
© 2014 Thomas Rodgers - All rights reserved

Implementing Type-Driven Wire Protocols
 using Boost Fusion

Thomas Rodgers | Sr. Software Engineer
DRW Trading Group

© 2014 Thomas Rodgers - All rights reserved

Why not ProtoBufs, Thrift, etc?
• These solutions are great when you control both ends of the

communication

-Also when cross language compatibility is required

• Many important use-cases where this is not the case

-3rd party systems

-Embedded devices

-Legacy systems

-Financial markets

© 2014 Thomas Rodgers - All rights reserved

Why not “good ‘ol packed structs”?

• The classic “C” way

• Easy, efficient

-A simple reinterpret_cast<> away from goodness

• Except for that pesky network/host order thing

• Many fundamental protocols implemented this way (TCP, IP, etc.)

© 2014 Thomas Rodgers - All rights reserved

Why not “good ‘ol packed structs”?
• Limited abstraction capabilities

-POD types

-Forces the third party’s type declarations into your domain

• Still have to do member-wise fix-ups for endianness

-Error prone, maintenance issue

• Quickly falls apart when you have more than one variable length
data member

• Difficult to reuse implementation

© 2014 Thomas Rodgers - All rights reserved

Reflection?

• If there were a way to do member-wise iteration and type
deduction, fairly straightforward to write arbitrary codecs

• Nothing available in Standard C++ today

-There is an active Standards Committee study group SG7

- Initial focus on compile time reflection

© 2014 Thomas Rodgers - All rights reserved

What about Boost Fusion?
 From the Boost Fusion documentation —

!

Fusion is a library and a framework similar to both STL and the boost MPL. The
structure is modeled after MPL, which is modeled after STL. It is named "fusion"

because the library is reminiscent of the "fusion" of compile time meta-
programming with runtime programming. The library inherently has some
interesting flavors and characteristics of both MPL and STL. It lives in the

twilight zone between compile time meta-programming and run time
programming. STL containers work on values. MPL containers work on types.

Fusion containers work on both types and values.

© 2014 Thomas Rodgers - All rights reserved

What about Boost Fusion?
 From the Boost Fusion documentation —

!

Fusion is a library and a framework similar to both STL and the boost MPL. The
structure is modeled after MPL, which is modeled after STL. It is named "fusion"

because the library is reminiscent of the "fusion" of compile time meta-
programming with runtime programming. The library inherently has some
interesting flavors and characteristics of both MPL and STL. It lives in the

twilight zone between compile time meta-programming and run time
programming. STL containers work on values. MPL containers work on types.

Fusion containers work on both types and values.

© 2014 Thomas Rodgers - All rights reserved

What about Boost Fusion?
 From the Boost Fusion documentation —

!

Fusion is a library and a framework similar to both STL and the boost MPL. The
structure is modeled after MPL, which is modeled after STL. It is named "fusion"

because the library is reminiscent of the "fusion" of compile time meta-
programming with runtime programming. The library inherently has some
interesting flavors and characteristics of both MPL and STL. It lives in the

twilight zone between compile time meta-programming and run time
programming. STL containers work on values. MPL containers work on types.

Fusion containers work on both types and values.

© 2014 Thomas Rodgers - All rights reserved

What about Boost Fusion?
 From the Boost Fusion documentation —

!

Fusion is a library and a framework similar to both STL and the boost MPL. The
structure is modeled after MPL, which is modeled after STL. It is named "fusion"

because the library is reminiscent of the "fusion" of compile time meta-
programming with runtime programming. The library inherently has some
interesting flavors and characteristics of both MPL and STL. It lives in the

twilight zone between compile time meta-programming and run time
programming. STL containers work on values. MPL containers work on types.

Fusion containers work on both types and values.

© 2014 Thomas Rodgers - All rights reserved

What about Boost Fusion?
 From the Boost Fusion documentation —

!

Fusion is a library and a framework similar to both STL and the boost MPL. The
structure is modeled after MPL, which is modeled after STL. It is named "fusion"

because the library is reminiscent of the "fusion" of compile time meta-
programming with runtime programming. The library inherently has some
interesting flavors and characteristics of both MPL and STL. It lives in the

twilight zone between compile time meta-programming and run time
programming. STL containers work on values. MPL containers work on types.

