Connecting C++ and JavaScript on
the Web with Embind

Hi, my name is Chad Austin, technical director at IMVU, and today we’re going to talk
about a library we’ve developed for connecting C++ and JavaScript with Emscripten.

Agenda

Why IMVU selected Emscripten
— and thus wrote Embind

Overview of Embind’s features

C++11 tricks in the Embind implementation
— code size
— syntax

Please hold questions until the end

What is IMVU?

* Avatars
* Chatting

e Games

IMVU is an online social platform where you can sign up, dress up an avatar, and meet
people from all around the world. We offer other activities such as games as well.

What is IMVU?

* 130 million registered accounts
* 16 million user-generated virtual items

The content in our world is created by our customers, and to our knowledge, we have
the largest catalog of 3D virtual goods on the Internet.

Why Emscripten?

(& Home - MU

its! Why haven't you clicked yet? Check out these videos now and eam! ana(<I>] x
&4
: .\ Infroducing Inner Circles m
" / m-ONlY EARLY ACCESS

Credits

[,

Inbo:

2@

Chat No

We currently offer a downloadable application for Windows and Mac. Windows and
Mac are great platforms, but in recent years, other platforms have grown to
prominence. We’d like our content available everywhere: mobile platforms, desktop,
server-side renderers, and even the web browser!

For almost all platforms, it’s obvious that C++ is a great choice for the core engine.
However, our big question was, what about the web browser?

In 2011, | benchmarked an upcoming tool called Emscripten and was quite impressed.

Emscripten

* Compiles C++ into JavaScript
e asm.js has ¥“50% of native performance
* No download or plugins!

* Portable across Windows, Mac, Linux,
Mobile, Tablets

e C++: high-performance language on ALL
platforms, including web

Emscripten works very well in practice, so the implication is that C++ is the portable,
high-performance language EVERYWHERE.

Emscripten!

£9793228 +

Here is our Emscripten application running in Firefox. Ul is HTML and CSS. Chat over
WebSockets, graphics in WebGL.

asm.js

Statically-compilable,

Machine-language-translatable,

Typed,

Garbage-collection-free,

Subset of JavaScript

asm.js is the subset of JavaScript that can be statically compiled into machine code.

More information at http://asmijs.org/

asm.js

* Integer arithmetic mapped to JS operators

* Heap represented as one ArrayBuffer
— 8 TypedArrayViews alias into that buffer:
 {signed, unsigned} {8, 16, 32} bit integers
e 32- and 64-bit floats

— See Alon’s presentation and
engineering.imvu.com for more details

The C heap is stored in an ArrayBuffer in JavaScript. One contiguous blob of memory.

This memory is indexed by eight different typed array views that alias each other. This is
how C memory semantics are implemented.

asm.js example

/] C++

void increment(unsigned™ p) {
++("p);

}

// JavaScript

function _increment(p) {
p=p | 0;//pisanunsigned integer
HEAPU32[p>>2| = (HEAPU32[p>>2] + 1) | 0;

}

In this example, we can see how the load, increment, and store are translated into
JavaScript.

The p=p | Oline indicates that p is an unsigned 32-bit integer.
The second line is a load, addition, and store. It can get compiled into a single
instruction in a good JavaScript JIT.

10

Emscripten

e Compiling C++ into JS is just half of the
platform

* Implementations of many POSIX functions

* Some hand-rolled APIs to access browser
capabilities from C++
— setTimeout()
— eval()

Compilation is just half of the story. Without being able to access the platform’s
capabilities, your program can’t do anything interesting.

Emscripten provides a whole bunch of APIs. It implements a bunch of POSIX and has
some hand-rolled APIs for specific bits of browser functionality.

11

Browser Integration

* JavaScript
setTimeout(function() {

}, 1000);

* Emscripten
emscripten_async_call([](void* arg) {

}, arg, 1000);

Here’s an example of how | can translate a bit of JavaScript into the equivalent
Emscripten C++. The body of the lambda will run a second in the future.

Functions like this are very useful when available. But we can’t hope that Emscripten
will implement handy dandy wrappers for everything. Browsers have hundreds and

thousands of APIs and are always adding more.

