
Persisting C++ Classes in Relational Databases
with ODB

Boris Kolpackov

Code Synthesis

v1.0, Sep 2014

CODE

SYNTHESIS

-1-

ODB, an ORM for C++

• Part I: Introduction and Basic Operations
• Part II: Advanced Technique and Mechanisms

-2-

Object Relational Mapping

What’s an ORM, anyway?

-3-

Object Relational Mapping

Why ORM?

• Object-oriented vs relational mismatch
• Type and name safety
• Parameter binding and result set extraction
• Database schema evolution

-4-

Manual Schema Evolution

ALTER TABLE person
ADD COLUMN age

INTEGER UNSIGNED NOT NULL DEFAULT 0

-5-

Object Relational Mapping

Why not use an ORM?

• Hides too much
• Shoot yourself in the foot
• Framework
• Fun to roll your own

-6-

sword OCIBindDynamic (OCIBind *bindp,
OCIError *errhp,
void *ictxp,
OCICallbackInBind (icbfp)(

void *ictxp,
OCIBind *bindp,
ub4 iter,
ub4 index,
void **bufpp,
ub4 *alenp,
ub1 *piecep,
void **indpp),
void *octxp,

OCICallbackOutBind (ocbfp)(
void *octxp,
OCIBind *bindp,

-7-

Object Relational Mapping

Why Relational?

• Mature and reliable
• Tooling, support, and alternatives
• Flexible

-8-

ODB, and ORM for C++

What’s ODB?

• Three levels
• Not a framework
• No magic
• One-to-one ORM-Database operation mapping

-9-

ODB, and ORM for C++

• Automatic generation of database code from C++ classes
• Target multiple databases
• Database schema evolution

-10-

C++ Standards

C++98 and C++11

• Rvalue references
• Range-based for loop
• std::function and lambdas
• C++11 Standard Library integration
• C++11 in examples

-11-

Databases

Cross-Database

• MySQL
• SQLite
• PostgreSQL
• Oracle
• Microsoft SQL Server

-12-

Platforms and Compilers

Cross-Platform

• Linux, Windows, Mac OS X, Solaris
• GCC, Visual C++, Clang, Sun Studio C++

-13-

-14-

Mobile & Embedded

• ODB + SQLite
• “Hello, World” example is 500Kb
• Cross-compiler friendly
• Android, Raspberry Pi guides

-15-

Performance

High-Performance and Low Overhead

• Prepared statements, including custom queries
• Caching of connections, statements, and buffers
• Low-level native database C APIs
• Zero per-object memory overhead

Load performance

• SQLite — 60,000 object per second — 17 µs per object
• PostgreSQL — 15,000 objects per second — 65 µs per object

-16-

Performance

High-Performance and Low Overhead

• Prepared statements, including custom queries
• Caching of connections, statements, and buffers
• Low-level native database C APIs
• Zero per-object memory overhead

Load performance

• SQLite — 60,000 object per second — 17 µs per object
• PostgreSQL — 15,000 objects per second — 65 µs per object

-16-

License

Dual-Licensed

• GPL + commercial license
• Can be used without restrictions within your organization
• License exceptions for open source projects

• ODB License
• www.codesynthesis.com/products/odb/license.xhtml

-17-

http://www.codesynthesis.com/products/odb/license.xhtml
http://www.codesynthesis.com/products/odb/license.xhtml

C++ Support

ODB is implemented as a GCC plugin

• Mature, portable, and readily available
• One of the most complete C++11 implementations

-18-

C++ Support

ODB is implemented as a GCC plugin

• Mature, portable, and readily available
• One of the most complete C++11 implementations

-18-

C++ Support

C++ in, C++ out

Use any C++ compiler to build your application

Yes, even Sun Studio

-19-

C++ Support

C++ in, C++ out

Use any C++ compiler to build your application

Yes, even Sun Studio

-19-

C++ Support

C++ in, C++ out

Use any C++ compiler to build your application

Yes, even Sun Studio

-19-

C++ Support

Standard C++ In

Standard C++ Out

-20-

C++ Support

Standard C++ In
Standard C++ Out

-20-

Persistent Class

enum class status {open, confirmed, closed};

class bug
{
public:
...

private:
unsigned long long id_;

status status_;
std::string summary_;
std::string description_;

};

-21-

Persistent Class
..
#include <odb/core.hxx>

#pragma db object
class bug
{
...

private:
friend class odb::access;
bug () {}

#pragma db id auto
unsigned long long id_;

status status_;
std::string summary_;
std::string description_;

};

-22-

Persistent Class
...
#include <odb/core.hxx>

#pragma db object
class bug
{
...

private:
friend class odb::access;
bug () {}

#pragma db id auto
unsigned long long id_;

status status_;
std::string summary_;
std::string description_;

