ODB, Advanced Weapons and Tactics

Boris Kolpackov
Code Synthesis

v1.0, Sep 2014

CODE
SYNTHESIS

Schema Evolution

#pragma db model version(1l, 2)

#pragma db object
class user
{
std::string first ;
std::string last_;
}

#pragma db model version(1l, 3)

#pragma db object
class user

{
std::string name_;
};

Data Migration

schema_catalog: :data migration function (
3,
[1 (database& db)

{
for (bug& b: db.query<bug> ())
{
b.name (b.first () + ” ” + b.last ());
db.update (b);
}

});

Versioned Namespace?

namespace version2
{
#pragma db object
class user
{
std::string first ;
std::string last ;
b
}

Soft-Delete

#pragma db model version(1l, 3)

#pragma db object
class user

{
#pragma db deleted(3)
std::string first ;

#pragma db deleted(3)
std::string last ;

std::string name_;
}

Soft-Delete

#pragma db model version(1l, 3)

#pragma db object
class user

{
#pragma db deleted(3)
std::string first ;

#pragma db deleted(3)
std::string last ;

std::string name_;

};

Soft-Delete

#pragma db object
class user

{

std::string name_;

#pragma db value
struct deleted data
{
#pragma db deleted(3)
std::string first ;

#pragma db deleted(3)
std::string last ;
I

#pragma db column(””)
std::unique ptr<deleted data> dd_;
b

-6-

Soft-Add

#pragma db object
class user

{

std::string name_;

#pragma db value
struct deleted data
{
#pragma db deleted(3)
std::string first ;

#pragma db deleted(3)
std::string last ;
I

#pragma db column(””)
std::unique ptr<deleted data> dd_;
b

-7-

Soft-Add

schema_catalog: :data migration function (
2,
[1 (database& db)
{
for (bug& b: db.query<bug> ())
{
b.platform (”"Unknown”);
db.update (b);
}
3

Soft-Add

schema_catalog::data migration function (
2,
[1 (database& db)
{
for (bug& b: db.query<bug> ())
{
b.platform (”"Unknown”);
db.update (b);
}
3

Soft-Add

schema_catalog: :data migration function (
2,
[1 (database& db)
{
for (bug& b: db.query<bug> ())
{
b.platform (”"Unknown”);
db.update (b);
}
3

Soft-Add

class user

{
#pragma db added(3)
std::string name_;

#pragma db value
struct deleted data
{
#pragma db deleted(3)
std::string first ;

#pragma db deleted(3)
std::string last ;
I

#pragma db column(””)
std::unique ptr<deleted data> dd_;
b

-9-

Containers

#pragma db object
class bug

{

};

#pragma db id auto
unsigned long long id ;

status status_;
std::string summary_;
std::string description ;

std: :vector<std::string> comments ;

-10-

Containers

transaction t (db.begin ());

std::shared ptr<bug> b (db.load<bug> (id));

b->add comment ("I also have this problem! Help me!”);
db.update (b);

t.commit ();

-11-

Change-Tracking Containers

Drop-in replacements for ordinary containers
odb::vector equivalent for std: :vector
Q0dbList equivalent for QList

2-bit per element overhead

-12-

Containers

#pragma db object
class bug

{

odb: :vector<std::string> comments ;

¥

-13-

Object Cache

#pragma db object
class user

{

#pragma db inverse(reporter)
std::vector<std::weak ptr<bug>> reported bugs ;

}
#pragma db object
class bug

{

std::shared ptr<user> reporter_;

}i

-14-

Object Cache

transaction t (db.begin ());

std::shared ptr<user> u (db.load<user> (email));

t.commit ();

-15-

Object Cache

transaction t (db.begin ());
session s;

std::shared ptr<user> u (db.load<user> (email));

t.commit ();

-15-

Object Cache

transaction t (db.begin ());
session s;

std::shared ptr<user> u (db.load<user> (email));

t.commit ();

-15-

Lazy Pointers

¢ Finer-grained control over relationship loading
e Every supported pointer has a corresponding lazy version

-16-

Lazy Pointers

¢ Finer-grained control over relationship loading
e Every supported pointer has a corresponding lazy version

#pragma db object
class user

{

#pragma db inverse(reporter)
std::vector<odb::lazy weak ptr<bug>> reported bugs ;

+i

odb: :lazy weak ptr<bug> 1lb = ...
std::shared ptr<bug> b (lb.load ()); // Load and lock.