Embind sets out to make it possible to access these JavaScript APIs directly from C++.

12

Web Applications Want C++

* High-performance C++ components
e Existing C++ libraries

In addition, Embind makes it possible to use C++ libraries from web applications. You
can take existing C++ and expose it to JavaScript.

13

EMBIND

14

C++ < JavaScript
Bidirectional!

Inspired by Boost.

Embind

binding API

Python

Included with Emscripten
Heavy use of C++11 features

— variadic templates
— constexpr
— <type_traits>

15

* Almost every

Boost.Python

project I've worked on in the last

decade has used Boost.Python
* Some things I’ve never liked about

Boost.Python

— Significant C++ <-> Python call overhead
— Huge generated code size
— Huge compile times

— Too much is implicit (e.g. automatic copy

constructors)

16

Embind Design Spirit

Bindings written in C++

— no custom build step

Using JavaScript terminology

Minimal runtime overhead
— generates high-performance glue code at runtime

Short, concise implementation

It’s important, when building bindings, to realize you’re building a JavaScript APIl. You
need to think about how it’s going to be used from JavaScript. Thus, Embind tries to use
JavaScript terminology when appropriate.

Embind tries to have minimal overhead — unlike Boost.Python.

17

BINDING C++ TO JAVASCRIPT

18

Example

EMSCRIPTEN_BINDINGS(foo_library) {
function(“foo”, &foo);
class_<C>(“C”)

.constructor<int, std::string>()
function(“method”, &C::method)

4

19

Features

classes

— member functions

— ESS5 properties

— raw pointer ownership

— smart pointer ownership

enums (both enum and enum class)
named arbitrary constant values
JavaScript extending C++ classes

overloading by argument count (not type)

20

ES5 Properties

struct Character {
int health = 100;
void setHealth(int p) { health = p; }
int getHealth() const { return health; }

Iy

class_<Character>(“Character”)
.constructor<>()
property(“health”,
&Character::getHealth,
&Character::setHealth)

When the ‘health’ property is accessed from JavaScript, it actually calls the underlying C
++ getter and setter.

21

Enums

enum Color { RED, GREEN, BLUE };

enum_<Color>(“Color”)
.value(“RED”, RED)
.value(“GREEN”, GREEN)
.value(“BLUE”, BLUE)

’

Enums are nice and simple, but it’s important to give everything a name so JavaScript
can find it.

22

Constants

constant|
“DIAMETER_OF EARTH”,
DIAMETER_OF _EARTH);

23

Memory Management

* JavaScript has NO weak pointers or GC
callbacks

 Manual memory management of C++ objects
from JavaScript

— simple refcounting support provided

24

Memory Management

struct Point {int x, y; };
Point makePoint(int x, inty);

class_<Point>(“Point”)
property(“x”, &Point::x)
property(“y”, &Point::y)

function(“makePoint”, &makePoint);

25

Memory Management

> var p = makePoint(10, 20);
> console.log(p.x);

10

> console.log(p);

[Object]

> p.delete(); // ®

What is p? Well, it’s actually an Embind Instance Handle. That is, it’s a special
JavaScript object, provided by Embind, that holds a raw pointer into the Emscripten
heap, where a Point struct lives.

If you don’t delete p, the Point in the Emscripten heap leaks!

26

Memory Management (con’t)

e “value types”

— by-value conversion between C++ types and
JavaScript Objects
« {x: 10, y: 20}
— conversion between C++ types and JavaScript
Arrays
* [10, 20]

To that end, Embind provides value types, which denote that a type will be passed by
value across the language boundary.

You can either bind to JavaScript Objects or JavaScript Arrays

27

Value Objects Example

/] C++

value_object<Point>(“Point”)
field(“x”, &Point::x)
field(“y”, &Point::y)

7

/1S

var p = makePoint(10, 20);
console.log(p);

// {x: 10, y: 20}

// no need to delete

| wish value_obiject .field was called .property, given we want Embind to use JavaScript
terminology. © Maybe we’ll rename that.

