Viewing the world through
array-shaped glasses

tukasz Mendakiewicz

Software Engineer, Microsoft

CppCon 2014
9/8/2014

Contiguity of data matters

s of data matters

are D
ot D eyers, So&vwm;‘
.)';: " wv}W ansteld.t
-

http://www.aristeia.com/TalkNotes/ACCU2011_CPUCaches.pdf

® Stay in the cache,

" Predictable

access Patterng count,
% Be Prefetc}

1—friendly.

data matters

Scott Meyers, Software Developmsm Consultant
http::i’www.aristeia. com/

df
11 _CPUCaches.p
risteia.com/TalkNotes/ACCU2011
http://www.a

Shace tradeoff in the K
ocality coypts,

® Stay in the Cache,

" Predictable

% Be Prefetc]

ardware,

access Patterng count,
1—friendly.

Scott Meyers, Software Developmsm Consultant
http::i’www.ariSteia. com/

p . I

S Ummary

" Small = fast,

' ace tradeoff in the K
ocality coypts,

® Stay in the Cache,
" Predictable
% Be Prefetc]

ﬂl‘d Wa rE.

a
F cc'ess Patterng count
1—fr1endly. .

110.0 cycles

38.0 cycles

<.
—cott Meyers, Soffu

hittn:// g fma-feDev - £ 0 oyl
ttp:/; WWW.aristeiacom, elopment Consultang 66,0 cycles

You can see it U

ying to

prefetch, scrambling

d and
dly to stay ahea
R ipeline ful

keep the P

Jock
" 2

2500
33.00 nsl
/ 24750
{
75 N8
g 3ow!

ol |
[S w8

i

B4K

128K

256K

51

2K

1!

7 Access patterns ma
« Linear = not bad
« Random = awful

. Arrays (real arrays)
= Smaller = further left, faster

» Often on lower curves =

chasing
. B\gger = -
. Oﬂ hlghe" curves =

ata sfructures

further right, sIOWer
slower

http://www.aristeia.com/TalkNotes/ACCU2011_CPUCaches.pdf
http://channel9.msdn.com/Events/Build/2014/2-661

Summm

¥ Small = fact
»

C++11 Style—A Touch of Class

Bjarne Stroustrup

Texas A&M University

www.research.att.com/'”bs

Ler right, slower

Scott Meye P
D
| Lyes = slower

» Vers, So,
http.i/wwwaristeia.cnm/

http://www.aristeia.com/TalkNotes/ACCU2011_CPUCaches.pdf
http://channel9.msdn.com/Events/Build/2014/2-661
http://channel9.msdn.com/Events/GoingNative/GoingNative-2012/Keynote-Bjarne-Stroustrup-Cpp11-Style

T

Parads

oo
Vector vs, Ljst

¥

The amount of memor

—

Y used differ dramati

element
it will be worse for 64-pjt architectyres

pter
100,000 fist elements take Up 6.4MB or more (but I have Gigabytes!?)
ruses 1 word per element

100,000 Jjst elements take up 1.6MB or more

cally

List uses 4+ words per

= Vecto

»

-
Memory access js relatively slow Ires
Caches, pipelines, etc. slower
= 200to 500 instructions Per memory access
= Unpredictakd
Scott Meyers, Softwar

http::i’www.ariSteia. car

ower
ives Many more cache misses

e

plications:

Don’t store data Unnecessarily,
Keep data compact.

Access memory in g predictable manner.

—tTUD - C++11 Style - Feb'12
e —

Caches.pdf
http://www aristeia.com/TaIkNoteS/ACCUZ()ll—CZ:1 -
> 19.msdn.com/Events/Build/2014/2- ive-2012/Keynote-Bjarne-Stroustrup-Cpp Y
paeanne /Events/GoingNative/GoingNative-
dn.com
http://channel9.ms

oM University

Vector vs. List

* The amount of memg

Dlsclalmer Always check

what is the right choice for
your specific application.

— Acces i
Smemory in g predictable Mmanner.

eeTSTIUD - C++11 Style - Feb'12

47

pter

=
|

res
slower
ower

|

http://www.aristeia.com/TalkNotes/ACCU2011_CPUCaches.pdf
http://channel9.msdn.com/Events/Build/2014/2-661
http://channel9.msdn.com/Events/GoingNative/GoingNative-2012/Keynote-Bjarne-Stroustrup-Cpp11-Style

Defining contiguous data in C++

10 11 12 999

Defining contiguous data in C++

int old skool array[1000];

10 11 12 999

Defining contiguous data in C++

int old skool array[1000];
std::array<int, 1000> std_array;

10 11 12 999

Defining contiguous data in C++

int old skool array[1000];
std::array<int, 1000> std_array;

std::vector<int> vec(1000);

0 1 2 3 4 5 6 7 8 9 10 11 12

999

Defining contiguous data in C++

int old skool array[1000];
std::array<int, 1000> std_array;
std::vector<int> vec(1000);

std: :deque<int> deq(1000);

0 1 2 3 4 5 6 7 8 9 10 11 12

999

Defining contiguous data in C++

int old skool array[1000];
std::array<int, 1000> std_array;

std::vector<int> vec(1000);

J

0 1 2 3 4 5 6 7 8 9 10 11 12

999

Defining contiguous data in C++

int old skool array[1000];
std::array<int, 1000> std_array;

std::vector<int> vec(1000);

J

std::dynarray<int> dyn(1000); // Array Extensions TS

0 1 2 3 4 5 6 7 8 9 10 11 12

999

Defining contiguous data in C++

int old skool array[1000];
std::array<int, 1000> std_array;

std::vector<int> vec(1000);

5
std::dynarray<int> dyn(1000); // Array Extensions TS
Other libraries (BLAS? Bitmaps?)