-16-

Object Sections

#pragma db object
class bug

{

std::string description_;
odb: :vector<std::string> comments ;

¥

-17-

Object Sections

* | oad: eager or lazy
e Update: always, change, manual
* 1 byte overhead

-18-

Object Sections

#pragma db object
class bug

{
#pragma db load(lazy) update(change)
odb: :section details_;

#pragma db section(details)
std::string description_;

#pragma db section(details)

odb: :vector<std::string> comments ;

};

-19-

Object Sections

#pragma db object
class bug

{
#pragma db load(lazy) update(change)
odb: :section details_;

#pragma db section(details)
std::string description_;

#pragma db section(details)

odb: :vector<std::string> comments ;

};

-19-

Object Sections

#pragma db object
class bug

{
#pragma db load(lazy) update(change)
odb: :section details_;

#pragma db section(details)
std::string description_;

#pragma db section(details)

odb: :vector<std::string> comments ;

};

-19-

Object Sections

#pragma db object
class bug

{
#pragma db load(lazy) update(change)
odb: :section details_;

#pragma db section(details)
std::string description_;

#pragma db section(details)

odb: :vector<std::string> comments ;

};

-19-

Object Sections
transaction t (db.begin ());

for (bug& b: db.query<bug> (query::status == open))
{

if (is_interesting (b))
{
db.load (b, b.details);

b.comments .push back ("I am working on a fix.");
b.details .change ();

}

db.update (b);
}

t.commit ();

-20-

Object Sections
transaction t (db.begin ());

for (bug& b: db.query<bug> (query::status == open))
{

if (is_interesting (b))
{
db.load (b, b.details);

b.comments .push back ("I am working on a fix.");
b.details .change ();

}

db.update (b);
}

t.commit ();

-20-

Object Sections
transaction t (db.begin ());

for (bug& b: db.query<bug> (query::status == open))
{

if (is_interesting (b))
{
db.load (b, b.details);

b.comments .push back (”I am working on a fix."”);
b.details .change ();

}

db.update (b);
}

t.commit ();

-20-

Object Sections
transaction t (db.begin ());

for (bug& b: db.query<bug> (query::status == open))
{

if (is_interesting (b))
{
db.load (b, b.details);

b.comments .push back ("I am working on a fix.");
b.details .change ();

}

db.update (b);
}

t.commit ();

-20-

Object Sections
transaction t (db.begin ());

for (bug& b: db.query<bug> (query::status == open))
{

if (is_interesting (b))
{
db.load (b, b.details);

b.comments .push back ("I am working on a fix.");
b.details .change ();

}

db.update (b);
}

t.commit ();

-20-

Object Sections

#pragma db object
class user

{
#pragma db load(lazy)
odb: :section details_;

#pragma db section(details)
std::vector<odb::lazy weak ptr<bug>> reported bugs ;

};

-21-

Views

typedef odb::query<bug> query;
transaction t (db.begin ());

for (const bug& b: db.query<bug> (query::status == open))
{

const user& r (b.reporter ());

cout << b.id () << " "
<< b.summary () << " ”
<< r.first () << " "
<< r.last () << endl;

}

t.commit ();

-22-

Views

* Load a subset of data members from objects/tables
¢ Join multiple objects/tables

* Handle results of arbitrary SQL queries (aggregate, stored
procedure calls, etc)

-23-

Declaring Views

#pragma db view object(bug) object(user)
struct bug summary
{
unsigned long long id;
std::string summary;
std::string first;
std::string last;
b

-24-

Using Views

typedef odb::query<bug summary> query;

for (const bug summaryé& b:
db.query<bug summary> (query::bug::status == open))
{

cout << b.id << " "
<< b.summary <<
<< b.first << " "
<< b.last << endl;

n n

-25-

Using Views

typedef odb::query<bug summary> query;

for (const bug summaryé& b:

db.query<bug summary> (query::bug::status == open))
{
cout << b.id << " ”
<< b.summary << " "
<< b.first << "7 "
<< b.last << endl;
}

=> SELECT bug.id, bug.summary, user.first, user.last
FROM bug LEFT JOIN user ON bug.reporter = user.email
WHERE bug.status = $1

-25-

Aggregate View

#pragma db view object(bug)

struct bug stats

{
#pragma db column(”COUNT("” + bug::id + ")")
std::size t count;

};

-26-

Aggregate View

#pragma db view object(bug)

struct bug stats

{
#pragma db column(”COUNT(” + bug::id + ")")
std::size t count;