};

-22-

Persistent Class
....
#include <odb/core.hxx>

#pragma db object
class bug
{
...

private:
friend class odb::access;
bug () {}

#pragma db id auto
unsigned long long id_;

status status_;
std::string summary_;
std::string description_;

};

-22-

Persistent Class
...
#include <odb/core.hxx>

#pragma db object
class bug
{
...

private:
friend class odb::access;
bug () {}

#pragma db id auto
unsigned long long id_;

status status_;
std::string summary_;
std::string description_;

};

-22-

Persistent Class
...
#include <odb/core.hxx>

#pragma db object
class bug
{
...

private:
friend class odb::access;
bug () {}

#pragma db id auto
unsigned long long id_;

status status_;
std::string summary_;
std::string description_;

};

-22-

Persistent Class
.......
#include <odb/core.hxx>

#pragma db object
class bug
{
...

private:
friend class odb::access;
bug () {}

#pragma db id auto
unsigned long long id_;

status status_;
std::string summary_;
std::string description_;

};

-22-

Persistent Class
....
#pragma db object
class bug
{
public:
unsigned long long id () const;
void id (unsigned long long);

status get_status () const;
status& setStatus ();

std::string& summary_please ();

...
private:

#pragma db id auto
unsigned long long id_;
...

-23-

Persistent Class
...
#pragma db object
class bug
{
public:
unsigned long long id () const;
void id (unsigned long long);

status get_status () const;
status& setStatus ();

std::string& summary_please ();

...
private:

#pragma db id auto
unsigned long long id_;
...

-23-

Persistent Class

class bug
{
...

private:
unsigned long long id_;

...
};

#ifdef ODB_COMPILER
pragma db object(bug)
pragma db member(bug::id_) id auto
#endif

-24-

Persistent Class

// bug.hxx
class bug
{
...

private:
unsigned long long id_;

...
};

// bug-mapping.hxx
#pragma db object(bug)
#pragma db member(bug::id_) id auto

-25-

Workflow

.

.

.

C++ Header

.

C++ Source

.

C++ Compiler

.
#include

.

ODB Compiler

.

C++ Source

.

C++ Header

.

Database
Schema

.

#include

-26-

Workflow

.

.

.

C++ Header

.

C++ Source

.

C++ Compiler

.
#include

.

ODB Compiler

.

C++ Source

.

C++ Header

.

Database
Schema

.

#include

-26-

Workflow

...
C++ Header

.

C++ Source

.

C++ Compiler

.
#include

.

ODB Compiler

.

C++ Source

.

C++ Header

.

Database
Schema

.

#include

-26-

Workflow

...
C++ Header

.

C++ Source

.

C++ Compiler

.
#include

.

ODB Compiler

.

C++ Source

.

C++ Header

.

Database
Schema

.

#include

-26-

Workflow

...
C++ Header

.

C++ Source

.

C++ Compiler

.
#include

.

ODB Compiler

.

C++ Source

.

C++ Header

.

Database
Schema

.

#include

-26-

Workflow

...
C++ Header

.

C++ Source

.

C++ Compiler

.
#include

.

ODB Compiler

.

C++ Source

.

C++ Header

.

Database
Schema

.

#include

-26-

ODB Compiler

$ odb --database pgsql bug.hxx

$ ls
bug.hxx
bug-odb.cxx
bug-odb.hxx
bug-odb.ixx

-27-

ODB Compiler

$ odb --database pgsql bug.hxx

$ ls
bug.hxx
bug-odb.cxx
bug-odb.hxx
bug-odb.ixx

-27-

ODB Compiler

$ odb -I/opt/boost-latest -DENABLE_LASER_BEAMS ...

$ odb --std c++11 --default-pointer std::shared_ptr ...

-28-

ODB Compiler

$ odb -I/opt/boost-latest -DENABLE_LASER_BEAMS ...

$ odb --std c++11 --default-pointer std::shared_ptr ...

-28-

ODB Compiler

$ odb --generate-schema -d mysql bug.hxx

$ ls
bug.hxx
bug-odb.cxx
bug-odb.hxx
bug-odb.ixx
bug.sql

$ cat bug.sql

CREATE TABLE bug (
id BIGINT UNSIGNED NOT NULL PRIMARY KEY AUTO_INCREMENT,
status ENUM(’open’, ’confirmed’, ’closed’) NOT NULL,
summary TEXT NOT NULL,
description TEXT NOT NULL)

-29-

ODB Compiler

$ odb --generate-schema -d mysql bug.hxx

$ ls
bug.hxx
bug-odb.cxx
bug-odb.hxx
bug-odb.ixx
bug.sql

$ cat bug.sql

CREATE TABLE bug (
id BIGINT UNSIGNED NOT NULL PRIMARY KEY AUTO_INCREMENT,
status ENUM(’open’, ’confirmed’, ’closed’) NOT NULL,
summary TEXT NOT NULL,
description TEXT NOT NULL)

