

0xBADC0DE
CppCon 2014

Jens Weller
Meeting C++

info@codenode.de
info@meetingcpp.com

@meetingcpp

About me

● * '81
● C++ since '98
● Vodafone '02-'07
● C++ Freelancer '07
● C++ UG NRW '11
● Meeting C++ '12

Meeting C++

● Conference
● 2012: 150 Attendees
● 2013: 200 Attendees
● 2014: 300 Attendees

– including 50 Students

● Website & Blog for C++
● Platform for C++ User Groups in Europe
● Goal

● Building a (european) C++ Network

0xBADC0DE

<:]{%>

0xBADC0DE

[]{}
● (empty) C++11 Lambda

0xBADC0DE

goto fail;

0xBADC0DE

goto fail;
● Should not have happend
● But it did!
● Its a bug.
● A bug can result from bad code.

F*ck...

0xBADC0DE

● Your own code?
● Maybe the code of

● the person next to you?
● your boss?
● ...

Weeks of coding can save you
hours of planning!

unknown programmer

0xBADC0DE

Poor mans C++

(What me originally made think about this topic)

Who is the poor man?

„A person whos main concern is not C++,
C++ is seen in the role of a tool“

Who is the poor man?

● This is just one category
● The poor man usually is not poor

● just not a C++ Expert
● basic („poor“) C++ knowledge

● Often is an expert
● but in a different domain
● e.g. scientists, other

programminglanguages

Its maybe not even his fault

● As C++ is only seen as a tool
● time to improve skills is limited

● „But this works too“
● Copy & Paste Evolution

● C & P old solution
● Mutate the things you need
● Old code can live very long

Typical Problems

● poor design knowledge
● mixing old techniques and C into C++
● C with Classes
● Old C++ Books
● new Problems

● aka memoryleaks

● clash of styles
● loops vs. algorithms

There is hope!

● The 'poor man'
can be educated!

● as experts, they're
willing to learn

There is hope!

● Maybe hard to reach
● due workload
● C++ is not

primary concern

Why fix it, if it ain't broke?

0xBADC0DE

Examples of bad code

Examples of 0xBADC0DE

● new more::Problems
● Layers of Engineering
● Classdesign
● Monster (classes | methods/functions)
● init 'patterns'
● Money $ €

Memoryleaks

● There is a certain overuse of new
● People forget often delete or delete[]

● 'java' like C++ - no deletes
● not always a show stopper

● Ownership concepts can reduce problem
● smart pointers
● objecthierachies (QObject e.g.)

Code Example (Qt)

void MainWindow::on_action()
{
 MyDialog* dlg = new MyDialog(0, "bad code");
 if(dlg->exec()) ...

● Memoryleak
● Resourceleak
● Parent delete?

void MainWindow::on_action()
{
 MyDialog* dlg = new MyDialog(this, "bad code");
 if(dlg->exec()) ...

void MainWindow::on_action()
{
 MyDialog dlg(this, "ok if parent lives longer");
 if(dlg.exec())...
}

void MainWindow::on_action()
{
 auto *dlg = new MyDialog(this, "noexcept");
 …
 dlg->deleteLater(); // Qt Framework specific
 // pending events are processed

Memoryleaks

● What are smart pointers?
● RAII and similar techniques are still often

unknown
● Pointerstyle

– overusing pointers
– overusing smartpointers
– shared_ptr addiction

Stack > Smartpointer > raw owning pointer

Refactoring

● Introducing smart pointers
● Interdependencies can make this hard
● Pointeroverusage vs.

Smartpointeroverusage

● a rare case with delete
● slowed my program
● so importprogram was faster without.