28

USING JAVASCRIPT FROM C++

29

Calling JS from C++

* emscripten::val
e allows manipulation of JS values from C++

// JavaScript
var now = Date.now();

/] C++
double now = val::global(“Date”).call<double>(“now”);

30

Using Web Audio from C++

#include <emscripten/val.h>
using namespace emscripten;

int main() {

val context = val::global("AudioContext").new_(); // new AudioContext()
val oscillator = context.call<val>("createOscillator");

oscillator.set("type", val("triangle")); // oscillator.type = “triangle”
oscillator["frequency"].set("value", val(262)) // oscillator.frequency.value = 262

oscillator.call<void>("connect", context|"destination"]);
oscillator.call<void>("start", 0);

31

IMPLEMENTATION

32

Type IDs & Wire Types

* Every C++ type has a Type ID
* Type IDs have a name

e Every C++ type has a corresponding Wire
Type

— C++ can produce a Wire Type for any value
— JS can produce a Wire Type

33

Wire Types

C++ Type Wire Type JavaScript Type

int int

char char

double double

std::string struct { size_t, char[] }*
std::wstring struct { size_t, wchar_t[] }*
emscripten::val _EM_VAL*

class T T*

Number
Number
Number
String

String

arbitrary value

Embind Handle

34

Function Binding

float add2(float x, float y) { return x + vy; }

EMSCRIPTEN_BINDINGS(one_function) {
function(“add2”, &add2);

)

// Notify embind of name, signature, and fp

function(name, &fp) generates the signature information at compile time from the
function pointer.

35

Function Binding (con’t)

void _embind register function(
const char® name,
unsigned argCount,
const TYPEID argTypes|],
const char™ signature,
GenericFunction invoker,
GenericFunction function);

_embind_register_function is the internal implementation of function().

36

Function Binding Under The Covers

function("add2", &add2);

// becomes

TYPEID argTypes|3] = {getTypelD<float>(), getTypelD<float>(), getTypelD<float>()};
_embind_register_function(

"add2”,

3,

argTypes,

Nl

&lnvoker<float, float, float>,

&add2);

37

Function Binding (con’t)

_embind_register_function: function(name, argCount, rawArgTypesAddr, signature, rawlnvoker,
fn) {

var argTypes = heap32VectorToArray(argCount, rawArgTypesAddr);
name = readLatin1String(name);
rawlnvoker = requireFunction(signature, rawlnvoker);

exposePublicSymbol(name, function() {
throwUnboundTypeError('Cannot call ' + name + ' due to unbound types', argTypes);
}, argCount - 1);

whenDependentTypesAreResolved([], argTypes, function(argTypes) {
var invokerArgsArray = [argTypes|0], null].concat(argTypes.slice(1));

replacePublicSymbol(name, craftinvokerFunction(name, invokerArgsArray, null, rawlnvoker,
fn), argCount - 1);

return [];
1;
2

_embind_register_function is called from C++ but implemented in JavaScript.

38

C++ TECHNIQUES AND TRICKS

39

C++ Techniques and Tricks

 Code Size

— Using static constexpr to create static arrays
— RTTI Light

* Syntax
— select_overload

— optional_override

40

Why is code size so important?

* Native Application
— mmap .exe on disk
— begin executing functions
— page in instructions on demand

 JavaScript Application
— download JavaScript
— parse
— codegen on user’s machine
— execute JavaScript, maybe JIT on the fly

Native executables pay almost no penalty for huge executables, since they’re just
memory-mapped and paged in as executed.

However, JavaScript applications require the customer to use the network connection to
download and their CPU to parse and optimize the JavaScript. So even dead code hurts
in JavaScript. Careful!

41

STATIC ARRAYS

42

Function Binding (con’t)

* name
— “add2”
* signature
— 3 (1 return value, 2 arguments)
— argTypes = {FLOAT, FLOAT, FLOAT}
— asm.js signature string: “fff”
— invoker = arg reconstruction from wiretype

e function pointer

43

Signatures are known at compile-time

Signatures

Signatures are constant

Often reused

— e.g. float operator+, float operator*, and powf

constexpr!

44

asm.js Signature Strings

* asm.js function table signature strings
° <V0|d, ﬂoat, |nt’ Char*> 9 llvﬁin

 Wanted: compile-time string literal
generation

asm.js function pointers are typed. They are indices into typed function pointers. So a
function pointer isn’t enough information to look up the corresponding JavaScript
function: you need to know which table to look at too.