Fusion containers work on both types and values.

© 2014 Thomas Rodgers - All rights reserved

What about Boost Fusion?
 From the Boost Fusion documentation —

!

Fusion is a library and a framework similar to both STL and the boost MPL. The
structure is modeled after MPL, which is modeled after STL. It is named "fusion"

because the library is reminiscent of the "fusion" of compile time meta-
programming with runtime programming. The library inherently has some
interesting flavors and characteristics of both MPL and STL. It lives in the

twilight zone between compile time meta-programming and run time
programming. STL containers work on values. MPL containers work on types.

Fusion containers work on both types and values.

© 2014 Thomas Rodgers - All rights reserved

A container of types and values

namespace example {
 struct header {
 uint16_t magic;
 uint16_t version;
 uint32_t length;
 uint32_t msg_type;
 } __attribute__((packed));
}

© 2014 Thomas Rodgers - All rights reserved

A container of types and values

namespace example {
 struct header {
 uint16_t magic;
 uint16_t version;
 uint32_t length;
 uint32_t msg_type;
 } __attribute__((packed));
}

mpl::list<uint16_t, uint16_t, uint32_t, uint16_t>

© 2014 Thomas Rodgers - All rights reserved

A container of types and values

namespace example {
 struct header {
 uint16_t magic;
 uint16_t version;
 uint32_t length;
 uint32_t msg_type;
 } __attribute__((packed));
}

std::tuple<uint16_t&, uint16_t&, uint32_t&, uint16_t&>

© 2014 Thomas Rodgers - All rights reserved

From packed struct to Fusion struct

#include <cstddef>
!

namespace example {
 struct header {
 uint16_t magic;
 uint16_t version;
 uint32_t length;
 uint32_t msg_type;
 } __attribute__((packed));
}

© 2014 Thomas Rodgers - All rights reserved

From packed struct to Fusion struct

#include <cstddef>
#include <boost/fusion/include/define_struct.hpp>
!

BOOST_FUSION_DEFINE_STRUCT(
 (example), header,
 (uint16_t, magic)
 (uint16_t, version)
 (uint32_t, length)
 (uint32_t, msg_type)
)

© 2014 Thomas Rodgers - All rights reserved

Asio buffers
• Two flavors

-const_buffer

-mutable_buffer

• Does not own underlying storage

-Holds a pointer and a length

• Supports operator+(size_t n)

• Free functions

- buffer_cast<T*>

- buffer_size

- buffer_copy

© 2014 Thomas Rodgers - All rights reserved

Member-wise visitation
#include <boost/fusion/include/for_each.hpp>
#include <boost/asio/buffer.hpp>
!

struct reader {
 // ...
};
!

template<typename T>
T read(asio::const_buffer b) {
 reader r(std::move(b));
 T res;
 fusion::for_each(res, r);
 return res;
}
}

© 2014 Thomas Rodgers - All rights reserved

Member-wise visitation
#include <boost/fusion/include/for_each.hpp>
#include <boost/asio/buffer.hpp>
!

struct reader {
 asio::const_buffer buf_;

 explicit reader(asio::const_buffer buf)
 : buf_(std::move(buf))
 { }

 template<class T>
 void operator()(T & val) {
 // ...
 }
};

© 2014 Thomas Rodgers - All rights reserved

Member-wise visitation
#include <boost/fusion/include/for_each.hpp>
#include <boost/asio/buffer.hpp>
!

struct reader {
 mutable asio::const_buffer buf_;

 explicit reader(asio::const_buffer buf)
 : buf_(std::move(buf))
 { }

 template<class T>
 void operator()(T & val) const {
 // ...
 }
};

© 2014 Thomas Rodgers - All rights reserved

Member-wise visitation
#include <boost/asio/buffer.hpp>
#include <boost/fusion/include/for_each.hpp>
!
struct writer {
 mutable asio::mutable_buffer buf_;

 explicit writer(asio::mutable_buffer buf)
 : buf_(std::move(buf))
 { }

 template<class T>
 void operator()(T const& val) const {
 // ...
 }
};
!
template<typename T>
asio::mutable_buffer write(asio::mutable_buffer b, T const& val) {
 writer w(std::move(b));
 boost::fusion::for_each(res, w);
 return w.buf_;
}

© 2014 Thomas Rodgers - All rights reserved

Fixing up byte ordering

• Network protocols typically require member-wise fix-ups for
endianness

-ntohl, ntohs, htonl, htons, bswap etc.

