
Viewing the world through
array-shaped glasses

Łukasz Mendakiewicz

Software Engineer, Microsoft

CppCon 2014

9/8/2014

Contiguity of data matters

Contiguity of data matters

http://www.aristeia.com/TalkNotes/ACCU2011_CPUCaches.pdf

Contiguity of data matters

http://www.aristeia.com/TalkNotes/ACCU2011_CPUCaches.pdf

Contiguity of data matters

http://www.aristeia.com/TalkNotes/ACCU2011_CPUCaches.pdf

http://channel9.msdn.com/Events/Build/2014/2-661

Contiguity of data matters

http://www.aristeia.com/TalkNotes/ACCU2011_CPUCaches.pdf

http://channel9.msdn.com/Events/Build/2014/2-661

Contiguity of data matters

http://www.aristeia.com/TalkNotes/ACCU2011_CPUCaches.pdf

http://channel9.msdn.com/Events/Build/2014/2-661

http://channel9.msdn.com/Events/GoingNative/GoingNative-2012/Keynote-Bjarne-Stroustrup-Cpp11-Style

Contiguity of data matters

http://www.aristeia.com/TalkNotes/ACCU2011_CPUCaches.pdf

http://channel9.msdn.com/Events/Build/2014/2-661

http://channel9.msdn.com/Events/GoingNative/GoingNative-2012/Keynote-Bjarne-Stroustrup-Cpp11-Style

Contiguity of data matters

http://www.aristeia.com/TalkNotes/ACCU2011_CPUCaches.pdf

http://channel9.msdn.com/Events/Build/2014/2-661

http://channel9.msdn.com/Events/GoingNative/GoingNative-2012/Keynote-Bjarne-Stroustrup-Cpp11-Style

Disclaimer: Always check
what is the right choice for
your specific application.

Defining contiguous data in C++

...

0 1 2 3 4 5 6 7 8 9 10 11 12 … 999

Defining contiguous data in C++

int old_skool_array[1000];

...

0 1 2 3 4 5 6 7 8 9 10 11 12 … 999

Defining contiguous data in C++

int old_skool_array[1000];

std::array<int, 1000> std_array;

...

0 1 2 3 4 5 6 7 8 9 10 11 12 … 999

Defining contiguous data in C++

int old_skool_array[1000];

std::array<int, 1000> std_array;

std::vector<int> vec(1000);

...

0 1 2 3 4 5 6 7 8 9 10 11 12 … 999

Defining contiguous data in C++

int old_skool_array[1000];

std::array<int, 1000> std_array;

std::vector<int> vec(1000);

std::deque<int> deq(1000);

...

0 1 2 3 4 5 6 7 8 9 10 11 12 … 999

Defining contiguous data in C++

int old_skool_array[1000];

std::array<int, 1000> std_array;

std::vector<int> vec(1000);

std::deque<int> deq(1000);

...

0 1 2 3 4 5 6 7 8 9 10 11 12 … 999

Defining contiguous data in C++

int old_skool_array[1000];

std::array<int, 1000> std_array;

std::vector<int> vec(1000);

std::deque<int> deq(1000);

std::dynarray<int> dyn(1000); // Array Extensions TS

...

0 1 2 3 4 5 6 7 8 9 10 11 12 … 999

Defining contiguous data in C++

int old_skool_array[1000];

std::array<int, 1000> std_array;

std::vector<int> vec(1000);

std::deque<int> deq(1000);

std::dynarray<int> dyn(1000); // Array Extensions TS

Other libraries (BLAS? Bitmaps?)

...

0 1 2 3 4 5 6 7 8 9 10 11 12 … 999

Defining contiguous data in C++

int old_skool_array[1000];

std::array<int, 1000> std_array;

std::vector<int> vec(1000);

std::deque<int> deq(1000);

std::dynarray<int> dyn(1000); // Array Extensions TS

Other libraries (BLAS? Bitmaps?)

Homegrown types

...

0 1 2 3 4 5 6 7 8 9 10 11 12 … 999

Accepting contiguous data in C++

template <typename CollectionType>
int generic(CollectionType& collection) { ... }

Accepting contiguous data in C++

template <typename CollectionType>
int generic(CollectionType& collection) { ... }

Too generic?

Accepting contiguous data in C++
template <typename T>
concept bool Collection = ...;

template <Collection CollectionType>
int generic(CollectionType& collection) { ... }

Accepting contiguous data in C++
template <typename T>
concept bool Collection = ...; Not there yet…

template <Collection CollectionType>
int generic(CollectionType& collection) { ... }

Accepting contiguous data in C++

template <typename Collection,
typename = std::enable_if_t<std::is_convertible_v<size_t,

decltype(std::declval<Collection>().size())>>
&& ...

>
int generic(Collection& data) { ... }

Accepting contiguous data in C++

template <typename Collection,
typename = std::enable_if_t<std::is_convertible_v<size_t,

decltype(std::declval<Collection>().size())>>
&& ...

>
int generic(Collection& data) { ... }

generic(vec);

Accepting contiguous data in C++

template <typename Collection,
typename = std::enable_if_t<std::is_convertible_v<size_t,

decltype(std::declval<Collection>().size())>>
&& ...

>
int generic(Collection& data) { ... }

generic(vec);

Accepting contiguous data in C++

template <typename Collection,
typename = std::enable_if_t<std::is_convertible_v<size_t,

decltype(std::declval<Collection>().size())>>
&& ...

