "\n";

int main() cppcon®
{
std::vector<int> v = { 1, 2, 3, 4, 1000, 5, 6, 7, 8 };

// Find the maximum value:
int max_value(INT_MIN);

for (auto&& x : v)
{

if (x > max_value)
max_value = Xx;

std::cout << "Maximum: << max_value << "\n";

int main() cppcon
{
std::vector<int> v = { 1, 2, 3, 4, 1000, 5 };

auto max_value it = std::max_element(v.begin(), v.end());

std::cout << "Maximum: " << *max_value it << "\n";

cppcon @®

C++ Seasoning

http://channel9.msdn.com/Events/GoingNative/2013/Cpp-Seasoning

cppcon &)

A Real-World Example

cppcon

There’s Just One Problem...

We’ve gone and replaced really fast C code with C++ code.

Everyone knows C++ is slower than C.

...Right?

...Right?

ccccccc

cppcon @

Visual C++ sprintf %s Performance

120

98.09

100

25.4

10.67

<. 1

strncpy ostringstream VS12 sprintf VS14 CTP1 sprintf ~ VS14 CTP3 sprintf

cppcon

Recap

cppcon &)

Recommendations

Eliminate complexity introduced by the preprocessor

Refactor functions to linearize and shorten them
Update any manual resource management to use RAII
Litter your code with the const qualifier

Convert C casts to C++ casts

Use algorithms instead of loops

cppcon @