-proposal to add generic ntoh/hton for unsigned integral types to Standard
C++

-Fairly easy to roll our own generic ntoh/hton

© 2014 Thomas Rodgers - All rights reserved

Fixing up byte ordering
template<class T>
T ntoh(T val) {
 // ...
}
!

struct reader {
 asio::const_buffer buf_;
!

 // ...

 template<class T>
 void operator()(T & val) const {
 val = ntoh(*asio::buffer_cast<T const*>(buf_));
 buf_ = buf_ + sizeof(T);
 }
};

© 2014 Thomas Rodgers - All rights reserved

Fixing up byte ordering
template<class T>
T hton(T val) {
 // ...
}
!

struct writer {
 mutable asio::mutable_buffer buf_;
!

 // ...
!

 template<class T>
 void operator()(T const& val) const {
 asio::buffer_cast<T>(buf_) = hton(val);
 buf_ = buf + sizeof(T);
 }
};

© 2014 Thomas Rodgers - All rights reserved

Enumerated Values

BOOST_FUSION_DEFINE_STRUCT(
 (example), header,
 (example::magic_t, magic)
 (example::version_t, version)
 (uint32_t, length)
 (uint32_t, msg_type)
)

© 2014 Thomas Rodgers - All rights reserved

Enumerated Values

namespace example {
 enum class msg_type_t : uint32_t {
 // ...
 };
}
!
BOOST_FUSION_DEFINE_STRUCT(
 (example), header,
 (example::magic_t, magic)
 (example::version_t, version)
 (uint32_t, length)
 (example::msg_type_t, msg_type)
)

© 2014 Thomas Rodgers - All rights reserved

Enumerated Values

struct reader {
 // ...

 template<class T>
 void operator()(T & val) const {
 val = ntoh(*asio::buffer_cast<T const*>(buf_));
 buf_ = buf_ + sizeof(T);
 }
};

© 2014 Thomas Rodgers - All rights reserved

Enumerated Values

struct reader {
 // ...

 template<class T>
 auto operator()(T & val) const ->
 typename std::enable_if<std::is_integral<T>::value>::type {
 val = ntoh(*asio::buffer_cast<T const*>(buf_));
 buf_ = buf_ + sizeof(T);
 }
};

© 2014 Thomas Rodgers - All rights reserved

Enumerated Values

struct reader {
 // ...

 template<class T>
 auto operator()(T & val) const ->
 typename std::enable_if<std::is_enum<T>::value>::type {

 typename std::underlying_type<T>::type v;
!
 (*this)(v);
 val = static_cast<T>(v); }

};

© 2014 Thomas Rodgers - All rights reserved

Fixed “tag” data

• Many protocols have fixed “tags”

-magic signature bytes

-protocol version markers

• We don’t really care what these are, we just want to encode type
and expected value

-Sounds a lot like std::integral_constant<>

© 2014 Thomas Rodgers - All rights reserved

Fixed “tag” data

#include <cstddef>
#include <boost/fusion/include/define_struct.hpp>
!

BOOST_FUSION_DEFINE_STRUCT(
 (example), header,
 (uint16_t, magic)
 (uint16_t, version)
 (uint32_t, length)
 (uint32_t, msg_type)
)

© 2014 Thomas Rodgers - All rights reserved

Fixed “tag” data
#include <cstddef>
#include <type_traits>
#include <boost/fusion/include/define_struct.hpp>
!
namespace example {
 using magic_t = integral_constant<uint16_t, 0xf00d>;
 using version_t = integral_constant<uint16_t, 0xbeef>;
}
!
BOOST_FUSION_DEFINE_STRUCT(
 (example), header,
 (example::magic_t, magic)
 (example::version_t, version)
 (uint32_t, length)
 (uint32_t, msg_type)
)

© 2014 Thomas Rodgers - All rights reserved

Fixed “tag” data
struct reader {
 // ...

 template<class T, T v>
 void operator()(integral_constant<T, v>) const {
 typedef integral_constant<T, v> type;
 typename type::value_type val;
 (*this)(val);
 if (val != type::value)
 throw ...;
 }
};

© 2014 Thomas Rodgers - All rights reserved

Fixed “tag” data

struct writer {
 // ...

 template<class T, T v>
 void operator()(std::integral_constant<T, v>) const {
 typedef std::integral_constant<T, v> type;
 (*this)(type::value);
 }
};

© 2014 Thomas Rodgers - All rights reserved

Simple variable length types

• Strings

• Arrays of integral types

• Etc.