Layers of Engineering

● Hiding code through layers
● Nice Surface & rotten hidden Parts.
● Example: projects with a longer history
● //Don't touch that code area
● Rather adding a new layer then doing

proper refactoring
● Poor documentation

Layers of Engineering

● New Features > Bugfixes
● Bugfixes > Refactoring
● Refactoring > Documentation

Bugs

Classdesign

● Monsterclasses
● Dependency Hell
● OOP Overusage
● Interface vs. Implementation

● example

Classdesign

class Parameter
…
public:
 virtual bool validate(FieldID id){return true;};// FieldID is an enum
 virtual bool validate(QString fieldname){return true;}
…

class MyParameter : public Parameter// Problem
…
public:
 virtual bool validate(FieldID id){/*long validation*/}
 virtual bool validate(QString fieldname){return true;}
…

class Parameter {// Solution
public:
 virtual bool validate(FieldID id){/*long validation*/}
 virtual bool validate(QString fieldname){
 return validate(name2fieldID(fieldname));
 }
…

Classdesign

class Parameter
…
public:
 virtual bool validate(FieldID id){return true;};// FieldID is an enum
 virtual bool validate(QString fieldname){return true;}
…

class MyParameter : public Parameter// Problem
…
public:
 virtual bool validate(FieldID id){/*long validation*/}
 // don't forget to fix your code!
…

class Parameter {// Solution
public:
 virtual bool validate(FieldID id){/*long validation*/}
 virtual bool validate(QString fieldname){
 return validate(name2fieldID(fieldname));
 }
…

Classdesign

● Non virtual Interfaces
● good pattern for OOP
● I've seen it rarely in application code

● Pattern (Gang of 4)
● good knowledge
● Patterns need to be correctly

– implemented
– used

Monsters

● Monsterclasses are quite common
● layering can be a cause
● adding new features to existing classes

● Monstermethods/functions
● I'd love to get a tool for average and

median method lenght in LoC.
● switches + copy paste

● Refactoring needed (again)

Init 'Pattern'

● Often are init methods used
● calling virtual functions
● a valid object must call init after

construction

● Example:
● Bada SDK from Samsung
● Some projects I've seen

Init 'Pattern'

● Use constructors properly...
● Avoid virtual function calls

● for initializing your objects

● if you can't
● force make functions or factories
● make your constructors private
● dont forget op=, move-op
● rule of 0/5 defaults if no implementation

Money $ €

● Using float for your cash
– every now and then you loose a cent.

● Money should be a type
– Store as cents in 1000

„It doesn't make sense, it makes you loose cents“

Anti Patterns

● Design Patterns
● Gang of 4

● Antipatterns
● Singleton
● God Objects
● Monsterclasses
● OO Overuse
● C++11/14:

new/delete

● Antipattern Catalog

http://c2.com/cgi/wiki?AntiPatternsCatalog

MACROS are EVIL

More Examples?

● at a code base near you!
● Maybe in your next job

Dealing with / Using bad code

Fixing > Dealing > Using
Fixing < Dealing < Using

Fixing

● When ever you can, fix!
● but don't become

Don Quijote!

● But is bad code the problem?
● maybe its a symptom

● Maybe you can't fix it.
● so deal with it?

Image: Wikipedia

http://de.wikipedia.org/wiki/Datei:Monumento_a_Cervantes_(Madrid)_10.jpg

On refactoring...

On Refactoring...

(Martin Fowler at OOP 2014)

Dealing with bad code

● Nobody has bad code thats not used
● Fixing bad code involes dealing with it.
● Refactoring or Rewriting

● not always an option :/

● New or unknown parts of the code base

Dealing with bad code

● Static code analysis
● use these Tools!

– CppCheck, Clang static analyzer
– commercial tools

● gives you a first overview
● you'll get a list of things to fix
● Clang modernize

● Documentation
● doxygen + graphviz

What if you can't fix it?

Image: Photographed by William Rafti of the William Rafti Institute. CC 2.5 US

http://de.wikipedia.org/wiki/Datei:Sharps_Container.jpg

Dealing with using bad code

● Sometimes you can't fix it
● But you can deal with that

● don't spread it yourself

● Contain it safely
● Try to fix later!

