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Situation 



Ubisoft Montreal 

• 2600+ employees.  Biggest game studio in the world. 

• Projects up to 1000 employees worldwide.  Up to 400 in Mtl. 

• Technology Group in Mtl of 300 developers. 

• Windows-centric development environment. 



Big Games 

• Assassin's Creed Unity: 

• 6.5 M C++ LOC for entire team code.   

• 9 M more C++ LOC from outside project. 

• 5 M C# LOC. 

• Rainbow Six: Siege: 

• 3.5 M C++ LOC for engine code from game team. 

• 4.5 M C++ LOC from Technology Group. 

• Rebuild All: 3 min to 5 min. 



Code Structure 

Core 

Graphic 

Engine 

Gameplay 

Editor 

 (C#) TCP/IP 



What we Don't Use 

• No RTTI 

• No Exception Handling 

• No STL containers 

• No Boost includes in Engine 



Iteration Time 



FastBuild 

• Replacing MSBuild for C++ 

• Open Source (permissive) made by Franta Fulin 

• Smarter DLL dependencies 

• Better CPU usage 

• Distribution and caching 

• Unity builds built-in 

 



Unity Builds 

unity.cpp 
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Other Points 

• Precompiled headers 

• /Ob1 in Debug targets 

• Template classes with non-template base classes 



Templates 

Array 

 

A lot of stuff 

T 

Array<int> 

Array<float> 

Array<MyClass1> 

… 

unity1.obj 

Array<int> 

Array<float> 

Array<MyClass2> 

Array<MyClass3> 

… 

unity2.obj 

Array<int> 

Array<float> 

Array<MyClass1> 

Array<MyClass3> 

… 

unityN.obj 

… 



Templates: Unify Code 

Array 

 

Inlined functions 

BaseArray 

 

A lot of stuff 

T 

Array 

 

A lot of stuff 

T 



Generated Code 

• IDL for object model 

• Generated code regions in corresponding .h and .cpp files 

• Avoiding some meta-programming 

• Custom Edit and Continue through our own programming 
language generating C++. 



Tools 

• .obj Analyzer 

• Total symbol sizes for all translation units together 

• Useless #include Remover 

• We have our own tool 

• Google’s include-what-you-use looks better 



Performance 



Performance Importance 

• Last console generation was 8 years 

• 90/10 principle: 10% of code running 90% of time. 

• Frame rate reality pushing us. 



Example 

struct Data 

{ 

    Data() { for (int i = 0; i < 64; ++i) 

        values[i] = i; } 

    int values[64]; 

}; 

 

Data* data = new Data[1 << 20];  // huge size 



Example 

int total = 0; 

 

for (int i = 0; i < size1; ++i) 

    for (int j = 0; j < size2; ++j) 

        total += data[j].values[i]; 

 

for (int j = 0; j < size2; ++j) 

    for (int i = 0; i < size1; ++i) 

        total += data[j].values[i]; 

On my PC:  
8 times faster 



Memory Hierarchy 

HDD 
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CPU 

L3 Cache 

L2 Cache 

L1 Cache 
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Data Cache Miss 

for (int j = 0; j < size2; ++j) 

    for (int i = 0; i < size1; ++i) 

        total += data[j].values[i]; 



Data Cache Miss 

for (int j = 0; j < size2; ++j) 

for (int i = 0; i < size1; ++i) 

        total += data[j].values[i]; 



Another Example 

struct MyClass { 

    int64_t m_Total = 0; 

    void UpdateTotal(int* values, int count); 

}; 

 



Another Example 

for (int i = 0; i < count; ++i) 
{ 
    m_Total += values[i]; 
} 
 
int64_t total = 0; 
for (int i = 0; i < count; ++i) 
{ 
    total += values[i]; 
} 
m_Total = total; 
 

On my PC: 12 times faster 



SingletonStorers 

struct MyLibSingletonStorer 

{ 

    MyManager m_MyManager; 

    MyOtherManager m_MyOtherManager; 

    ... 

}; 



Singletons 

template <typename T> 

class Singleton { 

  protected: Singleton() { ms_Inst = this; } 

  private: static T* ms_Inst = nullptr; 

  public: static T* GetInst() { return m_Inst;} 

}; 

 

class MyManager : public Singleton<MyManager> … 



GlobalSingleton 

struct MyLibSingletonStorer 

{ 

  GlobalSingleton<MyManager>::Scope m_MyManager; 

  MyOtherManager m_MyOtherManager; 

  ... 

}; 



GlobalSingleton 

void Construct() { new (&m_Data.m_Buffer)T(); } 

void Destroy() { GetInst().~T(); } 

T& GetInst() { return *(T*)&m_Data.m_Buffer; } 



Code Cache Miss 

struct Shape { 

  virtual void Draw()=0; 

  ... 

}; 

 

obj->Draw(); 

switch (shapeType) { 

  case CIRCLE_SHAPE: 

    ... 



Code Cache Miss 

struct Shape { 

  virtual void Draw()=0; 

  ... 

}; 

 

obj->Draw(); 

switch (shapeType) { 

  case CIRCLE_SHAPE: 

    ... 

vtable ptr 

code 

fct ptr 

x N types 

object ptr 



Code Cache Miss 

Array 

 

Inlined functions 

BaseArray 

 

A lot of stuff 

T 

Array 

 

A lot of stuff 

T 



Avoiding Heap 

• Heavy 

• Global 

• Fragmentation 



Avoiding Heap 



Avoiding Heap 

void Foo() 

{ 

    Array<ubiU32> values; 

    ... 

 



Avoiding Heap 

void Foo() 

{ 

    InplaceArray<ubiU32, 8> values; 

    ... 



Avoiding Heap 

 

    if (IsPtrOnStack(this)) 

        FrameAllocator::Allocate(...); 

    else 

        ... 

 



Debugging 



Challenges 

• Huge multithreaded codebase  

• Some bugs only reproducible in optimized targets 

• Avoid recompiling for debug options 

• Debug targets must be fast to be usable  



Some Disabled Stuff 

• Debug iterators 

• Visual Studio Debugger Heap (_NO_DEBUG_HEAP=1) 

• Windows Fault Tolerant Heap 



Debugging Release Code 



My Callstack is RIP 



My Callstack is RIP 



My Callstack is RIP 



Memory Tagging 

Particle* particle = 

  ubiNew(Particle, "FX Particle", fxManager); 

 



Breaks 



Memory Corruption 



Memory Corruption 

Page Read-Only Page Obj Read-Only Page 
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Questions? 