© 2014 Thomas Rodgers - All rights reserved

Example string encoding

• Assume protocol represents strings as

-uint16_t length

-variable length char[]

© 2014 Thomas Rodgers - All rights reserved

Example string encoding

struct reader {
 // ...

 void operator()(std::string& val) const {
 uint16_t length;
 (*this)(length);
 val = string(asio::buffer_cast<char const*>(buf_),
 length);
 buf_ = buf_ + length;
 }
};

© 2014 Thomas Rodgers - All rights reserved

Example string encoding

struct writer {
 // ...

 void operator()(std::string const& val) const {
 (*this)(static_cast<uint16_t>(val.length());
 asio::buffer_copy(buf_, asio::buffer(val));
 buf_ = buf_ + val.length();
 }
}:

© 2014 Thomas Rodgers - All rights reserved

Sequences of types

struct reader {
 // ...

 template<class T>
 void operator()(std::vector<T> & vals) {
 uint16_t length;
 (*this)(length);
 for (; length; —-length) {
 T val;
 (*this)(val);
 vals.emplace_back(std::move(val));
 }
 }
};

© 2014 Thomas Rodgers - All rights reserved

Maps of types
#include <unordered_map>
!
struct reader {
 // ...

 template<class K, class V>
 void operator()(std::unordered_map<K,V> & kvs) {
 uint16_t length;
 (*this)(length);
 for (; length; —-length) {
 K key;
 (*this)(key);
 V val;
 (*this)(val);
 kvs.emplace(key, val);
 }
 }
};

© 2014 Thomas Rodgers - All rights reserved

Multiple variable length fields

BOOST_FUSION_DEFINE_STRUCT(
 (example), header,
 (example::magic_t, magic)
 (example::version_t, version)
 (uint32_t, length)
 (std::unordered_map<std::string, std::string>, hdr_props)
 (example::msg_type_t, msg_type)
 (std::vector<uint64_t>, vals)
)

© 2014 Thomas Rodgers - All rights reserved

Framing

• Examples so far have ignored framing

-For UDP you can continue to ignore it

-TCP not so much

© 2014 Thomas Rodgers - All rights reserved

Framing

BOOST_FUSION_DEFINE_STRUCT(
 (example), header,
 (example::magic_t, magic)
 (example::version_t, version)
 (uint32_t, length)
)
!
BOOST_FUSION_DEFINE_STRUCT(
 (example), header_rest,
 (std::map<std::string, std::string>, hdr_props)
 (example::msg_type_t, msg_type)
)

© 2014 Thomas Rodgers - All rights reserved

Framing

template<typename T>
T read(asio::const_buffer b) {
 reader r(std::move(b));
 T res;
 fusion::for_each(res, r);
 return res;
}

© 2014 Thomas Rodgers - All rights reserved

Framing

template<typename T>
std::pair<T, asio::const_buffer> read(asio::const_buffer b) {
 reader r(std::move(b));
 T res;
 fusion::for_each(res, r);
 return std::make_pair(res, r.buf_);
}

© 2014 Thomas Rodgers - All rights reserved

Framing

int main(int argc, char **argv) {
 std::array<char, 1024> buf;
 // receive header ...
 example::header out;
 asio::const_buffer buf_rest;
 std::tie(out, buf_rest) = read<example::header>(asio::buffer(buf));

 // receive out.length more bytes ...
 example::header_rest vout;
 std::tie(vout, buf_rest) = read<example::header_rest>(buf_rest);
!
 // ...
 return 0;
}