>
int generic(Collection& data) { ... }

generic(vec); generic(std_array);

Accepting contiguous data in C++

template <typename Collection,
typename = std::enable_if_t<std::is_convertible_v<size_t,

decltype(std::declval<Collection>().size())>>
&& ...

>
int generic(Collection& data) { ... }

generic(vec); generic(std_array);

Accepting contiguous data in C++

template <typename Collection,
typename = std::enable_if_t<std::is_convertible_v<size_t,

decltype(std::declval<Collection>().size())>>
&& ...

>
int generic(Collection& data) { ... }

generic(vec); generic(std_array); generic(old_skool_array);

Accepting contiguous data in C++

template <typename Collection,
typename = std::enable_if_t<std::is_convertible_v<size_t,

decltype(std::declval<Collection>().size())>>
&& ...

>
int generic(Collection& data) { ... }

generic(vec); generic(std_array); generic(old_skool_array);

Accepting contiguous data in C

int raw(int* ptr, size_t size) { ... }

Accepting contiguous data in C

int raw(int* ptr, size_t size) { ... }

raw(vec.data(), vec.size());

Accepting contiguous data in C

int raw(int* ptr, size_t size) { ... }

raw(vec.data(), vec.size());

Accepting contiguous data in C

int raw(int* ptr, size_t size) { ... }

raw(vec.data(), vec.size());

raw(old_skool_array, NUM_ELEMENTS(old_skool_array));

Accepting contiguous data in C

int raw(int* ptr, size_t size) { ... }

raw(vec.data(), vec.size());

raw(old_skool_array, NUM_ELEMENTS(old_skool_array));

Accepting contiguous data in C

int raw(int* ptr, size_t size) { ... }

raw(vec.data(), vec.size());

raw(old_skool_array, NUM_ELEMENTS(old_skool_array));

int raw(int* ptr, size_t width, size_t height) { ... }

Accepting contiguous data in C

int raw(int* ptr, size_t size) { ... }

raw(vec.data(), vec.size());

raw(old_skool_array, NUM_ELEMENTS(old_skool_array));

int raw(int* ptr, size_t width, size_t height) { ... }

int raw(int* ptr, size_t width, size_t height, size_t depth) {...}

The alternative: array_view interface

int compute(array_view<int> data) { ... }

The alternative: array_view interface

int compute(array_view<int> data) { ... }

auto data = std::vector<int>(1000);

The alternative: array_view interface

int compute(array_view<int> data) { ... }

auto data = std::vector<int>(1000);

auto av = array_view<int>{data};

The alternative: array_view interface

int compute(array_view<int> data) { ... }

auto data = std::vector<int>(1000);

auto av = array_view<int>{data};
compute(av);

The alternative: array_view interface

int compute(array_view<int> data) { ... }

auto data = std::vector<int>(1000);

auto av = array_view<int>{data};
compute(av);

compute(data);

The alternative: array_view interface

int compute(array_view<int> data) { ... }

auto av = array_view<int>{data};
compute(av);

compute(data);

int data[1000];

The alternative: array_view interface

int compute(array_view<int> data) { ... }

auto av = array_view<int>{data};
compute(av);

compute(data);

int data[1000];
auto data = std::array<int, 1000>{};

This _view thing sounds familiar...

Where x is:

string_view{x};
std::string
char*
...

array_view<T>{x};
std::vector<T>
T*
...

But there is more (dimensions)!

int compute(int* ptr, size_t size) { ... }

int compute(int* ptr, size_t width, size_t height) { ... }

But there is more (dimensions)!

int compute(array_view<int> data) { ... }

int compute(int* ptr, size_t width, size_t height) { ... }

But there is more (dimensions)!

int compute(array_view<int> data) { ... }

int compute(array_view<int, 2> data) { ... }

But there is more (dimensions)!

int compute(array_view<int> data) { ... }

int compute(array_view<int, 2> data) { ... }

int compute(array_view<int, 3> data) { ... }

But there is more (dimensions)!

int compute(array_view<int> data) { ... }

int compute(array_view<int, 2> data) { ... }

int compute(array_view<int, 3> data) { ... }

auto data = std::vector<int>(1000);

auto av_1 = array_view<int>{data};
auto av_2 = array_view<int, 2>{{20, 50}, data};

compute(av_1);
compute(av_2);

But there is more (dimensions)!

int compute(array_view<int> data) { ... }

int compute(array_view<int, 2> data) { ... }

int compute(array_view<int, 3> data) { ... }

auto data = std::vector<int>(1000);

auto av_1 = array_view<int>{data};
auto av_2 = array_view<int, 2>{{20, 50}, data};

compute(av_1);
compute(av_2);

Lifting the linear memory into a logically
multidimensional representation.

Using the array_view

in := [uint8_t]height,width out := [uint8_t]height,width

out := (∗ in) ⑀ 150
-1 0 +1
-2 0 +2
-1 0 +1

Using the array_view

void compute(uint8_t* in, uint8_t* out,
size_t width, size_t height) {

for (size_t row = 0; row < height; ++row)
for (size_t col = 0; col < width; ++col) {
if (row == 0 || row == height - 1
|| col == 0 || col == width - 1) {
out[row * width + col] = 0;

} else {
int v =
- 1 * in[(row - 1) * width + col - 1]
+ 1 * in[(row - 1) * width + col + 1]
- 2 * in[row * width + col - 1]
+ 2 * in[row * width + col + 1]
- 1 * in[(row + 1) * width + col - 1]
+ 2 * in[(row + 1) * width + col + 1];
out[row * width + col] =
v > 150 ? 255 : 0;