-29-

ODB Compiler

$ odb --generate-schema -d mysql bug.hxx

$ ls
bug.hxx
bug-odb.cxx
bug-odb.hxx
bug-odb.ixx
bug.sql

$ cat bug.sql

CREATE TABLE bug (
id BIGINT UNSIGNED NOT NULL PRIMARY KEY AUTO_INCREMENT,
status ENUM(’open’, ’confirmed’, ’closed’) NOT NULL,
summary TEXT NOT NULL,
description TEXT NOT NULL)

-29-

ODB Compiler

$ odb --generate-schema -d mysql bug.hxx

$ ls
bug.hxx
bug-odb.cxx
bug-odb.hxx
bug-odb.ixx
bug.sql

$ cat bug.sql

CREATE TABLE bug (
id BIGINT UNSIGNED NOT NULL PRIMARY KEY AUTO_INCREMENT,
status ENUM(’open’, ’confirmed’, ’closed’) NOT NULL,
summary TEXT NOT NULL,
description TEXT NOT NULL)

-29-

Database

#include <odb/pgsql/database.hxx>

odb::pgsql::database db (”bugger”, // user
”secret”, // password
”bugs”); // database

#include <odb/sqlite/database.hxx>

odb::sqlite::database db (”bugs.db”); // database

#include <odb/database.hxx>

void do_it (odb::database& db);

-30-

Database

#include <odb/pgsql/database.hxx>

odb::pgsql::database db (”bugger”, // user
”secret”, // password
”bugs”); // database

#include <odb/sqlite/database.hxx>

odb::sqlite::database db (”bugs.db”); // database

#include <odb/database.hxx>

void do_it (odb::database& db);

-30-

Database

#include <odb/pgsql/database.hxx>

odb::pgsql::database db (”bugger”, // user
”secret”, // password
”bugs”); // database

#include <odb/sqlite/database.hxx>

odb::sqlite::database db (”bugs.db”); // database

#include <odb/database.hxx>

void do_it (odb::database& db);

-30-

Database Schema

• Automatically generated
• Map to a custom schema

-31-

Generated Schema

• Standalone SQL file
• Embedded into generated C++

#include <odb/schema-catalog.hxx>

transaction t (db.begin ());
schema_catalog::create_schema (db);
t.commit ();

-32-

Generated Schema

• Standalone SQL file
• Embedded into generated C++

#include <odb/schema-catalog.hxx>

transaction t (db.begin ());
schema_catalog::create_schema (db);
t.commit ();

-32-

Custom Schema

• Map classes to tables
• Map data members to columns
• Map C++ types to database types

#pragma db object table(”bugs”)
class bug
{
#pragma db id auto column(”bug_id”)
unsigned long long id_;

#pragma db column(”bug_status”) type(”SMALLINT”)
status status_;

...
};

-33-

Custom Schema

• Map classes to tables
• Map data members to columns
• Map C++ types to database types

#pragma db object table(”bugs”)
class bug
{
#pragma db id auto column(”bug_id”)
unsigned long long id_;

#pragma db column(”bug_status”) type(”SMALLINT”)
status status_;

...
};

-33-

Making Objects Persistent

..
bug b (open,

”Support for DB2”,
”ODB does not yet support IBM DB2.”);

transaction t (db.begin ());

db.persist (b);

t.commit ();

-34-

Making Objects Persistent

....
bug b (open,

”Support for DB2”,
”ODB does not yet support IBM DB2.”);

transaction t (db.begin ());

db.persist (b);

t.commit ();

.

-34-

Transactions

..try
{
transaction t (db.begin ());

db.persist (b1);
db.persist (b2);

t.commit ();
}
catch (const odb::connection_lost&)
{
// Try again.
...

}

-35-

Transactions

...try
{
transaction t (db.begin ());

db.persist (b1);
db.persist (b2);

t.commit ();
}
catch (const odb::connection_lost&)
{
// Try again.
...

}

-35-

Transactions

...try
{
transaction t (db.begin ());

db.persist (b1);
db.persist (b2);

t.commit ();
}
catch (const odb::connection_lost&)
{
// Try again.
...

}

-35-

Making Objects Persistent
..
bug b (open,

”Support for DB2”,
”ODB does not yet support IBM DB2.”);

transaction t (db.begin ());
t.tracer (odb::stderr_tracer);

unsigned long long id = db.persist (b);

t.commit ();

.

