Implementing Type-Driven Wire Protocols
using Boost Fusion

Thomas Rodgers | Sr. Software Engineer
DRW Trading Group

© 2014 Thomas Rodgers - All rights reserved

Why not ProtoBufs, Thrift, etc?

- These solutions are great when you control both ends of the
communication

-Also when cross language compatibility is required

- Many important use-cases where this is not the case
-3rd party systems
-Embedded devices
-Legacy systems

-Financial markets

© 2014 Thomas Rodgers - All rights reserved

Why not “good ‘ol packed structs?

- The classic "C" way

- Easy, efficient

-A simple reinterpret_cast<> away from goodness
- Except for that pesky network/host order thing

- Many fundamental protocols implemented this way (TCP, IP, etc.)

© 2014 Thomas Rodgers - All rights reserved

Why not “good ‘ol packed structs?

- Limited abstraction capabilities
-POD types

-Forces the third party’s type declarations into your domain

- Still have to do member-wise fix-ups for endianness

-Error prone, maintenance issue

- Quickly falls apart when you have more than one variable length
data member

- Difficult to reuse implementation

© 2014 Thomas Rodgers - All rights reserved

Reflection?

- |f there were a way to do member-wise iteration and type
deduction, fairly straightforward to write arbitrary codecs

- Nothing available in Standard C++ today
-There is an active Standards Committee study group SG7

-Initial focus on compile time reflection

© 2014 Thomas Rodgers - All rights reserved

What about Boost Fusion?

From the Boost Fusion documentation —

Fusion is a library and a framework similar to both STL and the boost MPL. The
structure is modeled after MPL, which is modeled after STL. It is named "fusion”
because the library is reminiscent of the "fusion” of compile time meta-
programming with runtime programming. The library inherently has some
interesting flavors and characteristics of both MPL and STL. It lives in the
twilight zone between compile time meta-programming and run time
programming. STL containers work on values. MPL containers work on types.
Fusion containers work on both types and values.

© 2014 Thomas Rodgers - All rights reserved

What about Boost Fusion?

From the Boost Fusion documentation —

compile time meta-programming

© 2014 Thomas Rodgers - All rights reserved

What about Boost Fusion?

From the Boost Fusion documentation —

run time
programming

© 2014 Thomas Rodgers - All rights reserved

What about Boost Fusion?

From the Boost Fusion documentation —

STL containers work on values

© 2014 Thomas Rodgers - All rights reserved

What about Boost Fusion?

From the Boost Fusion documentation —

MPL containers work on types

© 2014 Thomas Rodgers - All rights reserved

What about Boost Fusion?

From the Boost Fusion documentation —

Fusion containers work on both types and values

© 2014 Thomas Rodgers - All rights reserved

A container of types and values

namespace example A
struct header {
uintlo_t magic;
uintle t version:
uint32_t length;
uint32_t msqg_type;
} attribute ((packed));

© 2014 Thomas Rodgers - All rights reserved

A container of types and values

mpl::list<uintlo_t, uintlo_t, uint32_t, uintlo_t>

namespace example {
header
uintlo_t |magic;

© 2014 Thomas Rodgers - All rights reserved

A container of types and values

namespace example {
struct header {
uintlo_t/magic;
uintle t| version:
uint32_t| length;
uint32_t{ msg_type;
} attribute”

std::tuple<uintlo_ t&, uintlo _t&, uint32_t&, uintlo_té&>

© 2014 Thomas Rodgers - All rights reserved

From packed struct to Fusion struct

#include <cstddef>

namespace example {
struct header {
uintlo_t magic;
uintle t version;
uint32_t length;
uint32_t msqg_type;
} attribute ((packed));

© 2014 Thomas Rodgers - All rights reserved

From packed struct to Fusion struct

#1nclude <cstddef>
#include <boost/fusion/include/define_struct.hpp>

BOOST FUSION DEFINE STRUCT(
(example), header,
(uintl6_t, magic)
(uintl6 t, version)
(uint32_t, length)
(uint32_t, msg_type)