0 1 2 3 4 5 6 7 8 9 10 11 12

999

Defining contiguous data in C++

int old skool array[1000];
std::array<int, 1000> std_array;

std::vector<int> vec(1000);

>
std::dynarray<int> dyn(1000); // Array Extensions TS
Other libraries (BLAS? Bitmaps?)
Homegrown types

0 1 2 3 4 5 6 7 8 9 10 11 12

999

Accepting contiguous data in C++

template <typename CollectionType>
int generic(CollectionType& collection) { ... }

Accepting contiguous data in C++

template <typename CollectionType>
int generic(CollectionType& collection) { ... }

Too generic?

Accepting contiguous data in C++

template <typename T>
concept bool Collection = ...;

template <Collection CollectionType>

int generic(CollectionType& collection) { ... }

Accepting contiguous data in C++

template <typename T>
concept bool Collection = ...; Not there yet...

template <Collection CollectionType>
int generic(CollectionType& collection) { ... }

Accepting contiguous data in C++

template <typename Collection,
typename = std::enable if t<std::is convertible v<size t,
decltype(std::declval<Collection>().size())>>
&& ...
>
int generic(Collection& data) { ... }

Accepting contiguous data in C++

template <typename Collection,
typename = std::enable if t<std::is convertible v<size t,
decltype(std::declval<Collection>().size())>>
&& ...
>
int generic(Collection& data) { ... }

generic(vec);

Accepting contiguous data in C++

template <typename Collection,
typename = std::enable if t<std::is convertible v<size t,
decltype(std::declval<Collection>().size())>>
&& ...
>
int generic(Collection& data) { ... }

generic(vec);

Accepting contiguous data in C++

template <typename Collection,
typename = std::enable if t<std::is convertible v<size t,
decltype(std::declval<Collection>().size())>>
&& ...
>
int generic(Collection& data) { ... }

generic(vec); generic(std _array);

Accepting contiguous data in C++

template <typename Collection,
typename = std::enable if t<std::is convertible v<size t,
decltype(std::declval<Collection>().size())>>
&& ...
>
int generic(Collection& data) { ... }

generic(vec); generic(std _array);

Accepting contiguous data in C++

template <typename Collection,
typename = std::enable if t<std::is convertible v<size t,
decltype(std::declval<Collection>().size())>>
&& ...
>
int generic(Collection& data) { ... }

generic(vec); generic(std _array); generic(old skool array);

Accepting contiguous data in C++

template <typename Collection,
typename = std::enable if t<std::is convertible v<size t,
decltype(std::declval<Collection>().size())>>
&& ...
>
int generic(Collection& data) { ... }

generic(vec); generic(std _array); generic(old skool array);

Accepting contiguous data in C

int raw(int* ptr, size t size) { ... }

Accepting contiguous data in C

int raw(int* ptr, size t size) { ... }

raw(vec.data(), vec.size());

Accepting contiguous data in C

int raw(int* ptr, size t size) { ... }

raw(vec.data(), vec.size()); V/

Accepting contiguous data in C

int raw(int* ptr, size t size) { ... }

raw(vec.data(), vec.size()); V/
raw(old_skool _array, NUM_ELEMENTS(old_skool_array));

Accepting contiguous data in C

int raw(int* ptr, size t size) { ... }

raw(vec.data(), vec.size()); V/
raw(old_skool_array, NUM_ELEMENTS(old_skool_array));'M/

Accepting contiguous data in C
int raw(int* ptr, size t size) { ... }

raw(vec.data(), vec.size());<@f
raw(old_skool_array, NUM_ELEMENTS(old_skool_array));<V7

int raw(int* ptr, size t width, size t height) { ... }

Accepting contiguous data in C
int raw(int* ptr, size t size) { ... }

raw(vec.data(), vec.size()); M/
raw(old_skool_array, NUM_ELEMENTS(old_skool_array)); y/

int raw(int* ptr, size t width, size t height) { ... }

int raw(int* ptr, size t width, size t height, size t depth) {...}

The alternative: array_view interface

int compute(array view<int> data) { ... }

The alternative: array_view interface

int compute(array view<int> data) { ... }

auto data = std::vector<int>(1000);

The alternative: array_view interface

int compute(array view<int> data) { ... }

auto data = std::vector<int>(1000);

auto av = array view<int>{data};

The alternative: array_view interface

int compute(array view<int> data) { ... }

auto data = std::vector<int>(1000);

auto av = array view<int>{data};
compute(av);

The alternative: array_view interface

int compute(array view<int> data) { ... }

auto data = std::vector<int>(1000);

auto av = array view<int>{data};
compute(av);

compute(data);

The alternative: array_view interface

int compute(array view<int> data) { ... }

int data[1000];

auto av = array view<int>{data};
compute(av);

compute(data);

The alternative: array_view interface

int compute(array view<int> data) { ... }

auto data = std::array<int, 1000>{};
int data[1000];

auto av = array view<int>{data};
compute(av);

compute(data);

This _view thing sounds familiar...