=> INSERT INTO bug (
id,
status,
summary,
description)

VALUES (DEFAULT, $1, $2, $3)
RETURNING id

-36-

Making Objects Persistent
...
bug b (open,

”Support for DB2”,
”ODB does not yet support IBM DB2.”);

transaction t (db.begin ());
t.tracer (odb::stderr_tracer);

unsigned long long id = db.persist (b);

t.commit ();

=> INSERT INTO bug (
id,
status,
summary,
description)

VALUES (DEFAULT, $1, $2, $3)
RETURNING id

-36-

Making Objects Persistent
...
bug b (open,

”Support for DB2”,
”ODB does not yet support IBM DB2.”);

transaction t (db.begin ());
t.tracer (odb::stderr_tracer);

unsigned long long id = db.persist (b);

t.commit ();

=> INSERT INTO bug (
id,
status,
summary,
description)

VALUES (DEFAULT, $1, $2, $3)
RETURNING id

-36-

Loading Persistent Objects
...
transaction t (db.begin ());

std::shared_ptr<bug> b (db.load<bug> (id));

bug b;
db.load (id, b);

t.commit ();

..

=> SELECT
status,
summary,
description

FROM bug WHERE id = $1

-37-

Loading Persistent Objects
....
transaction t (db.begin ());

std::shared_ptr<bug> b (db.load<bug> (id));

bug b;
db.load (id, b);

t.commit ();

.

=> SELECT
status,
summary,
description

FROM bug WHERE id = $1

-37-

Loading Persistent Objects
..
transaction t (db.begin ());

std::shared_ptr<bug> b (db.load<bug> (id));

bug b;
db.load (id, b);

t.commit ();

=> SELECT
status,
summary,
description

FROM bug WHERE id = $1

-37-

Updating Persistent Objects

...
transaction t (db.begin ());

std::shared_ptr<bug> b (db.load<bug> (id));
b->status (confirmed);
db.update (b);

t.commit ();

=> UPDATE bug SET
status = $1,
summary = $2,
description = $3

WHERE id = $4

-38-

Updating Persistent Objects

..
transaction t (db.begin ());

std::shared_ptr<bug> b (db.load<bug> (id));
b->status (confirmed);
db.update (b);

t.commit ();

=> UPDATE bug SET
status = $1,
summary = $2,
description = $3

WHERE id = $4

-38-

Querying the Database

..
typedef odb::query<bug> query;
typedef odb::result<bug> result;

result r = ...

for (result::iterator i (r.begin()); i != r.end(); ++i)
...

for (bug& b: r)
...

.......

-39-

Querying the Database

...
typedef odb::query<bug> query;
typedef odb::result<bug> result;

result r = ...

for (result::iterator i (r.begin()); i != r.end(); ++i)
...

for (bug& b: r)
...

..

-39-

Querying the Database

...
typedef odb::query<bug> query;
typedef odb::result<bug> result;

result r = ...

for (result::iterator i (r.begin()); i != r.end(); ++i)
...

for (bug& b: r)
...

..

-39-

Querying the Database

...
typedef odb::query<bug> query;
typedef odb::result<bug> result;

transaction t (db.begin ());

result r (db.query<bug> (query::status == open));

for (const bug& b: r)
cout << b.id () << ” ” << b.summary () << endl;

t.commit ();

..

-40-

Querying the Database

...
typedef odb::query<bug> query;
typedef odb::result<bug> result;

transaction t (db.begin ());

result r (db.query<bug> (query::status == open));

for (const bug& b: r)
cout << b.id () << ” ” << b.summary () << endl;

t.commit ();

-40-

Querying the Database

...
typedef odb::query<bug> query;

transaction t (db.begin ());

for (auto& b: db.query<bug> (query::status == open))
...

t.commit ();

=> SELECT
id
status,
summary,
description

FROM bug WHERE status = $1

-41-

Querying the Database

...
typedef odb::query<bug> query;

transaction t (db.begin ());

for (auto& b: db.query<bug> (query::status == open))
...

t.commit ();

=> SELECT
id
status,
summary,
description

FROM bug WHERE status = $1

-41-

Querying the Database

..
db.query<bug> (query::status == open ||

query::status == confirmed);

status s;
query q (query::status == query::_ref (s));

s = open;
db.query<bug> (q); // status == open

s = closed;
db.query<bug> (q); // status == closed

db.query<bug> (”status = ” + query::_val (open));

db.query<bug> (”stats = ” + query::_val (123));

-42-

Querying the Database

....
db.query<bug> (query::status == open ||

query::status == confirmed);

status s;
query q (query::status == query::_ref (s));

s = open;
db.query<bug> (q); // status == open

s = closed;
db.query<bug> (q); // status == closed

db.query<bug> (”status = ” + query::_val (open));

db.query<bug> (”stats = ” + query::_val (123));