© 2014 Thomas Rodgers - All rights reserved

Asio buffers

. Two flavors
-const_buffer

-mutable_buffer

- Does not own underlying storage

-Holds a pointer and a length
- Supports operator+(size_t n)
- Free functions
buffer_cast<T*>
buffer_size

buffer_copy

© 2014 Thomas Rodgers - All rights reserved

Member-wise visitation

#1include <boost/fusion/include/for_each.hpp>
#1nclude <boost/asio/buffer.hpp>

struct reader {

[/ .
b

temp late<typename T>

T read(asio::const buffer b) {
reader r(std::move(b));
T res;
fusion::for each(res, r);
return res;

© 2014 Thomas Rodgers - All rights reserved

Member-wise visitation

#1nc lude <boost/fusion/include/for_each.hpp>
#1nclude <boost/asio/buffer.hpp>

struct reader {
aslo::const buffer buf ;

explicit reader(asio::const_buffer buf)
: buf (std::move(buf))
{

template<class T>
void operator()(T & val) {

[/ ...
+
b

© 2014 Thomas Rodgers - All rights reserved

Member-wise visitation

#1nc lude <boost/fusion/include/for_each.hpp>
#1nclude <boost/asio/buffer.hpp>

struct reader {
mutable asio::const buffer buf_;

explicit reader(asio::const_buffer buf)
: buf (std::move(buf))
{

template<class T>
void operator()(T & val) const {

[/ ...
+
b

© 2014 Thomas Rodgers - All rights reserved

Member-wise visitation

#1include <boost/asio/buffer.hpp>
#1include <boost/fusion/include/for_each.hpp>

struct writer {
mutable asio::mutable_buffer buf_;

explicit writer(asio::mutable buffer buf)
:+ buf_(std::move(buf))
{

template<class T>
void operator()(T const& val) const {

// ...
+
b

template<typename T>

asio::mutable buffer write(asio::mutable buffer b, T const& val) {
writer w(std::move(b));
boost::fusion::for_each(res, w);
return w.buf_;

© 2014 Thomas Rodgers - All rights reserved

Fixing up byte ordering

- Network protocols typically require member-wise fix-ups for
endianness

-ntohl, ntohs, htonl, htons, bswap etc.

-proposal to add generic ntoh/hton for unsigned integral types to Standard
C++

-Fairly easy to roll our own generic ntoh/hton

© 2014 Thomas Rodgers - All rights reserved

Fixing up byte ordering

template<class T>
T ntoh(T val) {

/] ..
h

struct reader {
aslo::const buffer buf_;

/]«

template<class T>

void operator()(T & val) const {
val = ntoh(xasio::buffer cast<T constx>(buf));
buf = buf + sizeof(T):

b

© 2014 Thomas Rodgers - All rights reserved

Fixing up byte ordering

template<class T>
T hton(T val) {

/] ..
h

struct writer {
mutable asio::mutable buffer buf ;

/] «s

template<class T>

void operator()(T const& val) const {
xasio::buffer cast<T*>(buf) = hton(val):
buf = buf + sizeof(T);

b

© 2014 Thomas Rodgers - All rights reserved

Fnumerated Values

BOOST FUSION DEFINE STRUCT(
(example), header,
(example::magic_t, magic)
(example::version_t, version)
(uint32_t, length)

(uint32_t, msg_type)

© 2014 Thomas Rodgers - All rights reserved

Fnumerated Values

namespace example {
enum class msg_type t : uint32_t {

[/ .
b
+

BOOST FUSION DEFINE STRUCT(
(example), header,
(example::magic_t, magic)
(example::version_t, version)
(uint32_t, length)
(example::msg_type_ t, msg_type)

© 2014 Thomas Rodgers - All rights reserved

Fnumerated Values

struct reader {
[/ .

template<class T>

void operator()(T & val) const {
val = ntoh(xasio::buffer_cast<T constx>(buf_));
buf = buf + sizeof(T);

© 2014 Thomas Rodgers - All rights reserved

Fnumerated Values

struct reader {
// ...

template<class T>

auto operator()(T & val) const —>
typename std::enable_if<std::is_integral<T>::value>::type {
val = ntoh(xasio::buffer cast<T constx>(buf));
buf = buf + sizeof(T);

© 2014 Thomas Rodgers - All rights reserved

Fnumerated Values

struct reader {
// ..

template<class T>
auto operator()(T & val) const —>
typename std::enable_if<std::is_enum<T>::value>::type {

typename std::underlying_type<T>::type v;

(xthis) (v);
val = static cast<T>(v); .