} } }

Using the array_view

void compute(uint8_t* in, uint8_t* out,
size_t width, size_t height) {

for (size_t row = 0; row < height; ++row)
for (size_t col = 0; col < width; ++col) {
if (row == 0 || row == height - 1
|| col == 0 || col == width - 1) {
out[row * width + col] = 0;

} else {
int v =
- 1 * in[(row - 1) * width + col - 1]
+ 1 * in[(row - 1) * width + col + 1]
- 2 * in[row * width + col - 1]
+ 2 * in[row * width + col + 1]
- 1 * in[(row + 1) * width + col - 1]
+ 2 * in[(row + 1) * width + col + 1];
out[row * width + col] =
v > 150 ? 255 : 0;

} } }

Using the array_view

void compute(uint8_t* in, uint8_t* out,
size_t width, size_t height) {

for (size_t row = 0; row < height; ++row)
for (size_t col = 0; col < width; ++col) {
if (row == 0 || row == height - 1
|| col == 0 || col == width - 1) {
out[row * width + col] = 0;

} else {
int v =
- 1 * in[(row - 1) * width + col - 1]
+ 1 * in[(row - 1) * width + col + 1]
- 2 * in[row * width + col - 1]
+ 2 * in[row * width + col + 1]
- 1 * in[(row + 1) * width + col - 1]
+ 2 * in[(row + 1) * width + col + 1];
out[row * width + col] =
v > 150 ? 255 : 0;

} } }

Nested for loops to iterate over
a single concept (a 2D space).

Using the array_view

void compute(uint8_t* in, uint8_t* out,
size_t width, size_t height) {

for (size_t row = 0; row < height; ++row)
for (size_t col = 0; col < width; ++col) {
if (row == 0 || row == height - 1
|| col == 0 || col == width - 1) {
out[row * width + col] = 0;

} else {
int v =
- 1 * in[(row - 1) * width + col - 1]
+ 1 * in[(row - 1) * width + col + 1]
- 2 * in[row * width + col - 1]
+ 2 * in[row * width + col + 1]
- 1 * in[(row + 1) * width + col - 1]
+ 2 * in[(row + 1) * width + col + 1];
out[row * width + col] =
v > 150 ? 255 : 0;

} } }

Nested for loops to iterate over
a single concept (a 2D space).

Using the array_view

void compute(uint8_t* in, uint8_t* out,
size_t width, size_t height) {

for (size_t row = 0; row < height; ++row)
for (size_t col = 0; col < width; ++col) {
if (row == 0 || row == height - 1
|| col == 0 || col == width - 1) {
out[row * width + col] = 0;

} else {
int v =
- 1 * in[(row - 1) * width + col - 1]
+ 1 * in[(row - 1) * width + col + 1]
- 2 * in[row * width + col - 1]
+ 2 * in[row * width + col + 1]
- 1 * in[(row + 1) * width + col - 1]
+ 2 * in[(row + 1) * width + col + 1];
out[row * width + col] =
v > 150 ? 255 : 0;

} } }

Nested for loops to iterate over
a single concept (a 2D space).

Error-prone index calculation.

Using the array_view

void compute(array_view<const uint8_t, 2> in,
array_view<uint8_t, 2> out) {

auto N = index<2>{-1, 0}; auto S = index<2>{1,0};
auto W = index<2>{ 0,-1}; auto E = index<2>{0,1};

for (index<2> idx : in.bounds()) {
if (idx[0] == 0 || idx[0] == in.bounds()[0] - 1
|| idx[1] == 0 || idx[1] == in.bounds()[1] - 1) {
out[idx] = 0;

} else {
int v =
- 1 * in[idx + W + N]
+ 1 * in[idx + E + N]
- 2 * in[idx + W]
+ 2 * in[idx + E]
- 1 * in[idx + W + S]
+ 2 * in[idx + S + E];
out[idx] =
v > 150 ? 255 : 0;

} } }

void compute(uint8_t* in, uint8_t* out,
size_t width, size_t height) {

for (size_t row = 0; row < height; ++row)
for (size_t col = 0; col < width; ++col) {
if (row == 0 || row == height - 1
|| col == 0 || col == width - 1) {
out[row * width + col] = 0;

} else {
int v =
- 1 * in[(row - 1) * width + col - 1]
+ 1 * in[(row - 1) * width + col + 1]
- 2 * in[row * width + col - 1]
+ 2 * in[row * width + col + 1]
- 1 * in[(row + 1) * width + col - 1]
+ 2 * in[(row + 1) * width + col + 1];
out[row * width + col] =
v > 150 ? 255 : 0;

} } }

Using the array_view

void compute(array_view<const uint8_t, 2> in,
array_view<uint8_t, 2> out) {

auto N = index<2>{-1, 0}; auto S = index<2>{1,0};
auto W = index<2>{ 0,-1}; auto E = index<2>{0,1};

for (index<2> idx : in.bounds()) {
if (idx[0] == 0 || idx[0] == in.bounds()[0] - 1
|| idx[1] == 0 || idx[1] == in.bounds()[1] - 1) {
out[idx] = 0;

} else {
int v =
- 1 * in[idx + W + N]
+ 1 * in[idx + E + N]
- 2 * in[idx + W]
+ 2 * in[idx + E]
- 1 * in[idx + W + S]
+ 2 * in[idx + S + E];
out[idx] =
v > 150 ? 255 : 0;

