
C++ in Huge AAA Games

Ubisoft Montreal

Nicolas Fleury, Technical Architect

Outline

1. Situation

2. Iteration Time

3. Performance

4. Debugging

5. Q&A

Situation

Ubisoft Montreal

• 2600+ employees. Biggest game studio in the world.

• Projects up to 1000 employees worldwide. Up to 400 in Mtl.

• Technology Group in Mtl of 300 developers.

• Windows-centric development environment.

Big Games

• Assassin's Creed Unity:

• 6.5 M C++ LOC for entire team code.

• 9 M more C++ LOC from outside project.

• 5 M C# LOC.

• Rainbow Six: Siege:

• 3.5 M C++ LOC for engine code from game team.

• 4.5 M C++ LOC from Technology Group.

• Rebuild All: 3 min to 5 min.

Code Structure

Core

Graphic

Engine

Gameplay

Editor

 (C#) TCP/IP

What we Don't Use

• No RTTI

• No Exception Handling

• No STL containers

• No Boost includes in Engine

Iteration Time

FastBuild

• Replacing MSBuild for C++

• Open Source (permissive) made by Franta Fulin

• Smarter DLL dependencies

• Better CPU usage

• Distribution and caching

• Unity builds built-in

Unity Builds

unity.cpp

a.cpp
a.cpp

a.cpp
a.cpp

a.cpp
a.cpp

a.cpp
a.cpp

a.cpp
a.cpp

a.cpp
n.cpp

Includes

workunity.cpp Includes

Other Points

• Precompiled headers

• /Ob1 in Debug targets

• Template classes with non-template base classes

Templates

Array

A lot of stuff

T

Array<int>

Array<float>

Array<MyClass1>

…

unity1.obj

Array<int>

Array<float>

Array<MyClass2>

Array<MyClass3>

…

unity2.obj

Array<int>

Array<float>

Array<MyClass1>

Array<MyClass3>

…

unityN.obj

…

Templates: Unify Code

Array

Inlined functions

BaseArray

A lot of stuff

T

Array

A lot of stuff

T

Generated Code

• IDL for object model

• Generated code regions in corresponding .h and .cpp files

• Avoiding some meta-programming

• Custom Edit and Continue through our own programming
language generating C++.

Tools

• .obj Analyzer

• Total symbol sizes for all translation units together

• Useless #include Remover

• We have our own tool

• Google’s include-what-you-use looks better

Performance

Performance Importance

• Last console generation was 8 years

• 90/10 principle: 10% of code running 90% of time.

• Frame rate reality pushing us.

Example

struct Data

{

 Data() { for (int i = 0; i < 64; ++i)

 values[i] = i; }

 int values[64];

};

Data* data = new Data[1 << 20]; // huge size

Example

int total = 0;

for (int i = 0; i < size1; ++i)

 for (int j = 0; j < size2; ++j)

 total += data[j].values[i];

for (int j = 0; j < size2; ++j)

 for (int i = 0; i < size1; ++i)

 total += data[j].values[i];

On my PC:
8 times faster

Memory Hierarchy

HDD

RAM

CPU

L3 Cache

L2 Cache

L1 Cache

Core

L1

L2

L3

L2

Cache

Core Core

L1

Core Core

L1 L1

L2

Core Core

L1 L1

L2

L3

L1

RAM

Data Cache Miss

for (int j = 0; j < size2; ++j)

 for (int i = 0; i < size1; ++i)

 total += data[j].values[i];

Data Cache Miss

for (int j = 0; j < size2; ++j)

for (int i = 0; i < size1; ++i)

 total += data[j].values[i];

Another Example

struct MyClass {

 int64_t m_Total = 0;

 void UpdateTotal(int* values, int count);

};

Another Example

for (int i = 0; i < count; ++i)
{
 m_Total += values[i];
}

int64_t total = 0;
for (int i = 0; i < count; ++i)
{
 total += values[i];
}
m_Total = total;

On my PC: 12 times faster

SingletonStorers

struct MyLibSingletonStorer

{

 MyManager m_MyManager;

 MyOtherManager m_MyOtherManager;

 ...