Where X is:

string view{x};

std::string
char*

array view<T>{x};

std::vector<T>
T*

But there is more (dimensions)!

int compute(int* ptr, size t size) { ... }

int compute(int* ptr, size t width, size t height) { ... }

But there is more (dimensions)!

int compute(array view<int> data) { ... }

int compute(int* ptr, size t width, size t height) { ... }

But there is more (dimensions)!

int compute(array view<int> data) { ... }

int compute(array view<int, 2> data) { ... }

But there is more (dimensions)!

int compute(array view<int> data) { ... }
int compute(array view<int, 2> data) { ... }

int compute(array view<int, 3> data) { ... }

But there is more (dimensions)!

int compute(array view<int> data) { ... }
int compute(array view<int, 2> data) { ... }
int compute(array view<int, 3> data) { ... }

auto data = std::vector<int>(1000);

auto av_1
auto av_2

array view<int>{data};
array view<int, 2>{{20, 50}, data};

compute(av_1);
compute(av_2);

But there is more (dimensions)!

int compute(array view<int> data) { ... }
int compute(array view<int, 2> data) { ... }

int compute(array view<int, 3> data) { ... }

auto data = std::vector<int>(1000);

auto av_1 = array_view<int>{data};
auto av_2 = array view<int, 2>{{20, 50}, data};
compute(av_1); Lifting the linear memory into a logically

compute(av_2); multidimensional representation.

Using the array_view

out := [uint8 t] height,width

I
=
Q)

+1

Qv

out := () +2 | % in) 150

Using the array_view

void compute(uint8 t* in, uint8 t* out,
size t width, size t height) {

for (size t row = @; row < height; ++row)
for (size t col = @; col < width; ++col) {
if (row == @ || row == height - 1
|| col == @ || col == width - 1) {
out[row * width + col] = ©;

} else {
int v =
-1 * in[(row - 1) * width + col - 1]
+ 1 * in[(row - 1) * width + col + 1]
- 2 * in[row * width + col - 1]
+ 2 * in[row * width + col + 1]
-1 * in[(row + 1) * width + col - 1]
+ 2 * in[(row + 1) * width + col + 1];

out[row * width + col] =
v > 150 ? 255 : 0O;

Fro}

Using the array_view

void compute(uint8 t* in, uint8 t* out,

for (size t row
for (size t col

size t width, size t height) {

Q; row < height; ++row)
©0; col < width; ++col) {
| row == height - 1

row_==_6

|| col == @ || col == width - 1) {
out[row * width + col] = ©;

} else {
int v =
-1 * in[(row - 1) * width + col - 1]
+ 1 * in[(row - 1) * width + col + 1]
- 2 * in[row * width + col - 1]
+ 2 * in[row * width + col + 1]
-1 * in[(row + 1) * width + col - 1]
+ 2 * in[(row + 1) * width + col + 1];

Fro}

out[row * width + col] =
v > 150 ? 255 : 0O;

Using the array_view

void compute(uint8 t* in, uint8 t* out,

P emeemd (\csted for loops to iterate over
a single concept (a 2D space).

&~ row < height; ++row)
for (size t col =/0; col < width; ++col) {
£ _(row ==0-T| row == height - 1
|| col == @ || col == width - 1) {
out[row * width + col] = 0;

for (size t row

} else {
int v =
-1 * in[(row - 1) * width + col - 1]
+ 1 * in[(row - 1) * width + col + 1]
- 2 * in[row * width + col - 1]
+ 2 * in[row * width + col + 1]
-1 * in[(row + 1) * width + col - 1]
+ 2 * in[(row + 1) * width + col + 1];

out[row * width + col] =
v > 150 ? 255 : 0O;

Fro}

Using the array_view

void compute(uint8 t* in, uint8 t* out,

P emeemd (\csted for loops to iterate over
a single concept (a 2D space).

for (size t row =\@;"row < height; ++row)
@; col < width; ++col) {
1| row == height - 1

|| col == @ || col == width - 1) {

out[row * width + col] = 0;

} else {

int v =
-1*@-1)*width+col-1]>
+ 1 * in[(Fow———3—t—]

- 2 * in[row * width + col - 1]
+ 2 * in[row * width + col + 1]
-1 * in[(row + 1) * width + col - 1]
+ 2 * in[(row + 1) * width + col + 1];

out[row * width + col] =
v > 150 ? 255 : 0O;

Fro}

Using the array_view

void compute(uint8 t* in, uint8 t* out,

P emeemd (\csted for loops to iterate over
a single concept (a 2D space).

for (size t row =\@;"row < height; ++row)
for (size t col =/0; col < width; ++col) {
£ _(row ==0-T| row == height - 1
|| col == @ || col == width - 1) {
out[row * width + col] = 0;

} else {
int v =

-1 % kﬁigzgﬁ- 1) * width + col -

+ 1 * in[(Fow——d)—t—uic S

- 2 * in[row * width + qol -

+ 2 * in[row * width + cpl +
-1 * in[(row + 1) * width + cql -

+ 2 * in[(row + 1) * width + co\ + 117;

out[row * width + col] =
v > 150 ? 255 : 0O;

Error-prone index calculation.