} } }

void compute(uint8_t* in, uint8_t* out,
size_t width, size_t height) {

for (size_t row = 0; row < height; ++row)
for (size_t col = 0; col < width; ++col) {
if (row == 0 || row == height - 1
|| col == 0 || col == width - 1) {
out[row * width + col] = 0;

} else {
int v =
- 1 * in[(row - 1) * width + col - 1]
+ 1 * in[(row - 1) * width + col + 1]
- 2 * in[row * width + col - 1]
+ 2 * in[row * width + col + 1]
- 1 * in[(row + 1) * width + col - 1]
+ 2 * in[(row + 1) * width + col + 1];
out[row * width + col] =
v > 150 ? 255 : 0;

} } }

Using the array_view

void compute(array_view<const uint8_t, 2> in,
array_view<uint8_t, 2> out) {

auto N = index<2>{-1, 0}; auto S = index<2>{1,0};
auto W = index<2>{ 0,-1}; auto E = index<2>{0,1};

for (index<2> idx : in.bounds()) {
if (idx[0] == 0 || idx[0] == in.bounds()[0] - 1
|| idx[1] == 0 || idx[1] == in.bounds()[1] - 1) {
out[idx] = 0;

} else {
int v =
- 1 * in[idx + W + N]
+ 1 * in[idx + E + N]
- 2 * in[idx + W]
+ 2 * in[idx + E]
- 1 * in[idx + W + S]
+ 2 * in[idx + S + E];
out[idx] =
v > 150 ? 255 : 0;

} } }

void compute(uint8_t* in, uint8_t* out,
size_t width, size_t height) {

for (size_t row = 0; row < height; ++row)
for (size_t col = 0; col < width; ++col) {
if (row == 0 || row == height - 1
|| col == 0 || col == width - 1) {
out[row * width + col] = 0;

} else {
int v =
- 1 * in[(row - 1) * width + col - 1]
+ 1 * in[(row - 1) * width + col + 1]
- 2 * in[row * width + col - 1]
+ 2 * in[row * width + col + 1]
- 1 * in[(row + 1) * width + col - 1]
+ 2 * in[(row + 1) * width + col + 1];
out[row * width + col] =
v > 150 ? 255 : 0;

} } }

N

S

E
W

Using the array_view

void compute(array_view<const uint8_t, 2> in,
array_view<uint8_t, 2> out) {

auto N = index<2>{-1, 0}; auto S = index<2>{1,0};
auto W = index<2>{ 0,-1}; auto E = index<2>{0,1};

for (index<2> idx : in.bounds()) {
if (idx[0] == 0 || idx[0] == in.bounds()[0] - 1
|| idx[1] == 0 || idx[1] == in.bounds()[1] - 1) {
out[idx] = 0;

} else {
int v =
- 1 * in[idx + W + N]
+ 1 * in[idx + E + N]
- 2 * in[idx + W]
+ 2 * in[idx + E]
- 1 * in[idx + W + S]
+ 2 * in[idx + S + E];
out[idx] =
v > 150 ? 255 : 0;

} } }

void compute(uint8_t* in, uint8_t* out,
size_t width, size_t height) {

for (size_t row = 0; row < height; ++row)
for (size_t col = 0; col < width; ++col) {
if (row == 0 || row == height - 1
|| col == 0 || col == width - 1) {
out[row * width + col] = 0;

} else {
int v =
- 1 * in[(row - 1) * width + col - 1]
+ 1 * in[(row - 1) * width + col + 1]
- 2 * in[row * width + col - 1]
+ 2 * in[row * width + col + 1]
- 1 * in[(row + 1) * width + col - 1]
+ 2 * in[(row + 1) * width + col + 1];
out[row * width + col] =
v > 150 ? 255 : 0;

} } }

N

S

E
W

Using the array_view

void compute(array_view<const uint8_t, 2> in,
array_view<uint8_t, 2> out) {

auto N = index<2>{-1, 0}; auto S = index<2>{1,0};
auto W = index<2>{ 0,-1}; auto E = index<2>{0,1};

for (index<2> idx : in.bounds()) {
if (idx[0] == 0 || idx[0] == in.bounds()[0] - 1
|| idx[1] == 0 || idx[1] == in.bounds()[1] - 1) {
out[idx] = 0;

} else {
int v =
- 1 * in[idx + W + N]
+ 1 * in[idx + E + N]
- 2 * in[idx + W]
+ 2 * in[idx + E]
- 1 * in[idx + W + S]
+ 2 * in[idx + S + E];
out[idx] =
v > 150 ? 255 : 0;

} } }

void compute(uint8_t* in, uint8_t* out,
size_t width, size_t height) {

for (size_t row = 0; row < height; ++row)
for (size_t col = 0; col < width; ++col) {
if (row == 0 || row == height - 1
|| col == 0 || col == width - 1) {
out[row * width + col] = 0;

} else {
int v =
- 1 * in[(row - 1) * width + col - 1]
+ 1 * in[(row - 1) * width + col + 1]
- 2 * in[row * width + col - 1]
+ 2 * in[row * width + col + 1]
- 1 * in[(row + 1) * width + col - 1]
+ 2 * in[(row + 1) * width + col + 1];
out[row * width + col] =
v > 150 ? 255 : 0;

} } }

N

S

E
W

Using the array_view

void compute(array_view<const uint8_t, 2> in,
array_view<uint8_t, 2> out) {

auto N = index<2>{-1, 0}; auto S = index<2>{1,0};
auto W = index<2>{ 0,-1}; auto E = index<2>{0,1};

for (index<2> idx : in.bounds()) {
if (idx[0] == 0 || idx[0] == in.bounds()[0] - 1
|| idx[1] == 0 || idx[1] == in.bounds()[1] - 1) {
out[idx] = 0;