© 2014 Thomas Rodgers - All rights reserved

User defined types

• Example decimal type

-8 bit signed exponent

-32 bit unsigned mantissa

• example { -2, 225 } = 2.25

-converted to a double

 mantissa * pow(10, exponent)

© 2014 Thomas Rodgers - All rights reserved

User defined types
struct decimal_t {
 int8_t exponent_;
 uint32_t mantissa_;

 decimal_t(int8_t e = 0, uint32_t m = 0)
 : exponent_(e)
 , mantissa_(m)
 { }
!

 operator double() const {
 return mantissa_ * pow(10, exponent_);
 }
};

© 2014 Thomas Rodgers - All rights reserved

User defined types

struct reader {
 // ...

 void operator()(decimal_t & val) const {
 int8_t e;
 (*this)(e);
 uint32_t m;
 (*this)(m);
 val = decimal_t(e, m);
 }
};

© 2014 Thomas Rodgers - All rights reserved

A non-trivial protocol

• Option definition

-Option name e.g. GOOG1412I567.5

-Underlying stock e.g. GOOG

-Strike price as decimal e.g. {-1, 5675} = $567.50

-Expiration date e.g. 2014-09-13 15:15:00

-Put or Call - an enumeration

-etc.

© 2014 Thomas Rodgers - All rights reserved

A non-trivial protocol

BOOST_FUSION_DEFINE_STRUCT(
 (example), option_t,
 (std::string, contract_id)
 (std::string, underlying_id)
 (example::decimal_t, strike)
 (example::put_call_t, put_call)
 (posix::date, expiration)
)

© 2014 Thomas Rodgers - All rights reserved

A non-trivial protocol

• We also deal with things called “listed spreads”

-The listed contract has an exchange assigned symbol/id

-variable length collection of options contracts

© 2014 Thomas Rodgers - All rights reserved

A non-trivial protocol

!

!

BOOST_FUSION_DEFINE_STRUCT(
 (example), spread_t,
 (std::string, contract_id)
 (std::vector<example::option_t>, legs)
)

© 2014 Thomas Rodgers - All rights reserved

Nested Fusion structs

#include <boost/fusion/include/for_each.hpp>
#include <boost/fusion/include/is_sequence.hpp>
!

struct reader {
 // ...
!

 template<class T>
 auto operator()(T & val) const ->
 typename std::enable_if<is_sequence<T>::value>::type {
 boost::fusion::for_each(val, *this);
 }
};

© 2014 Thomas Rodgers - All rights reserved

Nested Fusion structs

#include <boost/fusion/include/for_each.hpp>
#include <boost/fusion/include/is_sequence.hpp>
!

struct writer {
 // ...
!

 template<class T>
 auto operator()(T const& val) const ->
 typename std::enable_if<is_sequence<T>::value>::type {
 boost::fusion::for_each(val, *this);
 }
};

© 2014 Thomas Rodgers - All rights reserved

Adapted Types
namespace example {
 struct decimal_t {
 int8_t exponent_;
 uint32_t mantissa_;
 // ...
 };
}
!

BOOST_FUSION_ADAPT_STRUCT(
 example::decimal_t,
 (int8_t, exponent_)
 (uint32_t, mantissa_)
)

© 2014 Thomas Rodgers - All rights reserved

Fixing up read()

template<typename T>
std::pair<T, asio::const_buffer> read(asio::const_buffer b) {
 reader r(std::move(b));
 T res;
 fusion::for_each(res, r);
 return std::make_pair(res, r.buf_);
}

© 2014 Thomas Rodgers - All rights reserved

Fixing up read()

template<typename T>
std::pair<T, asio::const_buffer> read(asio::const_buffer b) {
 reader r(std::move(b));
 T res;
 r(res);
 return std::make_pair(res, r.buf_);
}

© 2014 Thomas Rodgers - All rights reserved

Optional fields

• Protocols may have optional fields

• Often indicated by bits in an integral type field

© 2014 Thomas Rodgers - All rights reserved

Optional Fields
namespace example {
 template<typename T, size_t N = CHAR_BIT * sizeof(T)>
 struct optional_field_set {
 using value_type = T;
 using bits_type = std::bitset<N>;
 };

 template<typename T, size_t N>
 struct optional_field : boost::optional<T> {
 constexpr static const size_t bit = N;
 };

 using opt_fields = optional_field_set<uint16_t>;
 using opt_exercise = optional_field<exercise_t, 0>;
 using opt_quote_ticks = optional_field<decimal_t, 1>;
}

