OxBADCODE
CppCon 2014

Jens Weller
Meeting C++
iInNfo@codenode.de
InNfo@meetingcpp.com
@meetingcpp

About me

o *'81

 C++ since '98

* Vodafone '02-'07
 C++ Freelancer '07
e C++ UG NRW '11
 Meeting C++ '12

Meeting C++

Conference

e 2012: 150 Attendees
e 2013: 200 Attendees

e 2014: 300 Attendees
- Including 50 Students

Website & Blog for C++
Platform for C++ User Groups in Europe

Goal
 Building a (european) C++ Network

OxBADCODE

<:{%>

I/-‘H- ' e .Ir-. 1i'.
ra A 1

OxBADCODE

Iit;

e (empty) C++11 Lambda

,-l'l... ' o - .

OxBADCODE

goto fall;

1 |‘
L} lll.l
e R []
Lk h 1
g 2
1 -
1
——
"__br_
A
_Il _"‘ -
N
- g
| b
InEE
I =k
(S
L/
i
1 &
= A
q
=

e

T

OxBADCODE

=q=Fﬁ"I'|u 1
- | | - | Fal
-
‘ i b 1 ;:
- o |

' %
_.‘_l = { | ==
. st
. I-\"\I -I | |
N

goto fall;

» Should not have happend Wit

 But it did! AT

* |ts a bug.

* A bug can result from bad code. L
I

F*ck...

[P

)
b

I
ﬁ"‘.
P
L1 Sl
LR
e
4y
| L

OxBADCODE

* YOour own code?
* Maybe the code of

 the person next to you?
* yOur boss?

Weeks of coding can save you
hours of planning!

unknown programmer

o ..

. =
1

ATy

OxBADCODE ‘“

—
L -

Poor mans C++

(What me originally made think about this topic)

Who is the poor man?

A person whos main concern is not C++,
C++ Is seen In the role of a tool”

e

Who is the poor man?

* This Is just one category

* The poor man usually is not poor
 just not a C++ Expert
e pasic (,poor*) C++ knowledge
* Often Is an expert

e but in a different domain

e e.g. scientists, other
programminglanguages

Its maybe not even his fault

 As C++ Is only seen as a tool
 time to improve skills is limited
 .But this works too*

* Copy & Paste Evolution [P
 C & P old solution i J
e Mutate the things you need 1; L
» Old code can live very long =

Typical Problems

poor design knowledge

mixing old techniques and C into C++ Sl

C with Classes U
Old C++ Books izian
new Problems

« aka memoryleaks
clash of styles

* |loops vs. algorithms

There Is hope!

e The '‘poor man'
can be educated!

* as experts, they're
willing to learn

Education.

SOME

THOUGHTS

CONCERNING

Sk
888

L2

LONDO N,
Printed for 4 and . Churehil,

ar the Black Swam in Pater-

mifter-row, 1693,

There Is hope!

 Maybe hard to reach

 due workload

 C++ IS not
primary concern

e |
|

Y

=)
=

HE
|
|
By 1S
1 ' L
=)
iy

Why fix it, If it ain't broke?

JI 4

OxBADCODE

Examples of bad code

I T

Examples of 0OxBADCODE

new more::Problems

Layers of Engineering

Classdesign

Monster (classes | methods/functions)
Init 'patterns’

Money $ €

P

i

)

EH
&l thoAl
Memoryleaks —an
e There is a certain overuse of new Er A _-._R
* People forget often delete or delete|] E |
e 'lava’ like C++ - no deletes :
* not always a show stopper - J
« Ownership concepts can reduce problem [
e smart pointers J il

* objecthierachies (QObject e.g.)

Code Example (Qt)

 Memoryleak
e Resourceleak
e Parent delete?

ot

Memoryleaks

 What are smart pointers?

 RAIl and similar techniques are still often
unknown

* Pointerstyle

— overusing pointers
- overusing smartpointers
- shared_ptr addiction

Stack > Smartpointer > raw owning pointer

-
=

Refactoring Wi

* Introducing smart pointers =

* Interdependencies can make this hard

e Pointeroverusage Vvs.

Smartpointeroverusage Niiz

e arare case with delete

 slowed my prog)am @ y

e SO importprogram was faster without. 7=

i

Layers of Engineering Wisis

i =
-

* Hiding code through layers

 Nice Surface & rotten hidden Parts.