-42-

Querying the Database

..........
db.query<bug> (query::status == open ||

query::status == confirmed);

status s;
query q (query::status == query::_ref (s));

s = open;
db.query<bug> (q); // status == open

s = closed;
db.query<bug> (q); // status == closed

db.query<bug> (”status = ” + query::_val (open));

db.query<bug> (”stats = ” + query::_val (123));

-42-

Querying the Database

...
db.query<bug> (query::status == open ||

query::status == confirmed);

status s;
query q (query::status == query::_ref (s));

s = open;
db.query<bug> (q); // status == open

s = closed;
db.query<bug> (q); // status == closed

db.query<bug> (”status = ” + query::_val (open));

db.query<bug> (”stats = ” + query::_val (123));

-42-

Querying the Database

...
db.query<bug> (query::status == open ||

query::status == confirmed);

status s;
query q (query::status == query::_ref (s));

s = open;
db.query<bug> (q); // status == open

s = closed;
db.query<bug> (q); // status == closed

db.query<bug> (”status = ” + query::_val (open));

db.query<bug> (”stats = ” + query::_val (123));

-42-

Deleting Persistent Objects

...
transaction t (db.begin ());

db.erase<bug> (id);

bug b = ...;
db.erase (b);

db.erase_query<bug> (query::status == closed);

t.commit ();

...

=> DELETE FROM bug WHERE id = $1

-43-

Deleting Persistent Objects

....
transaction t (db.begin ());

db.erase<bug> (id);

bug b = ...;
db.erase (b);

db.erase_query<bug> (query::status == closed);

t.commit ();

..

=> DELETE FROM bug WHERE id = $1

-43-

Deleting Persistent Objects

...
transaction t (db.begin ());

db.erase<bug> (id);

bug b = ...;
db.erase (b);

db.erase_query<bug> (query::status == closed);

t.commit ();

...

=> DELETE FROM bug WHERE id = $1

-43-

Deleting Persistent Objects

..
transaction t (db.begin ());

db.erase<bug> (id);

bug b = ...;
db.erase (b);

db.erase_query<bug> (query::status == closed);

t.commit ();

=> DELETE FROM bug WHERE id = $1

-43-

Adding Timestamps

..
#pragma db object
class bug
{
...

#pragma db id auto
unsigned long long id_;

status status_;
std::string summary_;
std::string description_;

boost::posix_time::ptime created_;
boost::posix_time::ptime updated_;

};

..

-44-

Adding Timestamps

....
#pragma db object
class bug
{
...

#pragma db id auto
unsigned long long id_;

status status_;
std::string summary_;
std::string description_;

boost::posix_time::ptime created_;
boost::posix_time::ptime updated_;

};

-44-

Profiles

• Generic integration mechanism
• Covers smart pointers, containers, and value types
• ODB includes profiles for Boost and Qt
• You can add your own profiles

odb -d pgsql -p boost bug.hxx

odb -d pgsql -p qt bug.hxx

-45-

Boost Profile

• uuid
• date_time
• optional

-46-

NULL Semantics

#pragma db object
class bug
{
...

boost::optional<std::string> description_;
};

CREATE TABLE bug (
...
description TEXT NULL)

-47-

Qt Profile

• Basic types: QString, QUuid, QByteArray
• Date-time types: QDate, QTime, QDateTime

-48-

Adding Creation and Modification Dates (Qt)

#pragma db object
class Bug
{
...

#pragma db id auto
unsigned long long id_;

Status status_;
QString summary_;
QString description_;

QDateTime created_;
QDateTime updated_;

};

-49-

Containers

• Standard: vector, list, set, map, etc
• C++11: array, unordered (hashtable), etc
• Boost: unordered, multi_index
• Qt: QList, QVector, QMap, QSet, QHash, etc
• Easy to support custom containers

-50-

Adding Comments and Tags
....
#pragma db object
class bug
{
...

#pragma db id auto
unsigned long long id_;

status status_;
std::string summary_;
std::string description_;

boost::posix_time::ptime created_;
boost::posix_time::ptime updated_;

std::vector<std::string> comments_;
std::unordered_set<std::string> tags_;

};
-51-

Adding Comments and Tags (Qt)
....
#pragma db object
class Bug
{
...

#pragma db id auto
unsigned long long id_;

Status status_;
QString summary_;
QString description_;

QDateTime created_;
QDateTime updated_;

QList<QString> comments_;
QHash<QString> tags_;

};
-52-

Composite Value Types

• Class or struct type
• Mapped to more than one database column
• Contains composite values, containers, pointers to objects
• Can be used as an object id

-53-

Extending Comments
...........
#pragma db value
class comment
{
...

std::string text_;
boost::posix_time::ptime created_;

};

#pragma db object
class bug
{
...

std::vector<comment> comments_;
};

-54-

Relationships

• Relationships are represented as pointers to objects
• Standard: raw, auto_ptr, tr1::shared_ptr
• C++11: std::shared_ptr, std::unique_ptr
• Boost: boost::shared_ptr
• Qt: QSharedPointer
• Easy to support custom smart pointers

-55-

Adding User Object

#pragma db object
class user
{
...

