The Philosophy of
Google ~ Google’s C++ Style

Titus Winters (titus@google.com)
C++ Codebase Cultivator



mailto:titus@google.com

Google

5

. | AN ?' |
.ﬁ WN N

B ﬂ
Do 1|l

ey W(I J(fﬂ



Google Style Guides!
Titus Winters (titus@google.com)



Google
How Should We Format Our Code?



BORING
QUESTION!



Google
What Goes in a Style Guide?



What G

WRONG
QUESTION!



Google
What is the Purpose of a Style Guide?



Google
What is the Purpose of a Style Guide?

What's the purpose of any rule or set of rules your organization puts
out?



Google
What is the Purpose of a Style Guide?

What's the purpose of any rule or set of rules your organization puts
out?

e Heavy handed throw-your-weight-around hoop jumping




Google
What is the Purpose of a Style Guide?

What's the purpose of any rule or set of rules your organization puts
out?

o Make it harder for people to do bad thlngs, encourage “good”
things

o Clearly depends on your organization’s goals



Google

Outline

e The underpinnings of Google's C++ Style Guide
e The contentious rules
e Plenty of time for Q&A



About Us



Google

Context about Google

e 4K-ish C++ engineers
Shared codebase
o Strong testing culture

Good indexer (Kythe)

Wild variance in C++ background

Good code review policies

We expect we’'ll be around for a while, and should plan accordingly

Most projects check into the same codebase. Most engineers have
read access to most code. Most projects use the same infrastructure
(libraries, build system, etc).



Google

Meaning?

Code is going to live a long time, and be read many times. We choose
explicitly to optimize for the reader, not the writer.



Philosophies of the
Style Guide



Google
#1 Optimize for the Reader, not the Writer

We’re much more concerned with the experience of code readers.




Google
#2 Rules Should Pull Their Weight

We aren’t going to list every single thing you shouldn’t do. Rules for
dumb stuff should be handled at a higher level (“Don’t be clever”).




Google
#3 Value the Standard, but don’t Idolize

Tracking the standard is valuable (cppreference.com, stackoverflow,
etc). Not everything in the standard is equally good.

-\

wigt @V,

R

".7'»1




Google
#4 Be Consistent

Consistency allows easier expert chunking.
Consistency allows tooling.

Consistency allows us to stop arguing about stuff that doesn’t matter.




Google
#4 Be Consistent

Include guard naming / formatting

Parameter ordering (input, then output, unless consistency with
other things matters)

Namespaces (naming)

Declaration order

O and NULL vs. nullptr

Naming

Formatting

Don’t use streams



Google
#4 Be Consistent

Include guard naming / formatting

Parameter ordering (input, then output, unless consistency with
other things matters)

Namespaces (naming)

Declaration order

O and NULL vs. nullptr

Naming

Formatting

Don’t use streams




Google
#4 Be Consistent

e Include guard naming / formatting

e Parameter ordering (input, then output, unless consistency with
other things matters)

Namespaces (naming)

Declaration order

O and NULL vs. nullptr

Naming

Formatting

Don't use streams

P o 0o 0 0 o




Google

#5 If something unusual is happening, leave explicit
evidence for the reader

Old Example: “No non-const references” leads to “The extra ‘& means
it could be mutated.”

int main(int argc, char** argv) {
ParseCommandLineFlags (&argc, &argv, true);

}



Google

#5 If something unusual is happening, leave explicit
evidence for the reader

Old Example: “No non-const references” leads to “The extra ‘& means
it could be mutated.”

int main(int argc, char** argv) {
ParseCommandLineFlags (&argc, &argv, true);

}



Google

#5 If something unusual is happening, leave explicit
evidence for the reader

New Example: The design of std: :unique_ptr makes it fit perfectly
into a codebase with pre-C++-style pointers.



Google

#5 If something unusual is happening, leave explicit
evidence for the reader

// Taking ownership: new from old.
std: :unique ptr<Foo> my foo (NewFool());

// or old from new
Foo* my foo = NewFoo() .release();

/I or new from new
std: :unique ptr<Foo> my foo = NewFoo();



Google

#5 If something unusual is happening, leave explicit
evidence for the reader

I/ Yielding ownership (new to old)
TakeFoo (my foo.release());

/I or new to new
TakeFoo (std: :move (my foo));

// or old to new
TakeFoo (std: :make unique<Foo>(my foo));



Google

#5 If something unusual is happening, leave explicit
evidence for the reader

Rules that help leave a trace for the reader include:

e overrideor final

e Interface classes - Name them with the “Interface” suffix

e Function overloading - If it matters which overload is being called,
make it obvious by inspection

e No Exceptions - Error handling is explicit



Google

#6 Avoid constructs that are dangerous or surprising

Waivers here are probably rare, and would require a strong argument,

and probably some comments to mitigate the chance of copy and paste
re-using those patterns unsafely.

Examples include:

e Static and global variables of complex type (danger at shutdown)
e Use override or final (avoid surprise)

e Exceptions (dangerous)



Google

#6 Avoid tricky and hard-to-maintain constructs

Most code should avoid the tricky stuff. Waivers may be granted if
justified.

Avoid macros (non-obvious, complicated)

Template metaprogramming (complicated, often non-obvious)
Non-public inheritance (surprising)

Multiple implementation inheritance (hard to maintain)



Google

#7 Avoid polluting the global namespace

Waivers here are unlikely except in very extreme cases.

e Put your stuff in a namespace
e Don’t “using” into the global namespace from a header

e Inside a .cc: We don’t care much
o Still a distinction between using vs. using namespace



Google

#8 Concede to optimization and practicalities when
necessary

Sometimes we make rulings just to state that an optimization may be
healthy and necessary. (These are usually explicit “is allowed”.)

e Allow forward declarations (“optimizing” build times)’
e Inline functions’

e Prefer pre-increment (++i)



Google

The Contentious Rules

There are two (very) contentious rules:
e No non-const references as function arguments
e No use of exceptions



Google

The Contentious Rules: non-const references

Three rules apply:

e Consistency

e Leave a trace/explicitness

e Dangerous/surprising constructs: reference lifetime issues



Google

The Contentious Rules: no exceptions

Some rules apply:
e Value the standard, but don’t idolize
e Consistency
o This stems from old compiler bugs, but once that happened . . .
e |Leave atrace
e Dangerous/surprising constructs
e Avoid hard to maintain constructs
o Consider cases where exception types are changed

e Concede to optimization
o On average, code locality matters.



Google

Recap

Have a style guide. Tailor it
to your situation.



Google
Recap

Use your guide to encourage
“good” and discourage “bad.”



Google
Recap

Re-evaluate.



And with that . . .

Questions?