} else {
int v =
- 1 * in[idx + W + N]
+ 1 * in[idx + E + N]
- 2 * in[idx + W]
+ 2 * in[idx + E]
- 1 * in[idx + W + S]
+ 2 * in[idx + S + E];
out[idx] =
v > 150 ? 255 : 0;

} } }

void compute(uint8_t* in, uint8_t* out,
size_t width, size_t height) {

for (size_t row = 0; row < height; ++row)
for (size_t col = 0; col < width; ++col) {
if (row == 0 || row == height - 1
|| col == 0 || col == width - 1) {
out[row * width + col] = 0;

} else {
int v =
- 1 * in[(row - 1) * width + col - 1]
+ 1 * in[(row - 1) * width + col + 1]
- 2 * in[row * width + col - 1]
+ 2 * in[row * width + col + 1]
- 1 * in[(row + 1) * width + col - 1]
+ 2 * in[(row + 1) * width + col + 1];
out[row * width + col] =
v > 150 ? 255 : 0;

} } }

N

S

E
W

Using the array_view

void compute(array_view<const uint8_t, 2> in,
array_view<uint8_t, 2> out) {

auto N = index<2>{-1, 0}; auto S = index<2>{1,0};
auto W = index<2>{ 0,-1}; auto E = index<2>{0,1};

for (index<2> idx : in.bounds()) {
if (idx[0] == 0 || idx[0] == in.bounds()[0] - 1
|| idx[1] == 0 || idx[1] == in.bounds()[1] - 1) {
out[idx] = 0;

} else {
int v =
- 1 * in[idx + W + N]
+ 1 * in[idx + E + N]
- 2 * in[idx + W]
+ 2 * in[idx + E]
- 1 * in[idx + W + S]
+ 2 * in[idx + S + E];
out[idx] =
v > 150 ? 255 : 0;

} } }

void compute(uint8_t* in, uint8_t* out,
size_t width, size_t height) {

for (size_t row = 0; row < height; ++row)
for (size_t col = 0; col < width; ++col) {
if (row == 0 || row == height - 1
|| col == 0 || col == width - 1) {
out[row * width + col] = 0;

} else {
int v =
- 1 * in[(row - 1) * width + col - 1]
+ 1 * in[(row - 1) * width + col + 1]
- 2 * in[row * width + col - 1]
+ 2 * in[row * width + col + 1]
- 1 * in[(row + 1) * width + col - 1]
+ 2 * in[(row + 1) * width + col + 1];
out[row * width + col] =
v > 150 ? 255 : 0;

} } }

N

S

E
W

Using the array_view

void compute(array_view<const uint8_t, 2> in,
array_view<uint8_t, 2> out) {

auto N = index<2>{-1, 0}; auto S = index<2>{1,0};
auto W = index<2>{ 0,-1}; auto E = index<2>{0,1};

for (index<2> idx : in.bounds()) {
if (idx[0] == 0 || idx[0] == in.bounds()[0] - 1
|| idx[1] == 0 || idx[1] == in.bounds()[1] - 1) {
out[idx] = 0;

} else {
int v =
- 1 * in[idx + W + N]
+ 1 * in[idx + E + N]
- 2 * in[idx + W]
+ 2 * in[idx + E]
- 1 * in[idx + W + S]
+ 2 * in[idx + S + E];
out[idx] =
v > 150 ? 255 : 0;

} } }

void compute(uint8_t* in, uint8_t* out,
size_t width, size_t height) {

for (size_t row = 0; row < height; ++row)
for (size_t col = 0; col < width; ++col) {
if (row == 0 || row == height - 1
|| col == 0 || col == width - 1) {
out[row * width + col] = 0;

} else {
int v =
- 1 * in[(row - 1) * width + col - 1]
+ 1 * in[(row - 1) * width + col + 1]
- 2 * in[row * width + col - 1]
+ 2 * in[row * width + col + 1]
- 1 * in[(row + 1) * width + col - 1]
+ 2 * in[(row + 1) * width + col + 1];
out[row * width + col] =
v > 150 ? 255 : 0;

} } }

N

S

E
W

A different view on algorithms

Elemental algorithms Indexable algorithms

auto coll = std::vector<T>{N};

for(T& value : coll) { ... }

for_each(begin(coll), end(coll),

[=](T& value) {...});

auto bnd = bounds<1>{N};

for(index<1> idx : bnd) { ... }

for_each(begin(bnd), end(bnd),

[=](index<1> idx) {...});

A different view on algorithms

Elemental algorithms Indexable algorithms

auto coll = std::vector<T>{N};

for(T& value : coll) { ... }

for_each(begin(coll), end(coll),

[=](T& value) {...});

auto bnd = bounds<1>{N};

for(index<1> idx : bnd) { ... }

for_each(begin(bnd), end(bnd),

[=](index<1> idx) {...});

T T T T T T

A different view on algorithms

Elemental algorithms Indexable algorithms

auto coll = std::vector<T>{N};

for(T& value : coll) { ... }

for_each(begin(coll), end(coll),

[=](T& value) {...});

auto bnd = bounds<1>{N};

for(index<1> idx : bnd) { ... }

for_each(begin(bnd), end(bnd),

[=](index<1> idx) {...});