© 2014 Thomas Rodgers - All rights reserved

Fixed "tag data

Many protocols have fixed “tags”
-magic signature bytes

-protocol version markers

- We don’t really care what these are, we just want to encode type
and expected value

-Sounds a lot like std::integral_constant<>

© 2014 Thomas Rodgers - All rights reserved

Fixed "tag data

#include <cstddef>
#include <boost/fusion/include/define_struct.hpp>

BOOST FUSION DEFINE STRUCT(
(example), header,
(uint16_t, magic)
(uintl6 _t, version)
(uint32_t, length)
(uint32_t, msg_type)

© 2014 Thomas Rodgers - All rights reserved

Fixed "tag data

#include <cstddef>

#1include <type_ _traits>
#include <boost/fusion/include/define_struct.hpp>

namespace example {
using magic_t = integral _constant<uintl6_t, Oxf00d=>,
using version_t = integral _constant<uintl6_t, Oxbeef>;

}

BOOST FUSION DEFINE STRUCT(
(example), header,
(example::magic_t, magic)
(example::version_t, version)
(uint32_t, length)

(uint32_t, msg_type)

© 2014 Thomas Rodgers - All rights reserved

Fixed "tag data

struct reader {
[/ .

template<class T, T v>
void operator() (integral _constant<T, v>) const {
typedef 1ntegral _constant<T, v> type;
typename type::value_type val;
(xthis)(val);
if (val '= type::value)
throw ...:

© 2014 Thomas Rodgers - All rights reserved

Fixed "tag data

struct writer {
[/ s

template<class T, T v>

void operator()(std::integral_constant<T, v>) const {
typedef std::integral_constant<T, v> type;
(xthis) (type::value);

© 2014 Thomas Rodgers - All rights reserved

Simple variable length types

- Strings
- Arrays of integral types

- EtcC.

© 2014 Thomas Rodgers - All rights reserved

Example string encoding

- Assume protocol represents strings as
-uint16_t length

-variable length charl]

© 2014 Thomas Rodgers - All rights reserved

Example string encoding

struct reader {
[/ ..

void operator()(std::string& val) const {
uintlo_t Llength;
(xthis) (length);
val = string(asio::buffer_cast<char constx>(buf_),
length);
buf_ = buf_ + length;

© 2014 Thomas Rodgers - All rights reserved

Example string encoding

struct writer {
[/ .

void operator()(std::string const& val) const {
(xthis) (static_cast<uint16_t>(val.length());
asio::buffer_copy(buf_, asio::buffer(val));
buf_ = buf_ + val.length();

h

© 2014 Thomas Rodgers - All rights reserved

Sequences of types

struct reader {
[/ .

template<class T>
void operator()(std::vector<T> & vals) {
uintle_t Llength;
(xthis) (length);
for (; length; —1length) {
T val;
(xthis) (val);
vals.emplace_back(std::move(val));

© 2014 Thomas Rodgers - All rights reserved

Maps of types

#1nclude <unordered_map>

struct reader {
[/ ..

template<class K, class V>
void operator()(std::unordered_map<K,V> & kvs) {
uintlo_t Llength;
(xthis) (length);
for (; length; —1length) {
K key;
(xthis) (key);
V val;
(xthis) (val);
kvs.emplace(key, val);

b

© 2014 Thomas Rodgers - All rights reserved

Multiple variable length fields

BOOST FUSION DEFINE STRUCT(
(example), header,
(example::magic_t, magic)
(example::version_t, version)
(uint32_t, length)
(std::unordered_map<std::string, std::string>, hdr_props)
(example::msg_type_t, msg_type)

(std::vector<uint64 t>, vals)

© 2014 Thomas Rodgers - All rights reserved

Framing

Examples so far have ignored framing
-For UDP you can continue to ignore it

-TCP not so much

© 2014 Thomas Rodgers - All rights reserved

Framing

BOOST FUSION DEFINE STRUCT(
(example), header,
(example::magic_t, magic)
(example::version_t, version)
(uint32_t, length)

)

BOOST FUSION DEFINE STRUCT(
(example), header_rest,
(std::map<std::string, std::string>, hdr_props)
(example::msg_type_ t, msg_type)