© 2014 Thomas Rodgers - All rights reserved

Optional Fields

BOOST_FUSION_DEFINE_STRUCT(
 (example), option_t,
 (std::string, contract_id)
 (std::string, underlying_id)
 (example::decimal_t, strike)
 (example::put_call_t, put_call)
 (posix::date, expiration)
 (example::opt_fields, opts)
 (example::opt_exercise, opt_a)
 (example::opt_quote_ticks, opt_b)
)

© 2014 Thomas Rodgers - All rights reserved

Optional Fields

struct reader {
 mutable optional<opt_fields::bits_type> opts_;

 // ...

 template<class T, size_t N>
 void operator()(opt_fields) const {
 opt_fields::value_type val;
 (*this)(val);
 opts_ = opt_fields::bits_type(val);
 }
};

© 2014 Thomas Rodgers - All rights reserved

Optional Fields
struct reader {
 mutable optional<opt_fields::bits_type> opts_;

 // ...

 template<class T, size_t N>
 void operator()(optional_field<T, N> & val) const {
 if (!opts_)
 throw bad_message();
!
 if ((*opts_)[N]) {
 T v;
 (*this)(v);
 val = v;
 }
 }
};

© 2014 Thomas Rodgers - All rights reserved

Optional Fields

struct writer {
 mutable asio::mutable_buffer buf_;
 mutable example::opt_fields::bits_type opts_;
 mutable example::opt_fields::value_type *optv_;

 explicit writer(asio::mutable_buffer buf)
 : buf_(std::move(buf))
 , optv_(nullptr)
 { }

 // ...
};

© 2014 Thomas Rodgers - All rights reserved

Optional Fields

struct writer {
 // ...

 void operator()(example::opt_fields) const {
 opts_.reset();
 optv_ = asio::buffer_cast<example::opt_fields::value_type*>(buf_);
 buf_ = buf_ + sizeof(example::opt_fields::value_type);
 }
};

© 2014 Thomas Rodgers - All rights reserved

Optional Fields

struct writer {
 // ...

 template<class T, size_t N>
 void operator()(example::optional_field<T, N> const& val) const {
 if (!optv_)
 throw bad_message();
 if ((*opts_)[N]) {
 opts_.set(N);
 *optv_ = static_cast<opt_fields::value_type>(opts_.to_ulong());
 (*this)(*val);
 }
 }
};

© 2014 Thomas Rodgers - All rights reserved

Lazy/View Types

• Protocols may contain fields we may not always care about

• strings, maps, vectors all perform allocation, potentially
expensive

© 2014 Thomas Rodgers - All rights reserved

String view

• Boost has a type called string_ref

-Non-owning type with interface like std::string

- implementation of std::string_view, likely to be in ‘17

© 2014 Thomas Rodgers - All rights reserved

std::string

struct reader {
 // ...

 void operator()(std::string& val) const {
 uint16_t length = 0;
 (*this)(length);
 val = string(asio::buffer_cast<char const*>(buf_),
 length);
 buf_ = buf_ + length;
 }
};

© 2014 Thomas Rodgers - All rights reserved

boost::string_ref
#include <boost/utility/string_ref.hpp>
!

struct reader {
 // ...
!

 void operator()(boost::string_ref & val) {
 uint16_t length = 0;
 (*this)(length)
 val = boost::string_ref(asio::buffer_cast<const char*>(buf_),
 length);
 buf_ = buf_ + length;
 }
};

© 2014 Thomas Rodgers - All rights reserved

Lazy types

• Need to be able to cheaply determine length

• Encode buffer position and length

• Decode on demand

© 2014 Thomas Rodgers - All rights reserved

A ‘sizer’
struct sizer {
 mutable asio::const_buffer buf_;
 mutable size_t size_;

 explicit sizer(asio::const_buffer buf)
 : buf_(std::move(buf))
 , size_(0)
 { }
!
 template<class T>
 auto operator()(T &) const ->
 typename std::enable_if<std::is_integral<T>::value>::type {
 size_ += sizeof(T);
 buf_ = buf_ + sizeof(T);
 }
!
 // ...
};
!
template<class T>
size_t get_size(asio::const_buffer buf) { … }