Y}

Using the array_view

void compute(uint8 t* in, uint8 t* out,
size t width, size t height) {

for (size t row = @; row < height; ++row)
for (size t col = @; col < width; ++col) {
if (row == @ || row == height - 1
|| col == @ || col == width - 1) {
out[row * width + col] = ©;

} else {
int v =
-1 * in[(row - 1) * width + col - 1]
+ 1 * in[(row - 1) * width + col + 1]
- 2 * in[row * width + col - 1]
+ 2 * in[row * width + col + 1]
-1 * in[(row + 1) * width + col - 1]
+ 2 * in[(row + 1) * width + col + 1];

out[row * width + col] =
v > 150 ? 255 : 0O;

Fro}

void compute(array view<const uint8 t, 2> in,
array_view<uint8_ t, 2> out) {
index<2>{-1, 0}; auto S = index<2>{1,0};
index<2>{ ©,-1}; auto E = index<2>{0,1};

auto N
auto W

for (index<2> idx :

if (idx[@] == ©
|| idx[1] ==

out[idx] = ©;

} else {
int v =
- 1 * in[idx
+ 1 * in[idx
- 2 * in[idx
+ 2 * in[idx
- 1 * in[idx
+ 2 * in[idx
out[idx] =

v > 150 ? 255

} i}

+ 4+ + + + +

in.bounds()) {
idx[@] == in.bounds()[0@] - 1
idx[1] == in.bounds()[1] - 1)

+ N]
+ N]
]

]
+ S]

+ E];

NW==m=mz=z=

. 0;

Using the array_view

void computp(uint8 t* in, uint8 t* out,
size t width, size t height) |{

for (size t row
for (size t col

Q; row < height; ++row)
@; col < width; ++col) {

if (row == @ || row == height - 1
|| col == @ || col == width - 1) {
out[row * width + col] = ©;
} else {
int v =
-1 * in[(row - 1) * width + col - 1]
+ 1 * in[(row - 1) * width + col + 1]
- 2 * in[row * width + col - 1]
+ 2 * in[row * width + col + 1]
-1 * in[(row + 1) * width + col - 1]
+ 2 * in[(row + 1) * width + col + 1];

out[row * width + col] =
v > 150 ? 255 : 0O;

Fro}

void computeg(array view<const uint8 t, 2> in,
array_view<uint8_ t, 2> out) {

auto N
auto W

{1,0};
index<2>{0,1};

index<2>{ ©@,-1}; auto E

for (index<2> idx : in.bounds()) {

if (idx[@] == @ || idx[@] == in.bounds()[0] - 1
|| idx[1] == @ || idx[1] == in.bounds()[1] - 1)
out[idx] = ©;

} else {
int v =

- 1 * in[idx + W + N]
+ 1 * in[idx + E + N]
- 2 * in[idx + W]
+ 2 * in[idx + E]
-1 * in[idx + W + S]
+ 2 * in[idx + S + E];
out[idx] =
v > 150 ? 255 : 0;

} i}

Using the array_view

void compute(uint8 t* in, uint8 t* out, void compute(array view<const uint8 t, 2> in,
size t width, size t height) { array view<uint8 t, 2> out) {
auto N = index<2>{-1, 0}; auto S = index<2>{1,0};
auto W = index<2>{ 0,-1}; auto E = index<2>{0,1};
for (size t row = @; row < height; ++row)
for (size t col = @; col < width; ++col) { for (index<2> idx : in.bounds()) {
if (row == @ || row == height - 1 if (idx[@] == @ || idx[@] == in.bounds()[0] - 1
|| col == @ || col == width - 1) { || idx[1] == @ || idx[1] == in.bounds()[1] - 1) {
out[row * width + col] = ©; out[idx] = 0;
} else { } else {
int v = int v =
-1 * in[(row - 1) * width + col - 1] - 1 * in[idx + W + N] “N
+ 1 * in[(row - 1) * width + col + 1] + 1 * in[idx + E + N]
- 2 * in[row * width + col - 1] - 2 * in[idx + W]
+ 2 * in[row * width + col + 1] + 2 * in[idx + E] i >
-1 * in[(row + 1) * width + col - 1] -1 * in[idx + W + S] E
+ 2 * in[(row + 1) * width + col + 1]; + 2 * in[idx + S + E];
out[row * width + col] = out[idx] = S|
v > 150 ? 255 : 0O; v > 150 ? 255 : 0;
P} }ro}

Using the array_view

void compute(uint8 t* in, uint8 t* out, void compute(array view<const uint8 t, 2> in,
size t width, size t height) { array_view<uint8_ t, 2> out) {
auto N = index<2>{-1, 0}; auto S = index<2>{1,0};
auto W = index<2>{ 0,-1}; auto E = index<2>{0,1};
for (size t row = @; row < height; ++row)
for (size t col = 0; col < width; ++col) for (index<2> idx : in.bounds()) {
if (row == @ || row == height - 1 i (Tax{e] ==9 || 1dx{9] == 1m.bounds()[0] - 1
|| col == @ || col == width - 1) { || idx[1] == @ || idx[1] == in.bounds()[1] - 1) {
out[row * width + col] = ©; out[idx] = 0;
} else { } else {
int v = int v =
-1 * in[(row - 1) * width + col - 1] - 1 * in[idx + W + N] “N
+ 1 * in[(row - 1) * width + col + 1] + 1 * in[idx + E + N]
- 2 * in[row * width + col - 1] - 2 * in[idx + W]
+ 2 * in[row * width + col + 1] + 2 * in[idx + E] i >
-1 * in[(row + 1) * width + col - 1] -1 * in[idx + W + S] E
+ 2 * in[(row + 1) * width + col + 1]; + 2 * in[idx + S + E];
out[row * width + col] = out[idx] = S|
v > 150 ? 255 : 0O; v > 150 ? 255 : 0;
P} }ro}

Using the array_view

void compute(uint8 t* in, uint8 t* out,
size t width, size t height) {

-+
©)
)

