The Philosophy of
Google ~ Google’s C++ Style

Titus Winters (titus@google.com)
C++ Codebase Cultivator
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Google Style Guides!
Titus Winters (titus@google.com)
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How Should We Format Our Code?



BORING
QUESTION!
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What Goes in a Style Guide?



What G

WRONG
QUESTION!



Google
What is the Purpose of a Style Guide?



Google
What is the Purpose of a Style Guide?

What's the purpose of any rule or set of rules your organization puts
out?



Google
What is the Purpose of a Style Guide?

What's the purpose of any rule or set of rules your organization puts
out?

e Heavy handed throw-your-weight-around hoop jumping




Google
What is the Purpose of a Style Guide?

What's the purpose of any rule or set of rules your organization puts
out?

o Make it harder for people to do bad thlngs, encourage “good”
things

o Clearly depends on your organization’s goals
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Outline

e The underpinnings of Google's C++ Style Guide
e The contentious rules
e Plenty of time for Q&A



About Us
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Context about Google

e 4K-ish C++ engineers
Shared codebase
o Strong testing culture

Good indexer (Kythe)

Wild variance in C++ background

Good code review policies

We expect we’'ll be around for a while, and should plan accordingly

Most projects check into the same codebase. Most engineers have
read access to most code. Most projects use the same infrastructure
(libraries, build system, etc).
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Meaning?

Code is going to live a long time, and be read many times. We choose
explicitly to optimize for the reader, not the writer.



Philosophies of the
Style Guide
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#1 Optimize for the Reader, not the Writer

We’re much more concerned with the experience of code readers.
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#2 Rules Should Pull Their Weight

We aren’t going to list every single thing you shouldn’t do. Rules for
dumb stuff should be handled at a higher level (“Don’t be clever”).
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#3 Value the Standard, but don’t Idolize

Tracking the standard is valuable (cppreference.com, stackoverflow,
etc). Not everything in the standard is equally good.
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Google
#4 Be Consistent

Consistency allows easier expert chunking.
Consistency allows tooling.

Consistency allows us to stop arguing about stuff that doesn’t matter.




Google
#4 Be Consistent

Include guard naming / formatting

Parameter ordering (input, then output, unless consistency with
other things matters)

Namespaces (naming)

Declaration order

O and NULL vs. nullptr

Naming

Formatting

Don’t use streams
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Google
#4 Be Consistent

e Include guard naming / formatting

e Parameter ordering (input, then output, unless consistency with
other things matters)

Namespaces (naming)

Declaration order

O and NULL vs. nullptr

Naming

Formatting

Don't use streams
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Google

#5 If something unusual is happening, leave explicit
evidence for the reader

Old Example: “No non-const references” leads to “The extra ‘& means
it could be mutated.”

int main(int argc, char** argv) {
ParseCommandLineFlags (&argc, &argv, true);

}
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#5 If something unusual is happening, leave explicit
evidence for the reader

Old Example: “No non-const references” leads to “The extra ‘& means
it could be mutated.”

int main(int argc, char** argv) {
ParseCommandLineFlags (&argc, &argv, true);

}
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#5 If something unusual is happening, leave explicit
evidence for the reader

New Example: The design of std: :unique_ptr makes it fit perfectly
into a codebase with pre-C++-style pointers.
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#5 If something unusual is happening, leave explicit
evidence for the reader

// Taking ownership: new from old.
std: :unique ptr<Foo> my foo (NewFool());

// or old from new
Foo* my foo = NewFoo() .release();

/I or new from new
std: :unique ptr<Foo> my foo = NewFoo();
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#5 If something unusual is happening, leave explicit
evidence for the reader

I/ Yielding ownership (new to old)
TakeFoo (my foo.release());

/I or new to new
TakeFoo (std: :move (my foo));

// or old to new
TakeFoo (std: :make unique<Foo>(my foo));
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#5 If something unusual is happening, leave explicit
evidence for the reader

Rules that help leave a trace for the reader include:

e overrideor final

e Interface classes - Name them with the “Interface” suffix

e Function overloading - If it matters which overload is being called,
make it obvious by inspection

e No Exceptions - Error handling is explicit
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#6 Avoid constructs that are dangerous or surprising

Waivers here are probably rare, and would require a strong argument,

and probably some comments to mitigate the chance of copy and paste
re-using those patterns unsafely.

Examples include:

e Static and global variables of complex type (danger at shutdown)
e Use override or final (avoid surprise)

e Exceptions (dangerous)
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#6 Avoid tricky and hard-to-maintain constructs

Most code should avoid the tricky stuff. Waivers may be granted if
justified.

Avoid macros (non-obvious, complicated)

Template metaprogramming (complicated, often non-obvious)
Non-public inheritance (surprising)

Multiple implementation inheritance (hard to maintain)
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#7 Avoid polluting the global namespace

Waivers here are unlikely except in very extreme cases.

e Put your stuff in a namespace
e Don’t “using” into the global namespace from a header

e Inside a .cc: We don’t care much
o Still a distinction between using vs. using namespace
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#8 Concede to optimization and practicalities when
necessary

Sometimes we make rulings just to state that an optimization may be
healthy and necessary. (These are usually explicit “is allowed”.)

e Allow forward declarations (“optimizing” build times)’
e Inline functions’

e Prefer pre-increment (++i)
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The Contentious Rules

There are two (very) contentious rules:
e No non-const references as function arguments
e No use of exceptions
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The Contentious Rules: non-const references

Three rules apply:

e Consistency

e Leave a trace/explicitness

e Dangerous/surprising constructs: reference lifetime issues
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The Contentious Rules: no exceptions

Some rules apply:
e Value the standard, but don’t idolize
e Consistency
o This stems from old compiler bugs, but once that happened . . .
e |Leave atrace
e Dangerous/surprising constructs
e Avoid hard to maintain constructs
o Consider cases where exception types are changed

e Concede to optimization
o On average, code locality matters.
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Recap

Have a style guide. Tailor it
to your situation.
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Recap

Use your guide to encourage
“good” and discourage “bad.”



Google
Recap

Re-evaluate.



And with that . . .

Questions?