};

-26-

Aggregate View

#pragma db view object(bug)
struct bug stats

{
#pragma db column(”COUNT("” + bug::id + ")")
std::size t count;

};

typedef odb::query<bug stats> query;
bug stats bs (

*db.query<bug stats> (
query::status == closed).begin ());

-26-

Aggregate View

#pragma db view object(user) object(bug) \
query ((?) + "GROUP BY” + user::email)
struct user stats
{
std::string first;
std::string last;

#pragma db column(”COUNT(” + bug::id + ")")

std::size t count;

}

-27-

Aggregate View

#pragma db view object(user) object(bug) \
query ((?) + "GROUP BY” + user::email)
struct user stats
{
std::string first;
std::string last;

#pragma db column(”COUNT(” + bug::id + ")")

std::size t count;

}

-27-

Aggregate View

#pragma db view object(user) object(bug) \
query ((?) + "GROUP BY” + user::email)
struct user_stats
{
std::string first;
std::string last;

#pragma db column(”COUNT(” + bug::id + ")")
std::size t count;

¥

for (const user stats& us:
db.query<user stats> (
query::user::last == "Doe” &&
query: :bug::status == open))

-27-

Stored Procedure Call

#pragma db view query(”EXEC analyze bugs (?)")
struct report

{
unsigned long long id;
std::string result;

}i

-28-

Stored Procedure Call

#pragma db view query(”EXEC analyze bugs (?)”)
struct report

{
unsigned long long id;
std::string result;

}i

-28-

Stored Procedure Call

#pragma db view query(”EXEC analyze bugs (?)")
struct report

{
unsigned long long id;
std::string result;

}

typedef odb::query<report> query;

db.query<report> (query:: val ("abc”) + ”,” +
query:: val (123));

-28-

Native Query

#pragma db view
struct sequence value

{

unsigned long long value;

+i

-29-

Native Query

#pragma db view
struct sequence value
{
unsigned long long value;

+i

sequence value sv (
*db.query<sequence value> (
"SELECT nextval('my sequence’)”).begin ());

-29-

Optimistic Concurrency

transaction t (db.begin ());
std::shared ptr<bug> b (db.load<bug> (id));

cout << "current status: " << b->status () << endl

n

<< "enter new status: ”;

status s;
cin >> s;

b->status (s);
db.update (b);

t.commit ();

-30-

Optimistic Concurrency
std::shared ptr<bug> b;

{
transaction t (db.begin ());
b = db.load<bug> (id);
t.commit ();

}

n

cout << "current status: << b->status () << endl

<< "enter new status: ”;

status s;
cin >> s;
b->status (s);

{
transaction t (db.begin ());

db.update (b);
t.commit ();

}

-31-

Optimistic Concurrency

* Hope for the best, prepare for the worst
* ODB uses object versioning
* Works best for low to medium contention levels

-32-

Declaring Optimistic Classes

#pragma db object optimistic
class bug

{

+

#pragma db id auto
unsigned long long id ;

#pragma db version
unsigned long long version ;

status status_;

std::string summary ;
std::string description_ ;

-33-

Declaring Optimistic Classes

#pragma db object optimistic
class bug

{

+

#pragma db id auto
unsigned long long id ;

#pragma db version
unsigned long long version ;

status status_;

std::string summary ;
std::string description_ ;

-33-

Using Optimistic Classes
for (bool done (false); !'done;)

{
cout << "current status: ” << b->status () << endl
<< "enter new status: ”;
cin >> s;

b->status (s);
transaction t (db.begin ());

try {
db.update (b);
done = true;

}
catch (const odb::object changed&) {

db.reload (b);
}

t.commit ();

-34-

Polymorphism
class issue

{

unsigned long long id ;

status status ;
std::string summary_;
std::string description_;

+i

class bug: public issue

{
+i

std::string platform_;

class feature: public issue

{
+i

unsigned int votes ;

-35-

Polymorphism

CREATE TABLE issue(
id BIGSERIAL NOT NULL PRIMARY KEY,
typeid TEXT NOT NULL,
status INTEGER NOT NULL,
summary TEXT NOT NULL,
description TEXT NOT NULL)

CREATE TABLE bug(
id BIGINT NOT NULL PRIMARY KEY,
platform TEXT NOT NULL,
CONSTRAINT id fk FOREIGN KEY(id) REFERENCES issue(id))

