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About me

o *'81

 C++ since '98

* Vodafone '02-'07
 C++ Freelancer '07
e C++ UG NRW '11
 Meeting C++ '12




Meeting C++

Conference

e 2012: 150 Attendees
e 2013: 200 Attendees

e 2014: 300 Attendees
- Including 50 Students

Website & Blog for C++
Platform for C++ User Groups in Europe

Goal
 Building a (european) C++ Network
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e (empty) C++11 Lambda
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goto fall;
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goto fall;

» Should not have happend Wit

 But it did! AT

* |ts a bug.

* A bug can result from bad code. L
I




F*ck...

[ P

)
b

I
ﬁ"‘.
P
L1 Sl
LR
e
4y
| L




OxBADCODE

* YOour own code?
* Maybe the code of

 the person next to you?
* yOur boss?




Weeks of coding can save you
hours of planning!

unknown programmer
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Poor mans C++

(What me originally made think about this topic)




Who is the poor man?

A person whos main concern is not C++,
C++ Is seen In the role of a tool”

e




Who is the poor man?

* This Is just one category

* The poor man usually is not poor
 just not a C++ Expert
e pasic (,poor*) C++ knowledge
* Often Is an expert

e but in a different domain

e e.g. scientists, other
programminglanguages




Its maybe not even his fault

 As C++ Is only seen as a tool
 time to improve skills is limited
 .But this works too*

* Copy & Paste Evolution [P
 C & P old solution i J
e Mutate the things you need 1; L
» Old code can live very long =




Typical Problems

poor design knowledge

mixing old techniques and C into C++ Sl

C with Classes U
Old C++ Books izian
new Problems

« aka memoryleaks
clash of styles

* |loops vs. algorithms




There Is hope!

e The '‘poor man'
can be educated!

* as experts, they're
willing to learn

Education.

SOME
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There Is hope!

 Maybe hard to reach

 due workload

 C++ IS not
primary concern
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Why fix it, If it ain't broke?

JI 4
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Examples of bad code
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Examples of 0OxBADCODE

new more::Problems

Layers of Engineering

Classdesign

Monster (classes | methods/functions)
Init 'patterns’

Money $ €
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Memoryleaks —an
e There is a certain overuse of new Er A _-._R
* People forget often delete or delete|] E |
e 'lava’ like C++ - no deletes :
* not always a show stopper - J
« Ownership concepts can reduce problem [
e smart pointers J il

* objecthierachies (QObject e.g.)




Code Example (Qt)

 Memoryleak
e Resourceleak
e Parent delete?

ot




Memoryleaks

 What are smart pointers?

 RAIl and similar techniques are still often
unknown

* Pointerstyle

— overusing pointers
- overusing smartpointers
- shared_ptr addiction

Stack > Smartpointer > raw owning pointer
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Refactoring Wi

* Introducing smart pointers =

* Interdependencies can make this hard

e Pointeroverusage Vvs.

Smartpointeroverusage Niiz

e arare case with delete

 slowed my prog)am @ y

e SO importprogram was faster without. 7=
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Layers of Engineering Wisis

i =
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* Hiding code through layers

 Nice Surface & rotten hidden Parts.

_,-" == ' o
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« Example: projects with a longer history {n

 //Don't touch that code area imin

» Rather adding a new layer then doing

proper refactoring

e Poor documentation




Layers of Engineering

 New Features > Bugfixes
* Bugfixes > Refactoring
* Refactoring > Documentation
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Classdesign

Monsterclasses
Dependency Hell

OOP Overusage

Interface vs. Implementation

e example

1
e
%




Classdesign
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Classdesign
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Classdesign

* Non virtual Interfaces
» good pattern for OOP

* |'ve seen it rarely in application code
» Pattern (Gang of 4)
e good knowledge

« Patterns need to be correctly

- Implemented
- used




Monsters

e Monsterclasses are quite common

 layering can be a cause
e adding new features to existing classes

e Monstermethods/functions

 |'d love to get a tool for average and
median method lenght in LoC.

e switches + copy paste
* Refactoring needed (again)

e




Init 'Pattern’

e Often are init methods used

 calling virtual functions

 a valid object must call init after
construction

 Example:

e Bada SDK from Samsung
 Some projects I've seen
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Init 'Pattern’ e
« Use constructors properly... Er |
 Avoid virtual function calls E i
o for initializing your objects : |
* If you can't D

e force make functions or factories

* make your constructors private d

« dont forget op=, move-op

 rule of 0/5 defaults If no implementation




Money $ €

» Using float for your cash

- every now and then you loose a cent.
 Money should be a type
— Store as cents in 1000 b

.It doesn’'t make sense, it makes you loose cents* l
m "-_.:L '*~.|




Anti Patterns

* Design Patterns

« Gang of 4

Design Patterns

Elements of Reusable
Object- Orlented Software

Erich Gamma’
Richard Helm
Ralph Johnson
john Vhss:des
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* Antipatterns

e Singleton

m,ate" - God Objects

Monsterclasses
OO Overuse

C++11/14:
new/delete

* Antipattern Catalog



http://c2.com/cgi/wiki?AntiPatternsCatalog

MACROS are EVIL
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More Examples?

» at a code base near you!
* Maybe In your next job

-
o ..
. =
1
T

—
L -




Dealing with /| Using bad code

Fixing > Dealing > Using
Fixing < Dealing < Using
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Fixing

* When ever you can, fix!

 but don't become
Don Quijote!