#pragma db id
std::string email_;

std::string first_;
std::string last_;

};

-56-

Adding Bug Reporter

...
#pragma db object
class bug
{
...

std::shared_ptr<user> reporter_;
};

unidirectional to-one relationship

-57-

Adding Bug Reporter

...
#pragma db object
class bug
{
...

std::shared_ptr<user> reporter_;
};

unidirectional to-one relationship

-57-

Adding Bug List
...
#pragma db object
class user
{
...

#pragma db id
std::string email_;

std::string first_name_;
std::string last_name_;

std::vector<std::shared_ptr<bug>> reported_bugs_;
};

bidirectional many-to-one relationship

-58-

Adding Bug List
..
#pragma db object
class user
{
...

#pragma db id
std::string email_;

std::string first_name_;
std::string last_name_;

std::vector<std::shared_ptr<bug>> reported_bugs_;
};

bidirectional many-to-one relationship

-58-

We Have a Problem

#pragma db object
class user
{
...

std::vector<std::shared_ptr<bug>> reported_bugs_;
};

#pragma db object
class bug
{
...

std::shared_ptr<user> reporter_;
};

-59-

We Have a Problem

...
#pragma db object
class user
{
...

std::vector<std::weak_ptr<bug>> reported_bugs_;
};

#pragma db object
class bug
{
...

std::shared_ptr<user> reporter_;
};

-60-

Another Problem

..
CREATE TABLE bug (
...
reporter TEXT NULL,
CONSTRAINT reporter_fk

FOREIGN KEY (reporter)
REFERENCES user (email));

CREATE TABLE user_reported_bugs (
...
bug_id BIGINT NULL,
CONSTRAINT bug_id_fk

FOREIGN KEY (bug_id)
REFERENCES bug (id));

-61-

Another Problem

....
CREATE TABLE bug (
...
reporter TEXT NULL,
CONSTRAINT reporter_fk

FOREIGN KEY (reporter)
REFERENCES user (email));

CREATE TABLE user_reported_bugs (
...
bug_id BIGINT NULL,
CONSTRAINT bug_id_fk

FOREIGN KEY (bug_id)
REFERENCES bug (id));

-61-

Another Problem
...
#pragma db object
class user
{
...

#pragma db inverse(reporter_)
std::vector<std::weak_ptr<bug>> reported_bugs_;

};

#pragma db object
class bug
{
...

std::shared_ptr<user> reporter_;
};

-62-

Adding Bug Reporter and Bug List (Qt)

#pragma db object
class User
{
...

#pragma db inverse(reporter_)
QList<QWeakPointer<Bug>> reportedBugs_;

};

#pragma db object
class Bug
{
...

QSharedPointer<User> reporter_;
};

-63-

Relationships in Queries

..
typedef odb::query<bug> query;

db.query<bug> (query::reporter->last == ”Doe”);

-64-

Multi-Database Support

• Static
• Dynamic

• Mixed

-65-

Multi-Database Support

• Static
• Dynamic
• Mixed

-65-

Multi-Database Support

$ odb -m static -d common -d sqlite -d pgsql bug.hxx

$ ls
bug.hxx
bug-odb.cxx bug-odb-sqlite.cxx bug-odb-pgsql.cxx
bug-odb.hxx bug-odb-sqlite.hxx bug-odb-pgsql.cxx
bug-odb.ixx bug-odb-sqlite.ixx bug-odb-pgsql.cxx

-66-

Multi-Database Support

$ odb -m static -d common -d sqlite -d pgsql bug.hxx

$ ls
bug.hxx
bug-odb.cxx bug-odb-sqlite.cxx bug-odb-pgsql.cxx
bug-odb.hxx bug-odb-sqlite.hxx bug-odb-pgsql.cxx
bug-odb.ixx bug-odb-sqlite.ixx bug-odb-pgsql.cxx

-66-

Static Multi-Database Support
..
#include ”bug-odb-pgsql.hxx”
#include ”bug-odb-sqlite.hxx”

odb::pgsql::database store (...);
odb::sqlite::database cache (...);

std::shared_ptr<bug> b;
{
odb::transaction t (cache.begin ());
b = cache.find<bug> (id);
t.commit ();

}

if (b == nullptr)
{
odb::transaction t (store.begin ());
b = store.load<bug> (id);
t.commit ();