T T T T T T

T& value

A different view on algorithms

Elemental algorithms Indexable algorithms

auto coll = std::vector<T>{N};

for(T& value : coll) { ... }

for_each(begin(coll), end(coll),

[=](T& value) {...});

auto bnd = bounds<1>{N};

for(index<1> idx : bnd) { ... }

for_each(begin(bnd), end(bnd),

[=](index<1> idx) {...});

T T T T T T

T& value

A different view on algorithms

Elemental algorithms Indexable algorithms

auto coll = std::vector<T>{N};

for(T& value : coll) { ... }

for_each(begin(coll), end(coll),

[=](T& value) {...});

auto bnd = bounds<1>{N};

for(index<1> idx : bnd) { ... }

for_each(begin(bnd), end(bnd),

[=](index<1> idx) {...});

T T T T T T

T& value

A different view on algorithms

Elemental algorithms Indexable algorithms

auto coll = std::vector<T>{N};

for(T& value : coll) { ... }

for_each(begin(coll), end(coll),

[=](T& value) {...});

auto bnd = bounds<1>{N};

for(index<1> idx : bnd) { ... }

for_each(begin(bnd), end(bnd),

[=](index<1> idx) {...});

T T T T T T

T& value

…

…

A different view on algorithms

Elemental algorithms Indexable algorithms

auto coll = std::vector<T>{N};

for(T& value : coll) { ... }

for_each(begin(coll), end(coll),

[=](T& value) {...});

auto bnd = bounds<1>{N};

for(index<1> idx : bnd) { ... }

for_each(begin(bnd), end(bnd),

[=](index<1> idx) {...});

T T T T T T

T& value

…

…

0 1 2 3 4 5

A different view on algorithms

Elemental algorithms Indexable algorithms

auto coll = std::vector<T>{N};

for(T& value : coll) { ... }

for_each(begin(coll), end(coll),

[=](T& value) {...});

auto bnd = bounds<1>{N};

for(index<1> idx : bnd) { ... }

for_each(begin(bnd), end(bnd),

[=](index<1> idx) {...});

T T T T T T

T& value

…

…

0 1 2 3 4 5

index<1> idx

A different view on algorithms

Elemental algorithms Indexable algorithms

auto coll = std::vector<T>{N};

for(T& value : coll) { ... }

for_each(begin(coll), end(coll),

[=](T& value) {...});

auto bnd = bounds<1>{N};

for(index<1> idx : bnd) { ... }

for_each(begin(bnd), end(bnd),

[=](index<1> idx) {...});

T T T T T T

T& value

…

…

0 1 2 3 4 5

index<1> idx

A different view on algorithms

Elemental algorithms Indexable algorithms

auto coll = std::vector<T>{N};

for(T& value : coll) { ... }

for_each(begin(coll), end(coll),

[=](T& value) {...});

auto bnd = bounds<1>{N};

for(index<1> idx : bnd) { ... }

for_each(begin(bnd), end(bnd),

[=](index<1> idx) {...});

T T T T T T

T& value

…

…

0 1 2 3 4 5

T T T T T T

index<1> idx

A different view on algorithms

Elemental algorithms Indexable algorithms

auto coll = std::vector<T>{N};

for(T& value : coll) { ... }

for_each(begin(coll), end(coll),

[=](T& value) {...});

auto bnd = bounds<1>{N};

for(index<1> idx : bnd) { ... }

for_each(begin(bnd), end(bnd),

[=](index<1> idx) {...});

T T T T T T

T& value

…

…

0 1 2 3 4 5

T T T T T T

index<1> idx

A different view on algorithms

Elemental algorithms Indexable algorithms

auto coll = std::vector<T>{N};

for(T& value : coll) { ... }

for_each(begin(coll), end(coll),

[=](T& value) {...});

auto bnd = bounds<1>{N};

for(index<1> idx : bnd) { ... }

for_each(begin(bnd), end(bnd),

[=](index<1> idx) {...});

T T T T T T

T& value

…

…

0 1 2 3 4 5

T T T T T T

index<1> idx

Enabling index-based parallelism in C++

“Regular” STL + the multidimensional index

for_each(begin(bnd), end(bnd), [=](index<2> idx) {...});

Enabling index-based parallelism in C++

“Regular” STL + the multidimensional index

for_each(begin(bnd), end(bnd), [=](index<2> idx) {...});

C++ Extensions for Parallelism TS (“Parallel STL”) + the multidimensional index

Enabling index-based parallelism in C++

“Regular” STL + the multidimensional index

for_each(begin(bnd), end(bnd), [=](index<2> idx) {...});

C++ Extensions for Parallelism TS (“Parallel STL”) + the multidimensional index

for_each(experimental::parallel::par_vec,

Enabling index-based parallelism in C++

“Regular” STL + the multidimensional index

for_each(begin(bnd), end(bnd), [=](index<2> idx) {...});

C++ Extensions for Parallelism TS (“Parallel STL”) + the multidimensional index

for_each(experimental::parallel::par_vec,

begin(bnd), end(bnd), [=](index<2> idx) {...});

Enabling index-based parallelism in C++

“Regular” STL + the multidimensional index

for_each(begin(bnd), end(bnd), [=](index<2> idx) {...});

0 1 2 3 4 5 6 7 …

C++ Extensions for Parallelism TS (“Parallel STL”) + the multidimensional index

for_each(experimental::parallel::par_vec,

begin(bnd), end(bnd), [=](index<2> idx) {...});

