
Hi,	
  my	
  name	
  is	
  Chad	
  Aus0n,	
  technical	
  director	
  at	
  IMVU,	
  and	
  today	
  we’re	
  going	
  to	
  talk	
  
about	
  a	
  library	
  we’ve	
  developed	
  for	
  connec0ng	
  C++	
  and	
  JavaScript	
  with	
  Emscripten.	
  

1	
  



2	
  



IMVU	
  is	
  an	
  online	
  social	
  plaIorm	
  where	
  you	
  can	
  sign	
  up,	
  dress	
  up	
  an	
  avatar,	
  and	
  meet	
  
people	
  from	
  all	
  around	
  the	
  world.	
  	
  We	
  offer	
  other	
  ac0vi0es	
  such	
  as	
  games	
  as	
  well.	
  
	
  

3	
  



The	
  content	
  in	
  our	
  world	
  is	
  created	
  by	
  our	
  customers,	
  and	
  to	
  our	
  knowledge,	
  we	
  have	
  
the	
  largest	
  catalog	
  of	
  3D	
  virtual	
  goods	
  on	
  the	
  Internet.	
  
	
  

4	
  



We	
  currently	
  offer	
  a	
  downloadable	
  applica0on	
  for	
  Windows	
  and	
  Mac.	
  	
  Windows	
  and	
  
Mac	
  are	
  great	
  plaIorms,	
  but	
  in	
  recent	
  years,	
  other	
  plaIorms	
  have	
  grown	
  to	
  
prominence.	
  	
  We’d	
  like	
  our	
  content	
  available	
  everywhere:	
  mobile	
  plaIorms,	
  desktop,	
  
server-­‐side	
  renderers,	
  and	
  even	
  the	
  web	
  browser!	
  
	
  
For	
  almost	
  all	
  plaIorms,	
  it’s	
  obvious	
  that	
  C++	
  is	
  a	
  great	
  choice	
  for	
  the	
  core	
  engine.	
  	
  
However,	
  our	
  big	
  ques0on	
  was,	
  what	
  about	
  the	
  web	
  browser?	
  
	
  
In	
  2011,	
  I	
  benchmarked	
  an	
  upcoming	
  tool	
  called	
  Emscripten	
  and	
  was	
  quite	
  impressed.	
  

5	
  



Emscripten	
  works	
  very	
  well	
  in	
  prac0ce,	
  so	
  the	
  implica0on	
  is	
  that	
  C++	
  is	
  the	
  portable,	
  
high-­‐performance	
  language	
  EVERYWHERE.	
  
	
  

6	
  



Here	
  is	
  our	
  Emscripten	
  applica0on	
  running	
  in	
  Firefox.	
  	
  UI	
  is	
  HTML	
  and	
  CSS.	
  	
  Chat	
  over	
  
WebSockets,	
  graphics	
  in	
  WebGL.	
  
	
  

7	
  



asm.js	
  is	
  the	
  subset	
  of	
  JavaScript	
  that	
  can	
  be	
  sta0cally	
  compiled	
  into	
  machine	
  code.	
  
	
  
More	
  informa0on	
  at	
  h`p://asmjs.org/	
  
	
  

8	
  



The	
  C	
  heap	
  is	
  stored	
  in	
  an	
  ArrayBuffer	
  in	
  JavaScript.	
  	
  One	
  con0guous	
  blob	
  of	
  memory.	
  
	
  
This	
  memory	
  is	
  indexed	
  by	
  eight	
  different	
  typed	
  array	
  views	
  that	
  alias	
  each	
  other.	
  	
  This	
  is	
  
how	
  C	
  memory	
  seman0cs	
  are	
  implemented.	
  
	
  

9	
  



In	
  this	
  example,	
  we	
  can	
  see	
  how	
  the	
  load,	
  increment,	
  and	
  store	
  are	
  translated	
  into	
  
JavaScript.	
  
	
  
The	
  p	
  =	
  p	
  |	
  0	
  line	
  indicates	
  that	
  p	
  is	
  an	
  unsigned	
  32-­‐bit	
  integer.	
  