CREATE TABLE feature(
id BIGINT NOT NULL PRIMARY KEY,
votes INTEGER NOT NULL,
CONSTRAINT id fk FOREIGN KEY(id) REFERENCES issue(id))

-36-

Polymorphism

CREATE TABLE issue(
id BIGSERIAL NOT NULL PRIMARY KEY,
typeid TEXT NOT NULL,
status INTEGER NOT NULL,
summary TEXT NOT NULL,
description TEXT NOT NULL)

CREATE TABLE bug(
id BIGINT NOT NULL PRIMARY KEY,
platform TEXT NOT NULL,
CONSTRAINT id fk FOREIGN KEY(id) REFERENCES issue(id))

CREATE TABLE feature(
id BIGINT NOT NULL PRIMARY KEY,
votes INTEGER NOT NULL,
CONSTRAINT id fk FOREIGN KEY(id) REFERENCES issue(id))

-36-

Polymorphism

CREATE TABLE issue(
id BIGSERIAL NOT NULL PRIMARY KEY,
typeid TEXT NOT NULL,
status INTEGER NOT NULL,
summary TEXT NOT NULL,
description TEXT NOT NULL)

CREATE TABLE bug(
id BIGINT NOT NULL PRIMARY KEY,
platform TEXT NOT NULL,
CONSTRAINT id fk FOREIGN KEY(id) REFERENCES issue(id))

CREATE TABLE feature(
id BIGINT NOT NULL PRIMARY KEY,
votes INTEGER NOT NULL,
CONSTRAINT id fk FOREIGN KEY(id) REFERENCES issue(id))

-36-

Polymorphism

CREATE TABLE issue(
id BIGSERIAL NOT NULL PRIMARY KEY,
typeid TEXT NOT NULL,
status INTEGER NOT NULL,
summary TEXT NOT NULL,
description TEXT NOT NULL)

CREATE TABLE bug(
id BIGINT NOT NULL PRIMARY KEY,
platform TEXT NOT NULL,
CONSTRAINT id fk FOREIGN KEY(id) REFERENCES issue(id))

CREATE TABLE feature(
id BIGINT NOT NULL PRIMARY KEY,
votes INTEGER NOT NULL,
CONSTRAINT id fk FOREIGN KEY(id) REFERENCES issue(id))

-36-

Declaring Polymorphic Classes

#pragma db object polymorphic
class issue

{

virtual ~issue () = 0;

#pragma db id auto
unsigned long long id ;

status status ;
std::string summary ;
std::string description ;

};

-37-

Declaring Polymorphic Classes

#pragma db object polymorphic
class issue

{

virtual ~issue () = 0;

#pragma db id auto
unsigned long long id ;

status status ;
std::string summary ;
std::string description ;

};

-37-

Declaring Polymorphic Classes

#pragma db object
class bug: public issue

{

std::string platform ;
}
#pragma db object

class feature: public issue

{

unsigned int votes ;

};

-38-

Using Polymorphic Classes

std::shared ptr<issue> i (new bug (...));
transaction t (db.begin ());
db.persist (i); // Persist bug.

i->status (confirmed);
db.update (i); // Update bug.

db.reload (i); // Reload bug.

t.commit ();

-39-

Using Polymorphic Classes
typedef odb::query<issue> query;
transaction t (db.begin ());

// Load bug or feature.
std::shared ptr<issue> i (db.load<issue> (id));

for (const issue& 1i:
db.query<issue> (query::status == open))
// 1 1s either bug or feature.
db.query<issue> (query::status == open) // Both.
db.query<bug> (query::status == open) // Bugs.
db.query<feature> (query::status == open) // Features.

t.commit ();

-40-

Using Polymorphic Classes
typedef odb::query<issue> query;
transaction t (db.begin ());

// Load bug or feature.
std::shared ptr<issue> i (db.load<issue> (id));

for (const issue& i:
db.query<issue> (query::status == open))
// 1 1s either bug or feature.
db.query<issue> (query::status == open) // Both.
db.query<bug> (query::status == open) // Bugs.
db.query<feature> (query::status == open) // Features.

t.commit ();

-40-

Using Polymorphic Classes
typedef odb::query<issue> query;
transaction t (db.begin ());

// Load bug or feature.
std::shared ptr<issue> i (db.load<issue> (id));

for (const issue& 1i:
db.query<issue> (query::status == open))
// 1 1s either bug or feature.
db.query<issue> (query::status == open) // Both.
db.query<bug> (query::status == open) // Bugs.
db.query<feature> (query::status == open) // Features.