} -67-

Static Multi-Database Support
....
#include ”bug-odb-pgsql.hxx”
#include ”bug-odb-sqlite.hxx”

odb::pgsql::database store (...);
odb::sqlite::database cache (...);

std::shared_ptr<bug> b;
{
odb::transaction t (cache.begin ());
b = cache.find<bug> (id);
t.commit ();

}

if (b == nullptr)
{
odb::transaction t (store.begin ());
b = store.load<bug> (id);
t.commit ();

} -67-

Static Multi-Database Support
.....
#include ”bug-odb-pgsql.hxx”
#include ”bug-odb-sqlite.hxx”

odb::pgsql::database store (...);
odb::sqlite::database cache (...);

std::shared_ptr<bug> b;
{
odb::transaction t (cache.begin ());
b = cache.find<bug> (id);
t.commit ();

}

if (b == nullptr)
{
odb::transaction t (store.begin ());
b = store.load<bug> (id);
t.commit ();

} -67-

Static Multi-Database Support
.....
#include ”bug-odb-pgsql.hxx”
#include ”bug-odb-sqlite.hxx”

odb::pgsql::database store (...);
odb::sqlite::database cache (...);

std::shared_ptr<bug> b;
{
odb::transaction t (cache.begin ());
b = cache.find<bug> (id);
t.commit ();

}

if (b == nullptr)
{
odb::transaction t (store.begin ());
b = store.load<bug> (id);
t.commit ();

} -67-

Static Multi-Database Support
...
#include ”bug-odb-pgsql.hxx”
#include ”bug-odb-sqlite.hxx”

odb::pgsql::database store (...);
odb::sqlite::database cache (...);

std::shared_ptr<bug> b;
{
odb::transaction t (cache.begin ());
b = cache.find<bug> (id);
t.commit ();

}

if (b == nullptr)
{
odb::transaction t (store.begin ());
b = store.load<bug> (id);
t.commit ();

} -67-

Dynamic Multi-Database Support
..
#include ”bug-odb.hxx”

std::shared_ptr<bug>
find_bug (odb::database& db, unsigned long long id)
{
odb::transaction t (db.begin ());
std::shared_ptr<bug> r (db.find<bug> (id));
t.commit ();
return r;

}

odb::pgsql::database store (...);
odb::sqlite::database cache (...);

std::shared_ptr<bug> b (find_bug (cache, id));

if (b == nullptr)
b = find_bug (store, id);

-68-

Dynamic Multi-Database Support
..........
#include ”bug-odb.hxx”

std::shared_ptr<bug>
find_bug (odb::database& db, unsigned long long id)
{
odb::transaction t (db.begin ());
std::shared_ptr<bug> r (db.find<bug> (id));
t.commit ();
return r;

}

odb::pgsql::database store (...);
odb::sqlite::database cache (...);

std::shared_ptr<bug> b (find_bug (cache, id));

if (b == nullptr)
b = find_bug (store, id);

-68-

Dynamic Multi-Database Support
...
#include ”bug-odb.hxx”

std::shared_ptr<bug>
find_bug (odb::database& db, unsigned long long id)
{
odb::transaction t (db.begin ());
std::shared_ptr<bug> r (db.find<bug> (id));
t.commit ();
return r;

}

odb::pgsql::database store (...);
odb::sqlite::database cache (...);

std::shared_ptr<bug> b (find_bug (cache, id));

if (b == nullptr)
b = find_bug (store, id);

-68-

Dynamic Multi-Database Support
...
#include ”bug-odb.hxx”

std::shared_ptr<bug>
find_bug (odb::database& db, unsigned long long id)
{
odb::transaction t (db.begin ());
std::shared_ptr<bug> r (db.find<bug> (id));
t.commit ();
return r;

}

odb::pgsql::database store (...);
odb::sqlite::database cache (...);

std::shared_ptr<bug> b (find_bug (cache, id));

if (b == nullptr)
b = find_bug (store, id);

-68-

Dynamic Loading

void
load_db (const std::string& db_name)
{
#ifdef _WIN32
string dll (”bug-” + db_name + ”.dll”);
HMODULE h (LoadLibraryA (dll.c_str ()));

#else
string so (”libbug-” + db_name + ”.so”);
void* h (dlopen (so.c_str (), RTLD_NOW));

#endif

if (h == 0)
{

// Handle error.
}

}

-69-

Database Schema Evolution

• No magic
• Simple, easy to understand building blocks
• Schema migration
• Data migration

-70-

Object Model Version
...
#pragma db model version(1, 1)

#pragma db object
class bug
{
...

};

#pragma db model version(1, 2)

#pragma db object
class bug
{
...

std::string platform_;
};

.........