Enabling index-based parallelism in C++

“Regular” STL + the multidimensional index

for_each(begin(bnd), end(bnd), [=](index<2> idx) {...});

0 1 2 3 4 5 6 7 …

C++ Extensions for Parallelism TS (“Parallel STL”) + the multidimensional index

for_each(experimental::parallel::par_vec,

begin(bnd), end(bnd), [=](index<2> idx) {...});

Enabling index-based parallelism in C++

“Regular” STL + the multidimensional index

for_each(begin(bnd), end(bnd), [=](index<2> idx) {...});

C++ Extensions for Parallelism TS (“Parallel STL”) + the multidimensional index

for_each(experimental::parallel::par_vec,

begin(bnd), end(bnd), [=](index<2> idx) {...});

C++ AMP

parallel_for_each(bnd, [=](index<2> idx) restrict(amp) {...});

Enabling index-based parallelism in C++

“Regular” STL + the multidimensional index

for_each(begin(bnd), end(bnd), [=](index<2> idx) {...});

C++ Extensions for Parallelism TS (“Parallel STL”) + the multidimensional index

for_each(experimental::parallel::par_vec,

begin(bnd), end(bnd), [=](index<2> idx) {...});

CUDA

__global__ void kernel() {

auto idx = f(blockIdx, blockDim, threadIdx); ... }

kernel<<<grid, threads>>>();

Enabling index-based parallelism in C++

“Regular” STL + the multidimensional index

for_each(begin(bnd), end(bnd), [=](index<2> idx) {...});

C++ Extensions for Parallelism TS (“Parallel STL”) + the multidimensional index

for_each(experimental::parallel::par_vec,

begin(bnd), end(bnd), [=](index<2> idx) {...});

OpenCL

__kernel__ void kernel() {

auto row = get_global_id(0); auto col = get_global_id(1); ... }

clEnqueueNDRangeKernel(queue, kernel, 2, nullptr,

global_work_size, local_work_size, 0, nullptr, nullptr);

Pointer semantics – valueness

Pointer semantics – valueness

auto vec = std::vector<int>(9001);

Pointer semantics – valueness

auto vec = std::vector<int>(9001); ...

Pointer semantics – valueness

auto vec = std::vector<int>(9001);
auto vec_copy = vec;

...

...

Pointer semantics – valueness

auto vec = std::vector<int>(9001);
auto vec_copy = vec;

...

...

Pointer semantics – valueness

auto vec = std::vector<int>(9001);
auto vec_copy = vec;

auto ptr = new int[9001];

...

...

Pointer semantics – valueness

auto vec = std::vector<int>(9001);
auto vec_copy = vec;

auto ptr = new int[9001];

...

...

...

Pointer semantics – valueness

auto vec = std::vector<int>(9001);
auto vec_copy = vec;

auto ptr = new int[9001];
auto ptr_copy = ptr;

...

...

...

Pointer semantics – valueness

auto vec = std::vector<int>(9001);
auto vec_copy = vec;

auto ptr = new int[9001];
auto ptr_copy = ptr;

...

...

...

Pointer semantics – valueness

auto vec = std::vector<int>(9001);
auto vec_copy = vec;

auto av = array_view<int>{vec_copy};

auto ptr = new int[9001];
auto ptr_copy = ptr;

...

...

...

Pointer semantics – valueness

auto vec = std::vector<int>(9001);
auto vec_copy = vec;

auto av = array_view<int>{vec_copy};
auto av_copy = av;

auto ptr = new int[9001];
auto ptr_copy = ptr;

...

...

...

Pointer semantics – valueness

auto vec = std::vector<int>(9001);

auto av = array_view<int>{vec_copy};
auto av_copy = av;

auto ptr = new int[9001];
auto ptr_copy = ptr;

...

...

Pointer semantics – constness

Pointer semantics – constness

Constant view

Pointer semantics – constness

Constant view

const array_view<int> view ~ int* const ptr

Pointer semantics – constness

Constant view

const array_view<int> view ~ int* const ptr

view[0] = 42;

Pointer semantics – constness

Constant view

const array_view<int> view ~ int* const ptr

view[0] = 42;

view = another_view;

Pointer semantics – constness

Constant view

const array_view<int> view ~ int* const ptr

view[0] = 42;

view = another_view;

View over constant data

Pointer semantics – constness

Constant view

const array_view<int> view ~ int* const ptr

view[0] = 42;

view = another_view;

View over constant data

array_view<const int> view ~ const int* ptr

Pointer semantics – constness

Constant view

const array_view<int> view ~ int* const ptr

view[0] = 42;

view = another_view;

View over constant data

array_view<const int> view ~ const int* ptr

view[0] = 42;

Pointer semantics – constness

Constant view

const array_view<int> view ~ int* const ptr

view[0] = 42;

view = another_view;

View over constant data

array_view<const int> view ~ const int* ptr

view[0] = 42;

view = another_view;

Other operations – slice and section

Other operations – slice and section

auto view = array_view<int, 2>{{5, 5}, data};

Other operations – slice and section

auto view = array_view<int, 2>{{5, 5}, data};

auto slice = view[2];

Other operations – slice and section

auto view = array_view<int, 2>{{5, 5}, data};

auto slice = view[2];

Other operations – slice and section

array_view<int, 1> slice = view[2];

auto view = array_view<int, 2>{{5, 5}, data};

Other operations – slice and section

array_view<int, 1> slice = view[2];

auto view = array_view<int, 2>{{5, 5}, data};

auto section = view.section({1, 2}, {3, 2});

Other operations – slice and section

array_view<int, 1> slice = view[2];

auto view = array_view<int, 2>{{5, 5}, data};

auto section = view.section({1, 2}, {3, 2});

Other operations – slice and section

array_view<int, 1> slice = view[2];

auto view = array_view<int, 2>{{5, 5}, data};

strided_array_view<int, 2> section = view.section({1, 2}, {3, 2});

Novel types

• bounds and index – defining and addressing multidimensional
discrete spaces.