};

Singletons

template <typename T>

class Singleton {

 protected: Singleton() { ms_Inst = this; }

 private: static T* ms_Inst = nullptr;

 public: static T* GetInst() { return m_Inst;}

};

class MyManager : public Singleton<MyManager> …

GlobalSingleton

struct MyLibSingletonStorer

{

 GlobalSingleton<MyManager>::Scope m_MyManager;

 MyOtherManager m_MyOtherManager;

 ...

};

GlobalSingleton

void Construct() { new (&m_Data.m_Buffer)T(); }

void Destroy() { GetInst().~T(); }

T& GetInst() { return *(T*)&m_Data.m_Buffer; }

Code Cache Miss

struct Shape {

 virtual void Draw()=0;

 ...

};

obj->Draw();

switch (shapeType) {

 case CIRCLE_SHAPE:

 ...

Code Cache Miss

struct Shape {

 virtual void Draw()=0;

 ...

};

obj->Draw();

switch (shapeType) {

 case CIRCLE_SHAPE:

 ...

vtable ptr

code

fct ptr

x N types

object ptr

Code Cache Miss

Array

Inlined functions

BaseArray

A lot of stuff

T

Array

A lot of stuff

T

Avoiding Heap

• Heavy

• Global

• Fragmentation

Avoiding Heap

Avoiding Heap

void Foo()

{

 Array<ubiU32> values;

 ...

Avoiding Heap

void Foo()

{

 InplaceArray<ubiU32, 8> values;

 ...

Avoiding Heap

 if (IsPtrOnStack(this))

 FrameAllocator::Allocate(...);

 else

 ...

Debugging

Challenges

• Huge multithreaded codebase

• Some bugs only reproducible in optimized targets

• Avoid recompiling for debug options

• Debug targets must be fast to be usable

Some Disabled Stuff

• Debug iterators

• Visual Studio Debugger Heap (_NO_DEBUG_HEAP=1)

• Windows Fault Tolerant Heap

Debugging Release Code

My Callstack is RIP

My Callstack is RIP

My Callstack is RIP

Memory Tagging

Particle* particle =

 ubiNew(Particle, "FX Particle", fxManager);

Breaks

Memory Corruption

Memory Corruption

Page Read-Only Page Obj Read-Only Page

References

http://realtimecollisiondetection.net/pubs/GDC03_Ericson_Memory_
Optimization.ppt

http://fastbuild.org/docs/home.html

http://blog.teachbook.com.au/index.php/2012/02/memory-
hierarchy/
http://tfpsly.free.fr/english/optimization.html
http://www.gamasutra.com/view/feature/132084/sponsored_featur
e_common_.php

http://fgiesen.wordpress.com/2014/07/07/cache-coherency/

http://realtimecollisiondetection.net/pubs/GDC03_Ericson_Memory_Optimization.ppt
http://realtimecollisiondetection.net/pubs/GDC03_Ericson_Memory_Optimization.ppt
http://realtimecollisiondetection.net/pubs/GDC03_Ericson_Memory_Optimization.ppt
http://fastbuild.org/docs/home.html
http://fastbuild.org/docs/home.html
http://blog.teachbook.com.au/index.php/2012/02/memory-hierarchy/
http://blog.teachbook.com.au/index.php/2012/02/memory-hierarchy/
http://blog.teachbook.com.au/index.php/2012/02/memory-hierarchy/
http://blog.teachbook.com.au/index.php/2012/02/memory-hierarchy/
http://blog.teachbook.com.au/index.php/2012/02/memory-hierarchy/
http://tfpsly.free.fr/english/optimization.html
http://tfpsly.free.fr/english/optimization.html
http://tfpsly.free.fr/english/optimization.html
http://www.gamasutra.com/view/feature/132084/sponsored_feature_common_.php
http://www.gamasutra.com/view/feature/132084/sponsored_feature_common_.php
http://www.gamasutra.com/view/feature/132084/sponsored_feature_common_.php
http://www.gamasutra.com/view/feature/132084/sponsored_feature_common_.php
http://fgiesen.wordpress.com/2014/07/07/cache-coherency/
http://fgiesen.wordpress.com/2014/07/07/cache-coherency/
http://fgiesen.wordpress.com/2014/07/07/cache-coherency/
http://fgiesen.wordpress.com/2014/07/07/cache-coherency/

Questions?