-71-

Object Model Version
....
#pragma db model version(1, 1)

#pragma db object
class bug
{
...

};

#pragma db model version(1, 2)

#pragma db object
class bug
{
...

std::string platform_;
};

-71-

Changelog

• XML file (human reviewable)
• Base model + changeset for each version
• Stored in source code repository

<changeset version=”2”>
<alter-table name=”bug”>

<add-column name=”platform” type=”TEXT” null=”false”/>
</alter-table>

</changeset>

<model version=”1”>
...

</model>

-72-

Changelog

• XML file (human reviewable)
• Base model + changeset for each version
• Stored in source code repository

<changeset version=”2”>
<alter-table name=”bug”>

<add-column name=”platform” type=”TEXT” null=”false”/>
</alter-table>

</changeset>

<model version=”1”>
...

</model>

-72-

Schema Migration

• SQL files or embedded into C++ code
• Pre and Post (bug-002-pre.sql and bug-002-post.sql)
• Pre-migration relaxes the schema
• Post-migration tightens it back

• Data migration fits between the two

-73-

Schema Migration

• SQL files or embedded into C++ code
• Pre and Post (bug-002-pre.sql and bug-002-post.sql)
• Pre-migration relaxes the schema
• Post-migration tightens it back
• Data migration fits between the two

-73-

Schema Migration

....
/* bug-002-pre.sql */

ALTER TABLE bug
ADD COLUMN platform TEXT NULL;

/* bug-002-post.sql */

ALTER TABLE bug
ALTER COLUMN platform SET NOT NULL;

....

-74-

Schema Migration

....
/* bug-002-pre.sql */

ALTER TABLE bug
ADD COLUMN platform TEXT NULL;

/* bug-002-post.sql */

ALTER TABLE bug
ALTER COLUMN platform SET NOT NULL;

-74-

Data Migration

...
transaction t (db.begin ());

schema_catalog::migrate_schema_pre (db, 2);

for (bug& b: db.query<bug> ())
{
b.platform (”Unknown”);
db.update (b);

}

schema_catalog::migrate_schema_post (db, 2);

t.commit ();

-75-

Data Migration

.......
transaction t (db.begin ());

schema_catalog::migrate_schema_pre (db, 2);

for (bug& b: db.query<bug> ())
{
b.platform (”Unknown”);
db.update (b);

}

schema_catalog::migrate_schema_post (db, 2);

t.commit ();

-75-

Data Migration

...
transaction t (db.begin ());

schema_catalog::migrate_schema_pre (db, 2);

for (bug& b: db.query<bug> ())
{
b.platform (”Unknown”);
db.update (b);

}

schema_catalog::migrate_schema_post (db, 2);

t.commit ();

-75-

Data Migration

schema_catalog::data_migration_function (
2,
[] (database& db)
{

for (bug& b: db.query<bug> ())
{

b.platform (”Unknown”);
db.update (b);

}
});

transaction t (db.begin ());
schema_catalog::migrate (db);
t.commit ();

-76-

Schema Evolution
..
#pragma db model version(1, 2)

#pragma db object
class user
{
std::string first_;
std::string last_;

};

#pragma db model version(1, 3)

#pragma db object
class user
{
std::string name_;

};

.......

-77-

Schema Evolution
...
#pragma db model version(1, 2)

#pragma db object
class user
{
std::string first_;
std::string last_;

};

#pragma db model version(1, 3)

#pragma db object
class user
{
std::string name_;

};

-77-

Changelog Diff

+ <changeset version=”3”>
+ <alter-table name=”user”>
+ <add-column name=”name” type=”TEXT” null=”false”/>
+ <drop-column name=”first”/>
+ <drop-column name=”last”/>
+ </alter-table>
+ </changeset>

-78-

Data Migration

..
schema_catalog::data_migration_function (
3,
[] (database& db)
{

for (bug& b: db.query<bug> ())
{

b.name (b.first () + ” ” + b.last ());
db.update (b);

}
});

-79-

Data Migration

...
schema_catalog::data_migration_function (
3,
[] (database& db)
{

for (bug& b: db.query<bug> ())
{

b.name (b.first () + ” ” + b.last ());
db.update (b);

}
});

-79-

Resources

• ODB Page
• www.codesynthesis.com/products/odb/

• ODB Manual
• www.codesynthesis.com/products/odb/doc/manual.xhtml

• Blog
• www.codesynthesis.com/~boris/blog/

-80-

http://www.codesynthesis.com/products/odb/
http://www.codesynthesis.com/products/odb/
http://www.codesynthesis.com/products/odb/doc/manual.xhtml
http://www.codesynthesis.com/products/odb/doc/manual.xhtml
http://www.codesynthesis.com/~boris/blog/
http://www.codesynthesis.com/~boris/blog/