45

SignatureCode

template<typename T> struct SignatureCode {
static constexpr char get() { return'i'; }

|5

template<> struct SignatureCode<void> {
static constexpr char get() { return'v'; }

|7

template<> struct SignatureCode<float> {
static constexpr char get() { return'f'; }

|5

template<> struct SignatureCode<double> {
static constexpr char get() { return 'd’; }

|5

First, we need to be able to map a type to the corresponding asm.js signature code.

46

getSignature

template<typename Return, typename... Args>
const char™ getSignature(Return (*)(Args...)) {
static constexpr char str[] = {
SignatureCode<Return>::get(),
SignatureCode<Args>::get()...,
0}
return str;

Take a function pointer as argument, but don’t use its value, just its deduced type.
Then, create a static constexpr character array where the first entry is the
SignatureCode of the first type, followed by the SignatureCodes of the argument types,

followed by the terminating zero.

This produces a compile-time constant string!

If you call getSignature, the call is completely inlined and optimized down to a single
constant pointer into the application’s static data segment.

47

RTTI LIGHT

48

RTTI Light

void _embind_register_function(
const char®* name,
unsigned argCount,
const TYPEID argTypes|[],
const char* signature,
GenericFunction invoker,
GenericFunction function);

 TYPEID is an integer or void* that identifies the type
* Used as index into type registry

The return types and argument types are passed in the argTypes array. The return type
is the first element.

Remember that TYPEID is simply a unique identifier for a type, and we can compute a
TYPEID from a type at compile time.

49

Original TYPEID Implementation

e Originally used typeid()
* typedef const std::type_info™ TYPEID;

* Problem: code size!

50

Problems with typeid

* typeid pulls in a lot of extra junk
— e.g. long string constants for mangled names

* Embind already associates human names with every
type, typeid name is only necessary for errors

— “Error: tried to call function X but argument 2 has
unbound type Y”

— Errors only used for debugging
— #define EMSCRIPTEN_HAS_UNBOUND_TYPE_NAMES 0

51

RTTI Light Requirements

All embind needs, per type, is:
— unique word-sized identifier per type
— unique string name

Lookup should constexpr (we’ll see why later)

Important: still need full RTTI for runtime
identification of polymorphic pointers!

LightTypelD must inhabit the same namespace
as typeid to avoid namespace collisions

52

TYPEID lookup

typedef const void* TYPEID;

template<typename T>
static constexpr TYPEID getLightTypelD() {
return std::is_polymorphic<T>::value
? &typeid(C)
. LightTypelD<C>::get();

53

LightTypelD

template<typename T>
struct LightTypelD {
static char c;
static constexpr TYPEID get() {
return &c;
}
I

// Warning: how does linkage work here?
template<typename T>
char LightTypelD<T>::c;

The implementation of LightTypelD allocates a byte in the static data segment... and
uses that byte’s address as the TYPEID!

We know it doesn’t conflict with typeid, since two objects can’t share an address.

| don’t fully understand the linkage rules that make the template definition legal in a
header, but someone in the audience said what I’'m doing is okay. ©

54

RTTI Light

Allocates a single byte in the static data
segment per type, uses its address

Same namespace as typeid
Huge code size savings!
175 KB off of our minified JavaScript build

55

Signature TYPEID[]

template<typename... Args>
static const TYPEID™ getTypelDs() {
static constexpr TYPEID types| |
TypelD<Args>::get()...
;

return types;

{

Once we have the ability to look up TYPEIDs from argument lists, we can build a static
array of them at compile time...

And then use its constant address as the signature description.

56

Back to Function Registration

_embind_register _function(
50001482, // address of “add2”
3, // argCount=3
50001830, // address of TYPEIDI[3]
50001497, // address of “fff”
106, // function pointer of invoker
80); // function pointer of add2

After the above optimizations, function registration is entirely table-driven, resulting in
small generated code.