~
w0

o e
N

If'D
—+
)
o
=
Il
)
-
S
o
=

< height; ++row)
_t col =0;: col < width: ++col) {
if (row == row == height - 1

width - 1)
=9,
} else {

int v =

-1 * in[(row - 1) * width + col - 1]
+ 1 * in[(row - 1) * width + col + 1]
- 2 * in[row * width + col - 1]
+ 2 * in[row * width + col + 1]
-1 * in[(row + 1) * width + col - 1]
+ 2 * in[(row + 1) * width + col + 1];

out[row * width + col] =
v > 150 ? 255 : 0O;

Fro}

void compute(array view<const uint8 t, 2> in,
array_view<uint8_ t, 2> out) {

index<2>{-1, 0}; auto S = index<2>{1,0};

index<2>{ ©,-1}; auto E = index<2>{0,1};

auto N
auto W

for_(index<2> idx : in.bounds()) {

if (idx[@] == © idx[@] == in.bounds()[0] - 1

| |
|| idx[1] == @ || idx[1] == in.bounds()[1] - 1)

j

=9,
} else {
int v =
- 1 * in[idx + W + N] “N
+ 1 * in[idx + E + N]
- 2 * in[idx + W]
+ 2 * in[idx + E] i >
-1 * in[idx + W + S] E
+ 2 * in[idx + S + E];
out[idx] = S|

v > 150 ? 255 : 0;
} i}

Using the array_view

void compute(uint8 t* in, uint8 t* out, void compute(array view<const uint8 t, 2> in,
size t width, size t height) { array_view<uint8_ t, 2> out) {
auto N = index<2>{-1, 0}; auto S = index<2>{1,0};
auto W = index<2>{ 0,-1}; auto E = index<2>{0,1};
for (size t row = @; row < height; ++row)
for (size t col = @; col < width; ++col) { for (index<2> idx : in.bounds()) {
if (row == @ || row == height - 1 if (idx[@] == @ || idx[@] == in.bounds()[0] - 1
|| col == 0 || col == width - 1) { || idx[1] == | idx[1] == in.bounds()[1] - 1) {
out[row * width + col] = ©; out[idx] = 0;
}elseH }elseH
int v = int v =
-1 * in[(row - 1) * width + col - 1] - 1 * in[idx + W + N] “N
+ 1 * in[(row - 1) * width + col + 1] + 1 * in[idx + E + N]
- 2 * in[row * width + col - 1] - 2 * in[idx + W]
+ 2 * in[row * width + col + 1] + 2 * in[idx + E] i >
-1 * in[(row + 1) * width + col - 1] -1 * in[idx + W + S] E
+ 2 * in[(row + 1) * width + col + 1]; + 2 * in[idx + S + E];
out[row * width + col] = out[idx] = S|
v > 150 ? 255 : 0O; v > 150 ? 255 : 0;
P} }ro}

Using the array_view

void compute(uint8 t* in, uint8 t* out, void compute(array view<const uint8 t, 2> in,
size t width, size t height) { array_view<uint8_ t, 2> out) {
auto N = index<2>{-1, 0}; auto S = index<2>{1,0};
auto W = index<2>{ 0,-1}; auto E = index<2>{0,1};
for (size t row = @; row < height; ++row)
for (size t col = @; col < width; ++col) { for (index<2> idx : in.bounds()) {
if (row == @ || row == height - 1 if (idx[@] == @ || idx[@] == in.bounds()[0] - 1
|| col == @ || col == width - 1) { || idx[1] == @ || idx[1] == in.bounds()[1] - 1) {
out[row * width + col] = ©; out[idx] = 0;
} else { } else {
int v = int v =
-1 *lin[(row - 1) * width + col - ;%] - 1 *lin[idx + W + N] “N
+ 1 * In[(row - 1) * width + col + + 1 * In[1dXx + E + N]
- 2 * in[row * width + col - 1] - 2 * in[idx + W]
+ 2 * in[row * width + col + 1] + 2 * in[idx + E] i >
-1 * in[(row + 1) * width + col - 1] -1 * in[idx + W + S] E
+ 2 * in[(row + 1) * width + col + 1]; + 2 * in[idx + S + E];
out[row * width + col] = out[idx] = S|
v > 150 ? 255 : 0O; v > 150 ? 255 : 0;
P} }ro}

Using the array_view

void compute(uint8 t* in, uint8 t* out, void compute(array view<const uint8 t, 2> in,
size t width, size t height) { array_view<uint8_ t, 2> out) {
auto N = index<2>{-1, 0}; auto S = index<2>{1,0};
auto W = index<2>{ 0,-1}; auto E = index<2>{0,1};
for (size t row = @; row < height; ++row)
for (size t col = @; col < width; ++col) { for (index<2> idx : in.bounds()) {
if (row == @ || row == height - 1 if (idx[@] == @ || idx[@] == in.bounds()[0] - 1
|| col == @ || col == width - 1) { || idx[1] == @ || idx[1] == in.bounds()[1] - 1) {
out[row * width + col] = ©; out[idx] = 0;
} else { } else {
int v = int v =
-1 * in[(row - 1) * width + col - 1] - 1 * in[idx + W + N] “N
+ 1 * in[(row - 1) * width + col + 1] + 1 * in[idx + E + N]
- 2 * in[row * width + col - 1] - 2 * in[idx + W]
+ 2 * in[row * width + col + 1] + 2 * in[idx + E]) >
-1 * in[(row + 1) * width + col - 1] -1 * in[idx + W + S] E
+ 2 * in[(row + 1) * width + col + 1]; + 2 * in[idx + S + E];
out[row * width + col] = out[idx] = S|
v > 150 ? 255 : 0O; v > 150 ? 255 : 0;
P} }ro}