• array_view and strided_array_view – multidimensional views on
contiguous or strided memory ranges.

• bounds_iterator – constant random access iterator over an imaginary
space imposed by a bounds object, with an index as its value type.

Towards the standardization

• N3851 – the introductory paper
• Presented to LEWG at the Issaquah meeting (February 2014)
• Consensus to prepare the wording for Arrays TS

• N3976 – the first formal wording paper
• Presented to LEWG at the Rapperswil meeting (June 2014)
• Some fixes and improvements in the wording requested
• Consensus to forward the wording to Fundamentals v2 TS

• N4087 – the latest formal wording paper
• To be presented to LWG at the Urbana-Champaign meeting (November 2014)
• Hoping to have it accepted for Fundamentals v2 TS 

Proposed extensions

• array_view with a fixed size, driven by increased type safety and
potential optimization opportunities:
fixed_array_view<int, 1, 2, 4>{ ptr }
≈ array_view<int, 3>{ {1, 2, 4}, ptr }

• Explicit column-major/row-major switch on array_view, driven by the
desire for Fortran interop

• Parameterized traversal order for bounds_iterator – column-major,
Morton order, Hilbert curve, …

Our proof-of-concept is available at:

http://parallelstl.codeplex.com

#include <experimental/array_view>

http://parallelstl.codeplex.com/

Our proof-of-concept is available at:

http://parallelstl.codeplex.com

#include <experimental/array_view>

include/experimental/impl/array_view.h
include/experimental/impl/coordinate.h

http://parallelstl.codeplex.com/

🙋 📧
lukaszme@microsoft.com

Backup

bounds and index

index<N> = N-dimensional vector

bounds<N> = N-dim axis-aligned rectangle with the minimum point at 0
≈ maximum point of such rectangle

bounds<2>{ 5, 4 }

index<2>{ 1, 3 }

bounds and index – basic usage

auto bnd = bounds<3>{ 3, 1, 4 };
auto idx = index<3>{ 2, -1, 0 };

bounds<3> bnd2 = bnd + idx; // bnd2 is { 5, 0, 4 }
bnd2 -= idx; // bnd2 is { 3, 1, 4 }

auto v1 = idx[0]; // v1 is 2

bnd.contains(idx); // -> false

bnd.size(); // -> 3 * 1 * 4 = 12

bounds and index – difference in arithmetic
bounds<N> index<N>

bounds<N> ⊙ index<N> → bounds<N>

+ − += −=

index<N>⊙ bounds<N> → bounds<N>

+

index<N>⊙ index<N> → index<N>

+ += − −=

bounds<N> ⊙ arithmetic type → bounds<N>

* /

*= /=

arithmetic type⊙ bounds<N> → bounds<N>

*

index<N>⊙ arithmetic type → index<N>

* /

*= /=

arithmetic type⊙ index<N> → index<N>

*

⊙ index<N> → index<N>

+ −

++ −− (for N = 1, and also post- variants)

bounds and index – difference in functionality

Only for bounds<N>:

constexpr size_type size() const noexcept;
bool contains(const index<rank>& idx) const noexcept;

bounds_iterator<rank> begin() const noexcept;
bounds_iterator<rank> end() const noexcept;

bounds_iterator

Constant iterator over bounds<N> returning index<N>

auto bnd = bounds<2>{4, 10};

bounds_iterator<2> it = begin(bnd);

index<2> idx = *it; // idx is {0, 0}

++it;

idx = *it; // idx is {0, 1}

it += 10;

idx = *it; // idx is {1, 1}

bounds_iterator – linearization

Since bounds_iterator provides a traversal over Rank-dimensional discrete space

defined by bounds, it is necessary to linearize the space.

begin() end() - 1

begin()

end() - 1

array_view and strided_array_view

• array_view – requires contiguous regular data (e.g. int data[4][1][8]).

• strided_array_view – requires regular data

The only difference: contiguity.

• contiguous view allows for cache-oblivious algorithms (performance).

• contiguous view allows for .data() function (compatibility).

• non-contiguous view allows for more flexibility.

Guidance: use array_view when you can (reflected in constructors).

strided_array_view as a transposed view

int cm_array[3 * 5] = {

1, 4, 7, 10, 13,

2, 5, 8, 11, 14,

3, 6, 9, 12, 15

};

auto cm_sav

= strided_array_view<int, 2>{ { 5, 3 }, { 1, 5 }, cm_array };

assert((cm_sav[{0, 0}] == 1));

assert((cm_sav[{0, 1}] == 2));

assert((cm_sav[{1, 0}] == 4));

assert((cm_sav[{4, 2}] == 15));

av and sav implicit conversions

array_view<T, N> → array_view<const T, N>

array_view<T, N> → strided_array_view<T, N>

array_view<T, N> → strided_array_view<const T, N>

strided_array_view<T, N> → strided_array_view<const T, N>

Relations between (s)av and other types

contiguous
containers

pointer + size array_view

strided_array_view

conversion
construction

conversion
section

construction

observers

construction

observers