The	
  second	
  line	
  is	
  a	
  load,	
  addi0on,	
  and	
  store.	
  	
  It	
  can	
  get	
  compiled	
  into	
  a	
  single	
  
instruc0on	
  in	
  a	
  good	
  JavaScript	
  JIT.	
  
	
  

10	
  



Compila0on	
  is	
  just	
  half	
  of	
  the	
  story.	
  	
  Without	
  being	
  able	
  to	
  access	
  the	
  plaIorm’s	
  
capabili0es,	
  your	
  program	
  can’t	
  do	
  anything	
  interes0ng.	
  
	
  
Emscripten	
  provides	
  a	
  whole	
  bunch	
  of	
  APIs.	
  	
  It	
  implements	
  a	
  bunch	
  of	
  POSIX	
  and	
  has	
  
some	
  hand-­‐rolled	
  APIs	
  for	
  specific	
  bits	
  of	
  browser	
  func0onality.	
  
	
  

11	
  



Here’s	
  an	
  example	
  of	
  how	
  I	
  can	
  translate	
  a	
  bit	
  of	
  JavaScript	
  into	
  the	
  equivalent	
  
Emscripten	
  C++.	
  	
  The	
  body	
  of	
  the	
  lambda	
  will	
  run	
  a	
  second	
  in	
  the	
  future.	
  
	
  
Func0ons	
  like	
  this	
  are	
  very	
  useful	
  when	
  available.	
  	
  But	
  we	
  can’t	
  hope	
  that	
  Emscripten	
  
will	
  implement	
  handy	
  dandy	
  wrappers	
  for	
  everything.	
  	
  Browsers	
  have	
  hundreds	
  and	
  
thousands	
  of	
  APIs	
  and	
  are	
  always	
  adding	
  more.	
  
	
  
Embind	
  sets	
  out	
  to	
  make	
  it	
  possible	
  to	
  access	
  these	
  JavaScript	
  APIs	
  directly	
  from	
  C++.	
  
	
  

12	
  



In	
  addi0on,	
  Embind	
  makes	
  it	
  possible	
  to	
  use	
  C++	
  libraries	
  from	
  web	
  applica0ons.	
  	
  You	
  
can	
  take	
  exis0ng	
  C++	
  and	
  expose	
  it	
  to	
  JavaScript.	
  
	
  

13	
  



14	
  



15	
  



16	
  



It’s	
  important,	
  when	
  building	
  bindings,	
  to	
  realize	
  you’re	
  building	
  a	
  JavaScript	
  API.	
  	
  You	
  
need	
  to	
  think	
  about	
  how	
  it’s	
  going	
  to	
  be	
  used	
  from	
  JavaScript.	
  	
  Thus,	
  Embind	
  tries	
  to	
  use	
  
JavaScript	
  terminology	
  when	
  appropriate.	
  
	
  
Embind	
  tries	
  to	
  have	
  minimal	
  overhead	
  –	
  unlike	
  Boost.Python.	
  
	
  

17	
  



18	
  



19	
  



20	
  



When	
  the	
  ‘health’	
  property	
  is	
  accessed	
  from	
  JavaScript,	
  it	
  actually	
  calls	
  the	
  underlying	
  C
++	
  ge`er	
  and	
  se`er.	
  
	
  

21	
  



Enums	
  are	
  nice	
  and	
  simple,	
  but	
  it’s	
  important	
  to	
  give	
  everything	
  a	
  name	
  so	
  JavaScript	
  
can	
  find	
  it.	
  
	
  

22	
  



23	
  



24	
  



25	
  



What	
  is	
  p?	
  	
  Well,	
  it’s	
  actually	
  an	
  Embind	
  Instance	
  Handle.	
  	
  That	
  is,	
  it’s	
  a	
  special	
  
JavaScript	
  object,	
  provided	
  by	
  Embind,	
  that	
  holds	
  a	
  raw	
  pointer	
  into	
  the	
  Emscripten	
  
heap,	
  where	
  a	
  Point	
  struct	
  lives.	
  