» But is bad code the problem? X SRk | !
? : . b A

 maybe Iits a symptom
 Maybe you can't fix It.

e so deal with 1t?

Image: Wikipedia



http://de.wikipedia.org/wiki/Datei:Monumento_a_Cervantes_(Madrid)_10.jpg

On refactoring...

Code refactoring

i
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On Refactoring...
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Why Refactor?

Quality

= I—Kf|_'__-.?__r.,]{7|. r__! .'..!._
T A

Clean/_ode

Economics
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(Martin Fowler at OOP 2014) ==




Dealing with bad code

Nobody has bad code thats not used

Fixing bad code involes dealing with it. Sl

Refactoring or Rewriting UL

e not always an option :/ ; ﬂ’ L
New or unknown parts of the code base




Dealing with bad code

» Static code analysis

e use these Tools!

- CppCheck, Clang static analyzer
- commercial tools

e gives you a first overview

« you'll get a list of things to fix

e Clang modernize
e Documentation

e doxygen + graphviz




What if you can't fix it? =TT

L i

Image: Photographed by William Rafti of the William Ratfti Institute. CC 2.5 US



http://de.wikipedia.org/wiki/Datei:Sharps_Container.jpg

Dealing with using bad code

Sometimes you can't fix it

But you can deal with that

7
e don't spread it yourself T# |
Contain it safely |

Try to fix later!




Prevention

* Educate your teams and coworkers!
e and your Management

* Analyze how to improve your teams code
guality!

 Update your companies C++ Books!!!
* Don't reinvent the wheel

e use libraries




While I'm at Libraries...

* | think it Is a good practice to develop in
modules/libraries

* Even application code

» This forces at least a thought how to ImiSE
define an Interface ki




Instead of this

T




Modularize your Application
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Prefer library code over application code




Bad Code Culture

Product Manager <:> Project Manager

A lot of problems exist in hierachies,
and lack of knowledge about
softwaredevelopment in higher
positions.

_ Programmer
Feature oriented development makes

refactoring hard. It keeps people
busy with new features and new bug
fixes.

iRz
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Bad Code Culture

* Not always its the programmers fault!
e pad ,Work“environments
» Testing Is not an industry standard

e Testing is often not understood
e Testcoverage is poor or 0

* Not all IDE/Tools produce good code




Layers of Engineering

New Features > Bugfixes
Bugfixes > Refactoring
Refactoring > Documentation
Tests?




Testing, lack of

,Of course we do test"

No we don't write Unit Tests"

"esting Is not an industry standard

Testlibraries

* boost::test, google test/mock, CppUnit
« C++11: Catch
* And there is a lot more out there




Testtooling support

* |DES do not support testing!
» default projects should include tests!
» default projects are often used...

* Testcoverage In Tutorials and Books Is
often rather poor

» Tests are heavily underused in the
iIndustry.




IT Is not very healthy...

* Our industry ,kills“ people every year

 Life Is too short for bad work environments
 If you can't change it
e get out, get a new C++ job
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A hamster wheel can look like a career ladder
from the Iinside...
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Seeing the bigger picture

* \WWe're moving towards newer, better
standards

 Not all code can be rewritten ]|

» C++ code base is huge imis

- With a constantly evolving C++ Standard |

e refactorings should occur more often i




L
C++ Education -
You never finish learning C++ 155, i

You should never finish exchanging C++ E
knowledge

Fixing bad code does not prevent it imis

Educating and reaching more people who [
write C++ could achieve this. T

- Code Dojo




Books
e C++11 - My recommondations -
- Bjarne » List on Stackoverflo
- C++ Primer
* API/Design
- Modern C++
- API Design for
C++



http://www.meetingcpp.com/index.php/books.html
http://stackoverflow.com/questions/388242/the-definitive-c-book-guide-and-list

Books

» API design for C++ f-— '
- Martin Reddy B[] || |

« Good, general
overview on
different
development Smivaw
related practices. |

* Testing, Scripting,
API| Design




C++ User Groups

e | ocal active C++ Networks

e Education
e Jobs il
« Exchange of Knowledge hiS
* helping Talents Pl
- Basic Building Block C++ Community HPC
 global L :

e Interconnected




(My) Conclusions |

e Goals

« make you think of a solution that fits your needs & |

 IMHO no global solution easily possible NIl
 Bad Code

e can mean a lot of things

* It depends on your own knowledge AT
» Prefer library over application code




(My) Conclusions I

» dealing with bad code

* fix/improve it if you can

e don't spread it if you can't

e contain it iIf you need to
 let Tools help you

 static code analysis
e doxygen & documentation

e clang modernize




-
=

(My) Conclusions I Wi

 Prevention I

e educate your teams and coworkers F“ |
- AND management. \

e update C++ books

 visit C++ Conferences! (scnr)

* be engaged in the community B y

* share your knowledge 7S

e commit code to opensource projects
- at least once a year (thanks to Eric)




(My) Conclusions

e C++11/14 are fundamental standards

 Help create a better world with modern C++!
« Modern C++ can prevent a lot of bad code

o e 4 i




Last slide...

Thank you &

Questions? =St
info@codenode.de i
info@meetingcpp.com T

@meetingcpp
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