57

SELECT_OVERLOAD

58

select overload

* Want to bind overloaded function e.g. pow()

// ambiguous: pow is overloaded
function(“pow”, &pow);

* You can C-style cast to select the function signature

function(“powf”, (float(*)(float,float))&pow);
function(“powd”, (double(*)(double,double))&pow);

59

C-style casts are gross

« Ugly (*) sigil

* Dangerous when function is refactored to
not be overloaded
— C-style cast will still succeed!

— Undefined behavior

60

Better Way

function(“powf”,

select_overload<float(float,float)>(&pow));
function(“powd”,

select_overload<double(double,double)>(&pow));

61

select_overload Implementation

template<typename Signature>
Signature™ select_overload(Signature™ fn) {
return fn;

62

select_overload on Member Functions

struct HasProperty {
int prop();
void prop(int);

5

63

The Old Way

e C-style casting requires duplicating class name

class_<HasProperty>(“HasProperty”)
.method(“prop”,
(int(HasProperty::*)())&HasProperty::prop)
.method(“prop”,
(void(HasProperty::*)(int))&HasProperty::prop)

64

Using select_overload

class_<HasProperty>(“HasProperty”)
.method(“prop”, select_overload<int()>(
&HasProperty::prop))
.method(“prop”, select_overload<void(int)>(
&HasProperty::prop))

* Does not repeat class name

select_overload simplifies overload selection syntax by only requiring the interesting bit
of knowledge — the desired function signature — while not requiring inferred information
such as the class type.

65

select_overload Implementation

template<
typename Signature,
typename ClassType>
auto select_overload|
Signature (ClassType::*fn)
) -> decltype(fn) {
return fn;

select_overload is overloaded: once for function pointers, and once for member
function pointers.

66

OPTIONAL_OVERRIDE

67

optional_override in use

struct Base {
virtual void invoke(const std::string& str) {
// default implementation

}
|5

class_<Base>("Base")
.allow_subclass<BaseWrapper>()
function("invoke", optional override([](Base& self, const std::string& str) {
return self.Base::invoke(str);

1)

’

68

optional _override

* Sometimes you want to bind a captureless
lambda
— Use case is too subtle for discussion here

— Captureless lambdas can be coerced into C
function pointers

 But what’s a lambda’s signature?

69

Lambdas are Sugar for Objects with
Call Operators

[l(inta) {returna + 2;}
// desugars to

struct __ AnonymousLambda {
int operator()(int a) { return __body(a); }
typedef int(* _ FP)(int);
operator __ FP() { return & _body; }
private
staticint __body(inta) { returna + 2; }

|5

* We want type of function pointer: int(*)(int) in this case

Given a captureless lambda type with unknown signature, we want to convert the
lambda into a function pointer, so that we can use the function pointer to deduce the

signature for the binding.

70

optional override Implementation

// this should be in <type_traits>, but alas, it's not
template<typename T> struct remove_class;

template<typename C, typename R, typename... A>

struct remove_class<R(C::*)(A...)> { using type = R(A...); };
template<typename C, typename R, typename... A>

struct remove_class<R(C::*)(A...) const> { using type = R(A...); };
template<typename C, typename R, typename... A>

struct remove_class<R(C::*)(A...) volatile> { using type = R(A...); };
template<typename C, typename R, typename... A>

struct remove_class<R(C::*)(A...) const volatile> { using type = R(A...); };

Maybe this should be in the standard.

71

optional_override Implementation

template<typename LambdaType>
using LambdaSignature =
typename remove_class<
decltype(&LambdaType::operator())
>::type;

Give a lambda, we can grab a pointer to its call operator, remove the “member-ness”
from the call operator’s type, and then we have the appropriate function type for the
lambda.

72

optional_override Implementation

template<typename LambdaType>
LambdaSignature<LambdaType>*

optional override(const LambdaType& fp) {
return fp;

optional_override simply calls the lambda’s implicit function pointer conversion
operator.

73

WHEW...

74

Overview

C++ has bright future on the web
C++ libraries now available to JavaScript
C++ can call JavaScript code

Low-overhead: 200 ns overhead per call
— more optimizations possible!

Emphasis on small generated code size

Without C++11, writing embind would have been
really annoying

Hope you learned a few tricks!

75

We're Hiring!
Questions?

76