© 2014 Thomas Rodgers - All rights reserved

Generic lazy<T>

template<class T>
struct lazy {
 asio::const_buffer buf_;

 lazy(asio::const_buffer const& buf)
 : buf_(asio::buffer_cast<void const*>(buf),
 get_size<T>(buf))
 { }

 T get() const { return read<T>(buf_); }
 size_t size() const { return asio::buffer_size(buf_); }
};

© 2014 Thomas Rodgers - All rights reserved

Generic lazy<T>

struct reader {
 // ...
!
 template<class T>
 void operator()(lazy<T> & val) const {
 val = lazy<T>(buf_);
 buf_ = buf_ + val.size();
 }
};

© 2014 Thomas Rodgers - All rights reserved

A non-trivial protocol
BOOST_FUSION_DEFINE_STRUCT(
 (example), option_t,
 (string_ref, contract_id)
 (string_ref, underlying_id)
 (example::decimal_t, strike)
 (example::put_call_t, put_call)
 (posix::date, expiration)
)
!

BOOST_FUSION_DEFINE_STRUCT(
 (example), spread_t,
 (string_ref, contract_id)
 (lazy<std::vector<example::option_t>>, legs)
)

© 2014 Thomas Rodgers - All rights reserved

A non-trivial protocol
BOOST_FUSION_DEFINE_STRUCT(
 (example), option_t,
 (string_ref, contract_id)
 (string_ref, underlying_id)
 (example::decimal_t, strike)
 (example::put_call_t, put_call)
 (posix::date, expiration)
)
!

BOOST_FUSION_DEFINE_STRUCT(
 (example), spread_t,
 (string_ref, contract_id)
 (lazy_range<example::option_t>, legs)
)

© 2014 Thomas Rodgers - All rights reserved

Getting field names

• Structure pretty-printing

• JSON, XML, etc.

© 2014 Thomas Rodgers - All rights reserved

Getting field names

#include <iostream>
!
int main(int argc, const char * argv[])
{
 example::spread_t s;
 // ...
 std::cout << example::to_json(s) << std::endl;
 return 0;
}

© 2014 Thomas Rodgers - All rights reserved

Getting field names
#include <boost/mpl/range_c.hpp>
!
template<class T>
struct printer {
 T & msg_;

 template<class T>
 using typename range_c = mpl::range_c<int, 0, mpl::size<T>::value>; !

 friend std::ostream& operator<<(std::ostream & stm,
 printer<T> const& v) {
 mpl::for_each<range_c<T>>(mpl_visitor<T>(v.msg_, stm));
 return stm;
 }
};
!
template<class T>
printer<T> to_json(T const& v) { return printer<T>(v); }

© 2014 Thomas Rodgers - All rights reserved

Getting field names
#include <boost/mpl/for_each.hpp>
#include <boost/fusion/include/value_at.hpp>
#include <boost/fusion/include/at.hpp>
!
struct json_writer {
 // ...
};
!
template<class T>
struct mpl_visitor {
 T & msg_;
 std::ostream & stm_;
 json_writer writer_;

 mpl_visitor(std::ostream & stm_)
 : stm_(stm)
 , writer_(stm)
 { }
!
 // ...
};

© 2014 Thomas Rodgers - All rights reserved

Getting field names

namespace f_ext = boost::fusion::extension;
template<class T>
struct mpl_visitor {
 // ...

 template<class N>
 void operator()(N idx) {
 writer_(f_ext::struct_member_name<T, N::value>::call(), ":");
 writer_(fusion::at<N>(msg_),
 (idx != mpl::size<T>::value ? "," : ""));
 }
};

© 2014 Thomas Rodgers - All rights reserved

Questions?

Sample code available at -

 https://github.com/rodgert/fusion_samples/

!

Longer form version of this content -

 http://rodgert.github.io/2014/09/09/type-driven-wire-
protocols-with-boost-fusion-pt1/

https://github.com/rodgert/fusion_samples
http://rodgert.github.io/2014/09/09/type-driven-wire-protocols-with-boost-fusion-pt1/