Prevention

● Educate your teams and coworkers!
● and your Management

● Analyze how to improve your teams code
quality!

● Update your companies C++ Books!!!
● Don't reinvent the wheel

● use libraries

While I'm at Libraries...

● I think it is a good practice to develop in
modules/libraries

● Even application code
● This forces at least a thought how to

define an Interface

Instead of this

YOUR APPLICATION

Libraries
C++ Standard Library, Qt, boost, ...

Modularize your Application

YOUR APPLICATION Stub

Libraries
C++ Standard Library, Qt, boost, …

Application Layer of Libraries

YOUR UNIT TESTs

0xBADC0DE

Prefer library code over application code

Bad Code Culture

Product Manager Project Manager

Programmer

A lot of problems exist in hierachies,
and lack of knowledge about
softwaredevelopment in higher
positions.

Feature oriented development makes
refactoring hard. It keeps people
busy with new features and new bug
fixes.

Bad Code Culture

● Not always its the programmers fault!
● bad „Work“environments

● Testing is not an industry standard
● Testing is often not understood
● Testcoverage is poor or 0

● Not all IDE/Tools produce good code

Layers of Engineering

● New Features > Bugfixes
● Bugfixes > Refactoring
● Refactoring > Documentation
● Tests?

Testing, lack of

● „Of course we do test“
● „No we don't write Unit Tests“
● Testing is not an industry standard
● Testlibraries

● boost::test, google test/mock, CppUnit
● C++11: Catch
● And there is a lot more out there

Testtooling support

● IDEs do not support testing!
● default projects should include tests!
● default projects are often used...

● Testcoverage in Tutorials and Books is
often rather poor

● Tests are heavily underused in the
industry.

IT is not very healthy...

● Our industry „kills“ people every year
● Life is too short for bad work environments

● if you can't change it
● get out, get a new C++ job

A hamster wheel can look like a career ladder
from the inside...

Seeing the bigger picture

● We're moving towards newer, better
standards

● Not all code can be rewritten
● C++ code base is huge
● With a constantly evolving C++ Standard

● refactorings should occur more often

C++ Education

● You never finish learning C++
● You should never finish exchanging C++

knowledge
● Fixing bad code does not prevent it
● Educating and reaching more people who

write C++ could achieve this.
– Code Dojo

Books

● C++11
– Bjarne

– C++ Primer

● API/Design
– Modern C++

– API Design for
C++

● My recommondations
● List on Stackoverflow

http://www.meetingcpp.com/index.php/books.html
http://stackoverflow.com/questions/388242/the-definitive-c-book-guide-and-list

Books

● API design for C++
– Martin Reddy

● Good, general
overview on
different
development
related practices.

● Testing, Scripting,
API Design

C++ User Groups

● Local active C++ Networks
● Education
● Jobs
● Exchange of Knowledge
● helping Talents

● Basic Building Block C++ Community
● global
● interconnected

(My) Conclusions I

● Goals
● make you think of a solution that fits your needs

● IMHO no global solution easily possible

● Bad Code
● can mean a lot of things
● it depends on your own knowledge

● Prefer library over application code

(My) Conclusions II

● dealing with bad code
● fix/improve it if you can
● don't spread it if you can't
● contain it if you need to

● let Tools help you
● static code analysis
● doxygen & documentation
● clang modernize

(My) Conclusions III

● Prevention
● educate your teams and coworkers

– AND management.
● update C++ books
● visit C++ Conferences! (scnr)

● be engaged in the community
● share your knowledge
● commit code to opensource projects

– at least once a year (thanks to Eric)

(My) Conclusions

● C++11/14 are fundamental standards
● Help create a better world with modern C++!
● Modern C++ can prevent a lot of bad code

Last slide...

Thank you &
Questions?

info@codenode.de
info@meetingcpp.com

@meetingcpp

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