© 2014 Thomas Rodgers - All rights reserved

Framing

temp late<typename T>

T read(asio::const buffer b) {
reader r(std::move(b));
T res;
fusion::for each(res, r);
return res;

© 2014 Thomas Rodgers - All rights reserved

Framing

temp late<typename T>
std::pair<T, asio::const _buffer> read(asio::const _buffer b) {
reader r(std::move(b));
T res;
fusion::for each(res, r);
return std::make_pair(res, r.buf_);

© 2014 Thomas Rodgers - All rights reserved

Framing

int main(int argc, char xxargv) {
std:iarray<char, 1024> buf,
// receive header ...
examp le: :header out;
aslo::const _buffer buf_rest;
std::tie(out, buf _rest) = read<example::header>(asio::buffer(buf));

// receive out.length more bytes ...
example: :header_rest vout;
std::tie(vout, buf_rest) = read<example::header_rest>(buf_rest);

[/ .
return 0;

© 2014 Thomas Rodgers - All rights reserved

User defined types

- Example decimal type
-8 bit signed exponent

-32 bit unsigned mantissa
- example {-2, 225} =2.25
-converted to a double

mantissa * pow(10, exponent)

© 2014 Thomas Rodgers - All rights reserved

User defined types

struct decimal t {
1nt8 t exponent_;
uint32 t mantissa_;

decimal t(int8 t e = @, uint32 t m = @)
: exponent_(e)
, mantissa_(m)

1 F

operator double() const {
return mantissa_ * pow(10, exponent_);
+

b

© 2014 Thomas Rodgers - All rights reserved

User defined types

struct reader {
[/ .

void operator()(decimal t & val) const {
1nt8_t e;
(xthis) (e);
uint32 t m;
(xthis) (m);
val = decimal t(e, m):

© 2014 Thomas Rodgers - All rights reserved

A non-trivial protocol

- Option definition
-Option name e.g. GOOG14121567.5
-Underlying stock e.g. GOOG
-Strike price as decimal e.g. {-1, 5675} = $567.50
-Expiration date e.g. 2014-09-13 15:15:00
-Put or Call - an enumeration

-elC.

© 2014 Thomas Rodgers - All rights reserved

A non-trivial protocol

BOOST FUSION DEFINE STRUCT(
(example), option_t,
(std::string, contract_id)
(std::string, underlying_id)
(example::decimal_t, strike)
(example::put_call_t, put_call)
(posix::date, expiration)

© 2014 Thomas Rodgers - All rights reserved

A non-trivial protocol

- We also deal with things called “listed spreads”
-The listed contract has an exchange assignhed symbol/id

-variable length collection of options contracts

© 2014 Thomas Rodgers - All rights reserved

A non-trivial protocol

BOOST FUSION DEFINE STRUCT(
(example), spread_t,
(std::string, contract_id)
(std::vector<example::option_t>, legs)

© 2014 Thomas Rodgers - All rights reserved

Nested Fusion structs

#1inc lude <boost/fusion/include/for_each.hpp>
#1nclude <boost/fusion/include/1s_sequence.hpp>

struct reader {
// ...

template<class T>

auto operator()(T & val) const —>

typename std::enable_if<is_sequence<T>::value>::type {
boost::fusion::for each(val, *this):

}

b

© 2014 Thomas Rodgers - All rights reserved

Nested Fusion structs

#1inc lude <boost/fusion/include/for_each.hpp>
#1nclude <boost/fusion/include/1s_sequence.hpp>

struct writer {
[/ .

template<class T>

auto operator()(T const& val) const —>

typename std::enable_if<is_sequence<T>::value>::type {
boost::fusion::for each(val, *this):

}

b

© 2014 Thomas Rodgers - All rights reserved

Adapted Types

namespace example {
struct decimal t {
1nt8 t exponent_;
uint32 t mantissa ;
[/ e
b
+

BOOST FUSION ADAPT STRUCT(
example::decimal_t,
(int8_t, exponent_)
(uint32 t, mantissa)

© 2014 Thomas Rodgers - All rights reserved

Fixing up read()

temp late<typename T>
std::pair<T, asio::const _buffer> read(asio::const _buffer b) {
reader r(std::move(b));
T res;
fusion::for each(res, r);
return std::make_pair(res, r.buf_);