A different view on algorithms

Elemental algorithms Indexable algorithms
auto coll = std::vector<T>{N}; auto bnd = bounds<1>{N};
for(T& value : coll) { ... } for(index<1> idx : bnd) { ... }

for _each(begin(coll), end(coll), | for_each(begin(bnd), end(bnd),
[=](T& value) {...}); [=](index<1> idx) {...});

A different view on algorithms

Elemental algorithms Indexable algorithms

auto coll = std::vector<T>{N}; auto bnd = bounds<1>{N};

for(T& value : coll) { ... } for(index<1> idx : bnd) { ... }

for_each(begin(coll), end(coll), | for_each(begin(bnd), end(bnd),
[=](T& value) {...}); [=](index<1> idx) {...});

A different view on algorithms

Elemental algorithms Indexable algorithms

auto coll = std::vector<T>{N}; auto bnd = bounds<1>{N};

for(T& value : coll) { ... } for(index<1> idx : bnd) { ... }

for_each(begin(coll), end(coll), | for_each(begin(bnd), end(bnd),
[=](T& value) {...}); [=](index<1> idx) {...});

|

T& value

A different view on algorithms

Elemental algorithms Indexable algorithms

auto coll = std::vector<T>{N}; auto bnd = bounds<1>{N};

for(T& value : coll) { ... } for(index<1> idx : bnd) { ... }

for_each(begin(coll), end(coll), | for_each(begin(bnd), end(bnd),
[=](T& value) {...}); [=](index<1> idx) {...});

|

T& value

A different view on algorithms

Elemental algorithms Indexable algorithms

auto coll = std::vector<T>{N}; auto bnd = bounds<1>{N};

for(T& value : coll) { ... } for(index<1> idx : bnd) { ... }

for_each(begin(coll), end(coll), | for_each(begin(bnd), end(bnd),
[=](T& value) {...}); [=](index<1> idx) {...});

|

T& value

A different view on algorithms

Elemental algorithms Indexable algorithms

auto coll = std::vector<T>{N}; auto bnd = bounds<1>{N};

for(T& value : coll) { ... } for(index<1> idx : bnd) { ... }

for_each(begin(coll), end(coll), | for_each(begin(bnd), end(bnd),
[=](T& value) {...}); [=](index<1> idx) {...});

|

T& value

A different view on algorithms

Elemental algorithms Indexable algorithms

auto coll = std::vector<T>{N}; auto bnd = bounds<1>{N};

for(T& value : coll) { ... } for(index<1> idx : bnd) { ... }

for_each(begin(coll), end(coll), | for_each(begin(bnd), end(bnd),
[=](T& value) {...}); [=](index<1> idx) {...});

T& value

A different view on algorithms

Elemental algorithms Indexable algorithms

auto coll = std::vector<T>{N}; auto bnd = bounds<1>{N};

for(T& value : coll) { ... } for(index<1> idx : bnd) { ... }

for_each(begin(coll), end(coll), | for_each(begin(bnd), end(bnd),
[=](T& value) {...}); [=](index<1> idx) {...});

T& value index<1> idx

A different view on algorithms

Elemental algorithms Indexable algorithms

auto coll = std::vector<T>{N}; auto bnd = bounds<1>{N};

for(T& value : coll) { ... } for(index<1> idx : bnd) { ... }

for_each(begin(coll), end(coll), | for_each(begin(bnd), end(bnd),
[=](T& value) {...}); [=](index<1> idx) {...});

T& value index<1> idx

A different view on algorithms

Elemental algorithms Indexable algorithms

auto coll = std::vector<T>{N}; auto bnd = bounds<1>{N};

for(T& value : coll) { ... } for(index<1> idx : bnd) { ... }

for_each(begin(coll), end(coll), | for_each(begin(bnd), end(bnd),
[=](T& value) {...}); [=](index<1> idx) {...});

T& value index<1> idx

A different view on algorithms

Elemental algorithms Indexable algorithms

auto coll = std::vector<T>{N}; auto bnd = bounds<1>{N};

for(T& value : coll) { ... } for(index<1> idx : bnd) { ... }

for_each(begin(coll), end(coll), | for_each(begin(bnd), end(bnd),
[=](T& value) {...}); [=](index<1> idx) {...});

index<1ly> idx

T& value

A different view on algorithms

Elemental algorithms Indexable algorithms

auto coll = std::vector<T>{N}; auto bnd = bounds<1>{N};

for(T& value : coll) { ... } for(index<1> idx : bnd) { ... }

for_each(begin(coll), end(coll), | for_each(begin(bnd), end(bnd),
[=](T& value) {...}); [=](index<1> idx) {...});

T& value index<1> idx

Enabling index-based parallelism in C++

“Regular” STL + the multidimensional index

for_each(» [=1() {-.-1);

Enabling index-based parallelism in C++

“Regular” STL + the multidimensional index

for_each(» [=1() {-.-1);

C++ Extensions for Parallelism TS (“Parallel STL”) + the multidimensional index

Enabling index-based parallelism in C++

“Regular” STL + the multidimensional index

for_each(» [=1() {-.-1);

C++ Extensions for Parallelism TS (“Parallel STL”) + the multidimensional index
for_each(experimental::parallel::par _vec,

Enabling index-based parallelism in C++

“Regular” STL + the multidimensional index

for_each(» [=1() {-.-1);

C++ Extensions for Parallelism TS (“Parallel STL”) + the multidimensional index
for_each(experimental::parallel::par _vec,