_,-" == ' o
] i
|.__lI -l |

« Example: projects with a longer history {n

 //Don't touch that code area imin

» Rather adding a new layer then doing

proper refactoring

e Poor documentation

Layers of Engineering

 New Features > Bugfixes
* Bugfixes > Refactoring
* Refactoring > Documentation

Y|

Classdesign

Monsterclasses
Dependency Hell

OOP Overusage

Interface vs. Implementation

e example

1
e
%

Classdesign

B[] |
1

|

=i

11|

Il

. I | -
%
an

E—— 1
"

i e b i i i i v i il

)

Classdesign

B[] |
1

|

=i

11|

Il

. I | -
%
an

E—— 1
"

i e b i i i i v i il

)

Classdesign

* Non virtual Interfaces
» good pattern for OOP

* |'ve seen it rarely in application code
» Pattern (Gang of 4)
e good knowledge

« Patterns need to be correctly

- Implemented
- used

Monsters

e Monsterclasses are quite common

 layering can be a cause
e adding new features to existing classes

e Monstermethods/functions

 |'d love to get a tool for average and
median method lenght in LoC.

e switches + copy paste
* Refactoring needed (again)

e

Init 'Pattern’

e Often are init methods used

 calling virtual functions

 a valid object must call init after
construction

 Example:

e Bada SDK from Samsung
 Some projects I've seen

i
o

Init 'Pattern’ e
« Use constructors properly... Er |
 Avoid virtual function calls E i
o for initializing your objects : |
* If you can't D

e force make functions or factories

* make your constructors private d

« dont forget op=, move-op

 rule of 0/5 defaults If no implementation

Money $ €

» Using float for your cash

- every now and then you loose a cent.
 Money should be a type
— Store as cents in 1000 b

.It doesn’'t make sense, it makes you loose cents* l
m "-_.:L '*~.|

Anti Patterns

* Design Patterns

« Gang of 4

Design Patterns

Elements of Reusable
Object- Orlented Software

Erich Gamma’
Richard Helm
Ralph Johnson
john Vhss:des

=
e
=
w
~
e
o
=
=
m
w
S
m
=<
)
2
'®)
@)
=
L
W
(s}
O
Z
b
s
()
;_:.
-
s
)
=
=]
rd
()
w
m
=
m
w

* Antipatterns

e Singleton

m,ate" - God Objects

Monsterclasses
OO Overuse

C++11/14:
new/delete

* Antipattern Catalog

http://c2.com/cgi/wiki?AntiPatternsCatalog

MACROS are EVIL

——r

JI 4

More Examples?

» at a code base near you!
* Maybe In your next job

-
o ..
. =
1
T

—
L -

Dealing with /| Using bad code

Fixing > Dealing > Using
Fixing < Dealing < Using

o N |
'ﬂ"_‘.l *s-!'!
7]
)

—
L -

Fixing

* When ever you can, fix!

 but don't become
Don Quijote!

» But is bad code the problem? X SRk | !
? : . b A

 maybe Iits a symptom
 Maybe you can't fix It.

e so deal with 1t?

Image: Wikipedia

http://de.wikipedia.org/wiki/Datei:Monumento_a_Cervantes_(Madrid)_10.jpg

On refactoring...

Code refactoring

i

o e 4 i

L 0 |

F
fa ? Wl
|

On Refactoring...

B

i
||

ﬂﬁ
5

i

Why Refactor?

Quality

= I—Kf|_'__-.?__r.,]{7|. r__! .'..!._
T A

Clean/_ode

Economics

V[—F—=FFT
e

T I T -|_|.I

(Martin Fowler at OOP 2014) ==

Dealing with bad code

Nobody has bad code thats not used

Fixing bad code involes dealing with it. Sl

Refactoring or Rewriting UL

e not always an option :/ ; ﬂ’ L
New or unknown parts of the code base

Dealing with bad code

» Static code analysis

e use these Tools!

- CppCheck, Clang static analyzer
- commercial tools

e gives you a first overview

« you'll get a list of things to fix

e Clang modernize
e Documentation

e doxygen + graphviz

What if you can't fix it? =TT

L i

Image: Photographed by William Rafti of the William Ratfti Institute. CC 2.5 US

http://de.wikipedia.org/wiki/Datei:Sharps_Container.jpg

Dealing with using bad code

Sometimes you can't fix it

But you can deal with that

7
e don't spread it yourself T# |
Contain it safely |

Try to fix later!