© 2014 Thomas Rodgers - All rights reserved

Fixing up read()

temp late<typename T>
std::pair<T, asio::const _buffer> read(asio::const _buffer b) {
reader r(std::move(b));
T res;
r(res);
return std::make_pair(res, r.buf_);

© 2014 Thomas Rodgers - All rights reserved

Optional fields

- Protocols may have optional fields

- Often indicated by bits in an integral type field

© 2014 Thomas Rodgers - All rights reserved

Optional Fields

namespace example 1
template<typename T, size_t N = CHAR BIT % sizeof(T)>
struct optional _field set {
using value_type = T;
using bits_type = std::bitset<N>;
¥

temp late<typename T, size_ t N>

struct optional_field : boost::optional<T> 1
constexpr static const size t bit = N;

i

using opt_fields = optional fTield set<uintl6_ t>;
using opt_exercise = optional field<exercise_t, 0>;
using opt_quote_ticks = optional field<decimal _t, 1>;

© 2014 Thomas Rodgers - All rights reserved

Optional Fields

BOOST FUSION DEFINE STRUCT(
(example), option_t,
(std::string, contract_id)
(std::string, underlying_id)
(example::decimal_t, strike)
(example::put _call_t, put_call)
(posix::date, expiration)
(example::opt fields, opts)
(example::opt_exercise, opt_a)
(example::opt_quote_ticks, opt_b)

© 2014 Thomas Rodgers - All rights reserved

Optional Fields

struct reader A
mutable optional<opt_fields::bits_type> opts_;

/] ..

template<class T, size t N>

void operator()(opt_fields) const {
opt_fields::value_type val;
(xthis) (val);
opts_ = opt_fields::bits_type(val);

© 2014 Thomas Rodgers - All rights reserved

Optional Fields

struct reader {
mutable optional<opt_fields::bits_type> opts_;

/] ..

template<class T, size_t N>
void operator()(optional field<T, N> & val) const {
if ('opts_)
throw bad_message();

if ((xopts_)I[IN]) {

T v;
(xthis) (v);
val = v

b

© 2014 Thomas Rodgers - All rights reserved

Optional Fields

struct writer {
mutable asio::mutable buffer buf ;
mutable example::opt fields::bits type opts_;
mutable example::opt_fields::value_type *optv_;

explicit writer(asio::mutable buffer buf)
: buf (std::move(buf))
, optv_(nullptr)

{ }

[/ ...
b

© 2014 Thomas Rodgers - All rights reserved

Optional Fields

struct writer {
// .

void operator()(example::opt_fields) const {
opts_.reset();
optv_ = asio::buffer_cast<example::opt_fields::value_ typex>(buf_);
buf_ = buf_ + sizeof(example::opt_fields::value_type);

© 2014 Thomas Rodgers - All rights reserved

Optional Fields

struct writer {
// E NN

template<class T, size_t N>
void operator()(example::optional field<T, N> const& val) const {
if (loptv_)
throw bad_message();
if ((xopts_)IN]) {
opts_.set(N);
xoptv_ = static cast<opt_fields::value_ type>(opts_.to _ulong());
(*xthis) (kval);

© 2014 Thomas Rodgers - All rights reserved

Lazy/View Types

- Protocols may contain fields we may not always care about

- strings, maps, vectors all perform allocation, potentially
expensive

© 2014 Thomas Rodgers - All rights reserved

String view

Boost has a type called string_ref
-Non-owning type with interface like std::string

-implementation of std::string_view, likely to be in ‘17

© 2014 Thomas Rodgers - All rights reserved

std::string

struct reader {
// ...

void operator()(std::string& val) const {
uintlo_t length = 0;
(xthis) (length);
val = string(asio::buffer_cast<char constx>(buf_),
length);
buf_ = buf_ + length;

© 2014 Thomas Rodgers - All rights reserved

boost::string_ref

#include <boost/utility/string_ref.hpp>

struct reader {
// ...

void operator()(boost::string_ref & val) {
uintle_t length = 0;
(xthis) (length)
val = boost::string_ref(asio::buffer_cast<const charx>(buf_),
length);
buf_ = buf_ + length;

© 2014 Thomas Rodgers - All rights reserved

Lazy types

- Need to be able to cheaply determine length
- Encode buffer position and length