, end(» [=1() {---1);

Enabling index-based parallelism in C++

“Regular” STL + the multidimensional index

for_each(» [=1() {-.-1);

C++ Extensions for Parallelism TS (“Parallel STL”) + the multidimensional index
for_each(experimental::parallel::par _vec,

, end(» [=1() {---1);

Enabling index-based parallelism in C++

“Regular” STL + the multidimensional index
for _each(begin(bnd), end(bnd), [=](index<2> idx) {...});

C++ Extensions for Parallelism TS (“Parallel STL”) + the multidimensional index
for _each(experimental: :parallel::par_vec,
begin(bnd), end(bnd), [=](index<2> idx) {...});

[NRRRERES

Enabling index-based parallelism in C++

“Regular” STL + the multidimensional index

for_each(» [=1() {-.-1);

C++ Extensions for Parallelism TS (“Parallel STL”) + the multidimensional index
for_each(experimental::parallel::par _vec,

» end(» [=1() {...1);
C++ AMP

parallel for_each(, [=]() restrict(amp) {...});

Enabling index-based parallelism in C++

“Regular” STL + the multidimensional index

for_each(» [=1() {-.-1);

C++ Extensions for Parallelism TS (“Parallel STL”) + the multidimensional index
for_each(experimental::parallel::par _vec,

, end(» [=1() {---1);

CUDA
~_global void kernel() {

kernel<<< >>>();

Enabling index-based parallelism in C++

“Regular” STL + the multidimensional index
for_each(begin(bnd), end(bnd), [=](index<2> idx) {...});

C++ Extensions for Parallelism TS (“Parallel STL”) + the multidimensional index
for _each(experimental: :parallel::par_vec,
begin(bnd), end(bnd), [=](index<2> idx) {...});

OpenCL
__kernel void kernel() {
auto row = get global id(@); auto col = get global id(1); ... }
clEnqueueNDRangeKernel (queue, kernel, 2, nullptr,
global work size, local work size, @, nullptr, nullptr);

Pointer semantics — valueness

Pointer semantics — valueness

auto vec = std::vector<int>(9001);

Pointer semantics — valueness

/

auto vec = std::vector<int>(9001); ---------

Pointer semantics — valueness

/ \

auto vec = std::vector<int>(90e1); IR
auto vec_copy = vec; B -
— /

Pointer semantics — valueness

auto vec = std::vector<int>(90e1); IR
auto vec_copy = vec; B -

Pointer semantics — valueness

auto vec = std::vector<int>(90e1); IR
auto vec_copy = vec; B -

auto ptr = new int[9001];

Pointer semantics — valueness

auto vec = std::vector<int>(90e1); IR
auto vec_copy = vec; B -

— . T
auto ptr = new int[9001];]

Pointer semantics — valueness

auto vec = std::vector<int>(90e1); IR
auto vec_copy = vec; B -

— . T
auto ptr = new int[9001];]
auto ptr_co = ptr;
ptr_ pY\p ’ /

Pointer semantics — valueness

auto vec = std::vector<int>(90e1); IR
auto vec_copy = vec; B -

auto ptr = new int[9001];]

auto ptr_copy = ptr;

Pointer semantics — valueness

auto
auto

auto

auto
auto

vec = std::vector<int>(9001);
vec_copy = vec;

7

av = array_view<int>{vec_copy};

ptr = new int[9001];
ptr_copy = ptr;

Pointer semantics — valueness

auto
auto

auto
auto

auto
auto

vec = std::vector<int>(9001);
vec_copy = vec;

av = array view<int>{vec copy};
av_copy = av,;

ptr = new int[9001];
ptr_copy = ptr;

Pointer semantics — valueness

auto vec = std::vector<int>(9001);

auto
auto

auto
auto

av = array view<int>{vec copy};
av_copy = av,;

ptr = new int[9001];
ptr_copy = ptr;

Pointer semantics — constness

Pointer semantics — constness

Constant view

Pointer semantics — constness

Constant view

const array view<int> view ~ 1int* const ptr

Pointer semantics — constness

Constant view
const array view<int> view ~ 1int* const ptr
view[0] = 42; V

Pointer semantics — constness

Constant view
const array view<int> view ~ 1int* const ptr
view[0] = 42; V

—view—=anotherview; X

Pointer semantics — constness

Constant view
const array view<int> view ~ 1int* const ptr
view[0] = 42; V

—view—=anotherview; X

View over constant data

Pointer semantics — constness

Constant view
const array view<int> view ~ 1int* const ptr
view[0] = 42; V
—view=anotherview; X
View over constant data

array view<const int> view ~ const int* ptr

Pointer semantics — constness

Constant view
const array view<int> view
view[0] = 42; V
—view=anotherview; X
View over constant data

array view<const int> view

—viewfe}=-42; X

~S

~

int* const ptr

const int* ptr

Pointer semantics — constness

Constant view
const array view<int> view
view[0] = 42; V
—view=anotherview; X
View over constant data
array view<const int> view
—viewfe]l=42; X

view = another_view; v

~S

~

int* const ptr

const int* ptr

Other operations — slice and section

Other operations — slice and section

auto view = array view<int, 2>{{5, 5}, data};

Other operations — slice and section

auto view = array view<int, 2>{{5, 5}, data};
auto slice = view[2];

Other operations — slice and section

auto view = array view<int, 2>{{5, 5}, data};
auto slice = view[2];

\ HE NN

Other operations — slice and section

auto view = array view<int, 2>{{5, 5}, data};
array view<int, 1> slice = view[2];

\ HE NN

Other operations — slice and section

auto view = array view<int, 2>{{5, 5}, data};
array view<int, 1> slice = view[2];

N T

auto section = view.section({1, 2}, {3, 2});

Other operations — slice and section

auto view = array view<int, 2>{{5, 5}, data};
array view<int, 1> slice = view[2];

auto section = view.section({1, 2}, {3, 2});

Other operations — slice and section

auto view = array view<int, 2>{{5, 5}, data};
array view<int, 1> slice = view[2];

strided array view<int, 2> section = view.section({1, 2}, {3, 2});

Novel types

* bounds and index — defining and addressing multidimensional
discrete spaces.