Prevention

* Educate your teams and coworkers!
e and your Management

* Analyze how to improve your teams code
guality!

 Update your companies C++ Books!!!
* Don't reinvent the wheel

e use libraries

While I'm at Libraries...

* | think it Is a good practice to develop in
modules/libraries

* Even application code

» This forces at least a thought how to ImiSE
define an Interface ki

Instead of this

T

Modularize your Application

OxBADCODE

Prefer library code over application code

Bad Code Culture

Product Manager <:> Project Manager

A lot of problems exist in hierachies,
and lack of knowledge about
softwaredevelopment in higher
positions.

_ Programmer
Feature oriented development makes

refactoring hard. It keeps people
busy with new features and new bug
fixes.

iRz

i

)

Bad Code Culture

* Not always its the programmers fault!
e pad ,Work“environments
» Testing Is not an industry standard

e Testing is often not understood
e Testcoverage is poor or 0

* Not all IDE/Tools produce good code

Layers of Engineering

New Features > Bugfixes
Bugfixes > Refactoring
Refactoring > Documentation
Tests?

Testing, lack of

,Of course we do test"

No we don't write Unit Tests"

"esting Is not an industry standard

Testlibraries

* boost::test, google test/mock, CppUnit
« C++11: Catch
* And there is a lot more out there

Testtooling support

* |DES do not support testing!
» default projects should include tests!
» default projects are often used...

* Testcoverage In Tutorials and Books Is
often rather poor

» Tests are heavily underused in the
iIndustry.

IT Is not very healthy...

* Our industry ,kills“ people every year

 Life Is too short for bad work environments
 If you can't change it
e get out, get a new C++ job

P

i

)

A hamster wheel can look like a career ladder
from the Iinside...

1 I
._\l =t J
— 1
'_ll'- n []
. uf noom
£

"l-_l iy 1
i
P —
T B

o e 4 i

Seeing the bigger picture

* \WWe're moving towards newer, better
standards

 Not all code can be rewritten]|

» C++ code base is huge imis

- With a constantly evolving C++ Standard |

e refactorings should occur more often i

L
C++ Education -
You never finish learning C++ 155, i

You should never finish exchanging C++ E
knowledge

Fixing bad code does not prevent it imis

Educating and reaching more people who [
write C++ could achieve this. T

- Code Dojo

Books
e C++11 - My recommondations -
- Bjarne » List on Stackoverflo
- C++ Primer
* API/Design
- Modern C++
- API Design for
C++

http://www.meetingcpp.com/index.php/books.html
http://stackoverflow.com/questions/388242/the-definitive-c-book-guide-and-list

Books

» API design for C++ f-— '
- Martin Reddy B[] || |

« Good, general
overview on
different
development Smivaw
related practices. |

* Testing, Scripting,
API| Design

C++ User Groups

e | ocal active C++ Networks

e Education
e Jobs il
« Exchange of Knowledge hiS
* helping Talents Pl
- Basic Building Block C++ Community HPC
 global L :

e Interconnected

(My) Conclusions |

e Goals

« make you think of a solution that fits your needs & |

 IMHO no global solution easily possible NIl
 Bad Code

e can mean a lot of things

* It depends on your own knowledge AT
» Prefer library over application code

(My) Conclusions I

» dealing with bad code

* fix/improve it if you can

e don't spread it if you can't

e contain it iIf you need to
 let Tools help you

 static code analysis
e doxygen & documentation

e clang modernize

-
=

(My) Conclusions I Wi

 Prevention I

e educate your teams and coworkers F“ |
- AND management. \

e update C++ books

 visit C++ Conferences! (scnr)

* be engaged in the community B y

* share your knowledge 7S

e commit code to opensource projects
- at least once a year (thanks to Eric)

(My) Conclusions

e C++11/14 are fundamental standards

 Help create a better world with modern C++!
« Modern C++ can prevent a lot of bad code

o e 4 i

Last slide...

Thank you &

Questions? =St
info@codenode.de i
info@meetingcpp.com T

@meetingcpp

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