	
  
If	
  you	
  don’t	
  delete	
  p,	
  the	
  Point	
  in	
  the	
  Emscripten	
  heap	
  leaks!	
  
	
  

26	
  



To	
  that	
  end,	
  Embind	
  provides	
  value	
  types,	
  which	
  denote	
  that	
  a	
  type	
  will	
  be	
  passed	
  by	
  
value	
  across	
  the	
  language	
  boundary.	
  
	
  
You	
  can	
  either	
  bind	
  to	
  JavaScript	
  Objects	
  or	
  JavaScript	
  Arrays	
  
	
  

27	
  



I	
  wish	
  value_object	
  .field	
  was	
  called	
  .property,	
  given	
  we	
  want	
  Embind	
  to	
  use	
  JavaScript	
  
terminology.	
  	
  J	
  	
  Maybe	
  we’ll	
  rename	
  that.	
  
	
  

28	
  



29	
  



30	
  



31	
  



32	
  



33	
  



34	
  



func0on(name,	
  &fp)	
  generates	
  the	
  signature	
  informa0on	
  at	
  compile	
  0me	
  from	
  the	
  
func0on	
  pointer.	
  

35	
  



_embind_register_func0on	
  is	
  the	
  internal	
  implementa0on	
  of	
  func0on().	
  
	
  

36	
  



37	
  



_embind_register_func0on	
  is	
  called	
  from	
  C++	
  but	
  implemented	
  in	
  JavaScript.	
  
	
  

38	
  



39	
  



40	
  



Na0ve	
  executables	
  pay	
  almost	
  no	
  penalty	
  for	
  huge	
  executables,	
  since	
  they’re	
  just	
  
memory-­‐mapped	
  and	
  paged	
  in	
  as	
  executed.	
  
	
  
However,	
  JavaScript	
  applica0ons	
  require	
  the	
  customer	
  to	
  use	
  the	
  network	
  connec0on	
  to	
  
download	
  and	
  their	
  CPU	
  to	
  parse	
  and	
  op0mize	
  the	
  JavaScript.	
  	
  So	
  even	
  dead	
  code	
  hurts	
  
in	
  JavaScript.	
  	
  Careful!	
  
	
  
	
  

41	
  



42	
  



43	
  



44	
  



asm.js	
  func0on	
  pointers	
  are	
  typed.	
  	
  They	
  are	
  indices	
  into	
  typed	
  func0on	
  pointers.	
  	
  So	
  a	
  
func0on	
  pointer	
  isn’t	
  enough	
  informa0on	
  to	
  look	
  up	
  the	
  corresponding	
  JavaScript	
  
func0on:	
  you	
  need	
  to	
  know	
  which	
  table	
  to	
  look	
  at	
  too.	
  
	
  

45	
  



First,	
  we	
  need	
  to	
  be	
  able	
  to	
  map	
  a	
  type	
  to	
  the	
  corresponding	
  asm.js	
  signature	
  code.	
  
	
  

46	
  



Take	
  a	
  func0on	
  pointer	
  as	
  argument,	
  but	
  don’t	
  use	
  its	
  value,	
  just	
  its	
  deduced	
  type.	
  
	
  
Then,	
  create	
  a	
  sta0c	
  constexpr	
  character	
  array	
  where	
  the	
  first	
  entry	
  is	
  the	
  
SignatureCode	
  of	
  the	
  first	
  type,	
  followed	
  by	
  the	
  SignatureCodes	
  of	
  the	
  argument	
  types,	
  
followed	
  by	
  the	
  termina0ng	
  zero.	
  
	
  
This	
  produces	
  a	
  compile-­‐0me	
  constant	
  string!	
  
	
  
If	
  you	
  call	
  getSignature,	
  the	
  call	
  is	
  completely	
  inlined	
  and	
  op0mized	
  down	
  to	
  a	
  single	
  
constant	
  pointer	
  into	
  the	
  applica0on’s	
  sta0c	
  data	
  segment.	
  