- Decode on demand

© 2014 Thomas Rodgers - All rights reserved

A ‘sizer’

struct sizer {
mutable asio::const_buffer buf_;

mutable size t size ;

explicit sizer(asio::const_buffer buf)
: buf_(std::move(buf))
, Size (0)

1 b

template<class T>

auto operator()(T &) const —>
typename std::enable_ if<std::is _integral<T>::value>::type {

size += sizeof(T);
buf = buf_ + sizeof(T);

}

[/ e
¥

template<class T>
size t get_size(asio::const_buffer buf) { .. }

© 2014 Thomas Rodgers - All rights reserved

Generic lazy<T>

template<class T>
struct lazy 1
aslo::const buffer buf ;

lazy(asio::const _buffer const& buf)
: buf (asio::buffer cast<void constx>(buf),
get_size<T>(buf))
{ }

T get() const { return read<T>(buf_); }
size t size() const { return asio::buffer size(buf_); }

b

© 2014 Thomas Rodgers - All rights reserved

Generic lazy<T>

struct reader {
[/ .

template<class T>

void operator()(lazy<T> & val) const {
val = lazy<T>(buf_);
buf = buf + val.size():

© 2014 Thomas Rodgers - All rights reserved

A non-trivial protocol

BOOST FUSION DEFINE STRUCT(
(example), option_t,
(string_ref, contract_id)
(string_ref, underlying_id)
(example::decimal_t, strike)
(example::put_call _t, put_call)
(posix::date, expiration)

)

BOOST FUSION DEFINE STRUCT(
(example), spread_t,
(string_ref, contract_id)
(lazy<std::vector<example::option_t>>, legs)

© 2014 Thomas Rodgers - All rights reserved

A non-trivial protocol

BOOST FUSION DEFINE STRUCT(
(example), option_t,
(string_ref, contract_id)
(string_ref, underlying_id)
(example::decimal_t, strike)
(example::put_call _t, put_call)
(posix::date, expiration)

)

BOOST FUSION DEFINE STRUCT(
(example), spread_t,
(string_ref, contract_id)
(lazy_range<example::option_t>, legs)

© 2014 Thomas Rodgers - All rights reserved

Getting field names

- Structure pretty-printing
- JSON, XML, etc.

© 2014 Thomas Rodgers - All rights reserved

Getting field names

#include <iostream>

int main(int argc, const char * argvl[])

{
example::spread_t s;
[/
std::cout << example::to_json(s) << std::endl;
return 0;
}

© 2014 Thomas Rodgers - All rights reserved

Getting field names

#include <boost/mpl/range_c.hpp>

template<class T>
struct printer {
T & msqg_;

template<class T>
using typename range_c = mpl::range_c<int, 0, mpl::size<T>::value>;

friend std::ostream& operator<<(std::ostream & stm,
printer<T> const& v) {
mpl::for_each<range_c<T>>(mpl_visitor<T>(v.msg_, stm));
return stm;

b

template<class T>
printer<T> to_json(T const& v) { return printer<T>(v); }

© 2014 Thomas Rodgers - All rights reserved

Getting field names

#include <boost/mpl/for_each.hpp>
#1include <boost/fusion/include/value_at.hpp>
#1include <boost/fusion/include/at.hpp>

struct json_writer {
// EE N
¥

template<class T>

struct mpl_visitor {
T & msqg_;
std::ostream & stm_;
json_writer writer_,;

mpl_visitor(std::ostream & stm_)
: stm_(stm)
, writer (stm)

{7
/] .

© 2014 Thomas Rodgers - All rights reserved

Getting field names

namespace f_ext = boost::fusion::extension;
template<class T>
struct mpl_visitor {

/] e

template<class N>
void operator()(N idx) {

writer (f_ext::struct member _name<T, N::value>::call(), ":");
writer_(fusion::at<N>(msg_),
(idx !'= mpl::size<T>::value ? "," : ""));

© 2014 Thomas Rodgers - All rights reserved

Questions?

Sample code available at -

https://agithub.com/rodgert/fusion_samples/

Longer form version of this content -

http://rodgert.qgithub.io/2014/09/09/type-driven-wire-
protocols-with-boost-fusion-ptl/

© 2014 Thomas Rodgers - All rights reserved

https://github.com/rodgert/fusion_samples
http://rodgert.github.io/2014/09/09/type-driven-wire-protocols-with-boost-fusion-pt1/