* array_view and strided array view — multidimensional views on
contiguous or strided memory ranges.

* bounds_iterator — constant random access iterator over an imaginary
space imposed by a bounds object, with an index as its value type.

Towards the standardization

e N3851 — the introductory paper

* Presented to LEWG at the Issaguah meeting (February 2014)
* Consensus to prepare the wording for Arrays TS

* N3976 —the first formal wording paper
* Presented to LEWG at the Rapperswil meeting (June 2014)
* Some fixes and improvements in the wording requested
* Consensus to forward the wording to Fundamentals v2 TS

e N4087 — the latest formal wording paper

* To be presented to LWG at the Urbana-Champaign meeting (November 2014)
* Hoping to have it accepted for Fundamentals v2 TS ©

Proposed extensions

e array_view with a fixed size, driven by increased type safety and
potential optimization opportunities:
fixed array view<int, 1, 2, 4>{ ptr }
= array_view<int, 3>{ {1, 2, 4}, ptr }

* Explicit column-major/row-major switch on array view, driven by the
desire for Fortran interop

* Parameterized traversal order for bounds_iterator — column-major,
Morton order, Hilbert curve, ...

Our proof-of-concept is available at:

http://parallelstl.codeplex.com

#include <experimental/array_view>

http://parallelstl.codeplex.com/

Our proof-of-concept is available at:

http://parallelstl.codeplex.com

#include <experimental/array_view>

include/experimental/impl/array_view.h
include/experimental/impl/coordinate.h

http://parallelstl.codeplex.com/

Q&A

Backup

bounds and index

index<N> = N-dimensional vector

bounds<N> = N-dim axis-aligned rectangle with the minimum point at 0
= maximum point of such rectangle

B 5

bounds and index — basic usage

auto bnd = bounds<3>{ 3, 1, 4 };
auto idx = index<3>{ 2, -1, 0 };
bounds<3> bnd2 = bnd + idx; // bnd2 is { 5, 0, 4 }
bnd2 -= idx; // bnd2 is { 3, 1, 4 }

auto vl = idx[9]; // vl is 2

bnd.contains(idx); // -> false
bnd.size(); // ->3 *1* 4 =12

bounds and index — difference in arithmetic

index<N> () bounds<N> = bounds<N>
+

bounds<N> index<N>
bounds<N> (© index<N> = bounds<N> index<N> () index<N> = index<N>
+ - 4= -= + 4= - -=

bounds<N> () arithmetic type - bounds<N>
*/
*: /:

arithmetic type O bounds<N> - bounds<N>

*

index<N> (© arithmetic type - index<N>
*/
*: /:

arithmetic type (index<N> = index<N>

*

O index<N> = index<N>
+ -_—
++ —— (for N =1, and also post- variants)

bounds and index — difference in functionality

Only for bounds<N>:

constexpr size type size() const noexcept;
bool contains(const index<rank>& idx) const noexcept;

bounds iterator<rank> begin() const noexcept;
bounds iterator<rank> end() const noexcept;

bounds iterator

Constant iterator over bounds<N> returning index<N>
auto bnd = bounds<2>{4, 10};

bounds iterator<2> it = begin(bnd);
index<2> idx = *it; // idx is {0, 0}

++1t;
idx = *it; // idx is {0, 1}

it += 10;
idx = *it; // idx is {1, 1}

bounds iterator — linearization

Since bounds_iterator provides a traversal over Rank-dimensional discrete space
defined by bounds, it is necessary to linearize the space.

begin()

e

begin() end() - 1
end() -1

array_view and strided array view

e array_view — requires contiguous regular data (e.g. int data[4][1][8]).
» strided array view — requires regular data

The only difference: contiguity.

e contiguous view allows for cache-oblivious algorithms (performance).
» contiguous view allows for .data() function (compatibility).

* non-contiguous view allows for more flexibility.

Guidance: use array_view when you can (reflected in constructors).

strided array view as a transposed view

int cm_array[3 * 5] = {
1, 4, 7, 10, 13,
2, 5, 8, 11, 14,
3, 6, 9, 12, 15
}s
auto cm_sav
= strided array view<int, 2>{ { 5, 3 }, { 1, 5 }, cm_array };

assert((cm_sav[{0, 0}] == 1));
assert((cm_sav[{0, 1}] == 2));
assert((cm_sav[{1, 0}] == 4));
assert((cm_sav[{4, 2}] == 15));

av and sav implicit conversions

array_view<T, N> - array_view<const T, N>

array_view<T, N> - strided_array view<T, N>

array _view<T, N> - strided_array view<const T, N>

strided _array view<T, N> = strided array view<const T, N>

Relations between (s)av and other types

contiguous
containers conversion
observers construction
construction
pointer + size T array_view
observers
. conversion
construction section

strided_array_view