	
  

47	
  



48	
  



The	
  return	
  types	
  and	
  argument	
  types	
  are	
  passed	
  in	
  the	
  argTypes	
  array.	
  	
  The	
  return	
  type	
  
is	
  the	
  first	
  element.	
  
	
  
Remember	
  that	
  TYPEID	
  is	
  simply	
  a	
  unique	
  iden0fier	
  for	
  a	
  type,	
  and	
  we	
  can	
  compute	
  a	
  
TYPEID	
  from	
  a	
  type	
  at	
  compile	
  0me.	
  
	
  

49	
  



50	
  



51	
  



52	
  



53	
  



The	
  implementa0on	
  of	
  LightTypeID	
  allocates	
  a	
  byte	
  in	
  the	
  sta0c	
  data	
  segment…	
  and	
  
uses	
  that	
  byte’s	
  address	
  as	
  the	
  TYPEID!	
  
We	
  know	
  it	
  doesn’t	
  conflict	
  with	
  typeid,	
  since	
  two	
  objects	
  can’t	
  share	
  an	
  address.	
  
	
  
I	
  don’t	
  fully	
  understand	
  the	
  linkage	
  rules	
  that	
  make	
  the	
  template	
  defini0on	
  legal	
  in	
  a	
  
header,	
  but	
  someone	
  in	
  the	
  audience	
  said	
  what	
  I’m	
  doing	
  is	
  okay.	
  	
  J	
  
	
  

54	
  



55	
  



Once	
  we	
  have	
  the	
  ability	
  to	
  look	
  up	
  TYPEIDs	
  from	
  argument	
  lists,	
  we	
  can	
  build	
  a	
  sta0c	
  
array	
  of	
  them	
  at	
  compile	
  0me…	
  
	
  
And	
  then	
  use	
  its	
  constant	
  address	
  as	
  the	
  signature	
  descrip0on.	
  
	
  

56	
  



Auer	
  the	
  above	
  op0miza0ons,	
  func0on	
  registra0on	
  is	
  en0rely	
  table-­‐driven,	
  resul0ng	
  in	
  
small	
  generated	
  code.	
  
	
  

57	
  



58	
  



59	
  



60	
  



61	
  



62	
  



63	
  



64	
  



select_overload	
  simplifies	
  overload	
  selec0on	
  syntax	
  by	
  only	
  requiring	
  the	
  interes0ng	
  bit	
  
of	
  knowledge	
  –	
  the	
  desired	
  func0on	
  signature	
  –	
  while	
  not	
  requiring	
  inferred	
  informa0on	
  
such	
  as	
  the	
  class	
  type.	
  
	
  

65	
  



select_overload	
  is	
  overloaded:	
  once	
  for	
  func0on	
  pointers,	
  and	
  once	
  for	
  member	
  
func0on	
  pointers.	
  

66	
  



67	
  



68	
  



69	
  



Given	
  a	
  captureless	
  lambda	
  type	
  with	
  unknown	
  signature,	
  we	
  want	
  to	
  convert	
  the	
  
lambda	
  into	
  a	
  func0on	
  pointer,	
  so	
  that	
  we	
  can	
  use	
  the	
  func0on	
  pointer	
  to	
  deduce	
  the	
  
signature	
  for	
  the	
  binding.	
  
	
  

70	
  



Maybe	
  this	
  should	
  be	
  in	
  the	
  standard.	
  
	
  

71	
  



Give	
  a	
  lambda,	
  we	
  can	
  grab	
  a	
  pointer	
  to	
  its	
  call	
  operator,	
  remove	
  the	
  “member-­‐ness”	
  
from	
  the	
  call	
  operator’s	
  type,	
  and	
  then	
  we	
  have	
  the	
  appropriate	
  func0on	
  type	
  for	
  the	
  
lambda.	
  
	
  

72	
  



op0onal_override	
  simply	
  calls	
  the	
  lambda’s	
  implicit	
  func0on	
  pointer	
  conversion	
  
operator.	
  
	
  

73	
  



74	
  



75	
  



76	
  