t.commit ();

-40-

Using Polymorphic Classes
typedef odb::query<issue> query;
transaction t (db.begin ());

// Load bug or feature.
std::shared ptr<issue> i (db.load<issue> (id));

for (const issue& 1i:
db.query<issue> (query::status == open))
// 1 1s either bug or feature.
db.query<issue> (query::status == open) // Both.
db.query<bug> (query::status == open) // Bugs.
db.query<feature> (query::status == open) // Features.

t.commit ();

-40-

Using Polymorphic Classes
typedef odb::query<issue> query;
transaction t (db.begin ());

// Load bug or feature.
std::shared ptr<issue> i (db.load<issue> (id));

for (const issue& 1i:
db.query<issue> (query::status == open))
// 1 1s either bug or feature.
db.query<issue> (query::status == open) // Both.
db.query<bug> (query::status == open) // Bugs.
db.query<feature> (query::status == open) // Features.

t.commit ();

-40-

Bulk Operations

template <typename I>
void persist (I begin, I end);

template <typename I>
void update (I begin, I end);

template <typename I>
void erase (I begin, I end);

-41-

Bulk Operations

#pragma db object oracle:bulk(5000) mssql:bulk(7000)
class bug

{
L

-42-

Bulk Exceptions

catch (const multiple exceptions& mex)

{

for (const auto& e: mex)

{
cerr << "exception at ” << e.position ();
try
{

throw e.exception ();

}

{
}

{
}

-43-

Pimpl Idiom

#pragma db object
class bug

{

private:
class impl;
std::unique ptr<impl> pimpl ;

¥

-44-

Pimpl Idiom

#pragma db object

class bug

{
unsigned long long id () const;
void id (unsigned long long);

const std::string& summary () const;
void summary (std::string);

private:
class impl;
std::unique ptr<impl> pimpl ;

¥

-44-

Virtual Data Members

#pragma db object

class bug

{
unsigned long long id () const;
void id (unsigned long long);

const std::string& summary () const;
void summary (std::string);

private:
class impl;

#pragma db member(id) virtual(unsigned long long)
#pragma db member(summary) virtual(std::string)

#pragma db transient
std::unique ptr<impl> pimpl ;

-45-

Virtual Data Members

#pragma db object

class bug

{
unsigned long long id () const;
void id (unsigned long long);

const std::string& summary () const;
void summary (std::string);

private:
class impl;

#pragma db member(id) virtual(unsigned long long)
#pragma db member(summary) virtual(std::string)

#pragma db transient
std::unique ptr<impl> pimpl ;

-45-

Virtual Data Members

#pragma db object

class bug

{
unsigned long long id () const;
void id (unsigned long long);

const std::string& summary () const;
void summary (std::string);

private:
class impl;

#pragma db member(id) virtual(unsigned long long)
#pragma db member(summary) virtual(std::string)

#pragma db transient
std::unique ptr<impl> pimpl ;

-45-

Virtual Data Members

#pragma db object

class bug

{
unsigned long long id () const;
void id (unsigned long long);

const std::string& summary () const;
void summary (std::string);

private:
class impl;

#pragma db member(id) virtual(unsigned long long)
#pragma db member(summary) virtual(std::string)

#pragma db transient
std::unique ptr<impl> pimpl ;

-45-

Virtual Data Members

#pragma db object

class bug

{
unsigned long long id () const;
void id (unsigned long long);

const std::string& summary () const;
void summary (std::string);

private:
class impl;

#pragma db member(id) virtual(unsigned long long)
#pragma db member(summary) virtual(std::string)

#pragma db transient
std::unique ptr<impl> pimpl ;

-45-

Accessor/Modifier Expressions

#pragma db value

struct name

{
name (std::string, std::string);
std::string first, last;

};

#pragma db object

class user

{
const std::string& first () const;
const std::string& last () const;
void first (std::string);
void last (std::string);

private:

name name_;

}; -46-

Accessor/Modifier Expressions

#pragma db value

struct name

{
name (std::string, std::string);
std::string first, last;

}

#pragma db object

class user

{
const std::string& first () const;
const std::string& last () const;
void first (std::string);
void last (std::string);

private:

name name_;

}; -46-

Accessor/Modifier Expressions

#pragma db value

struct name

{
name (std::string, std::string);
std::string first, last;

};

#pragma db object

class user

{
const std::string& first () const;
const std::string& last () const;
void first (std::string);
void last (std::string);

private:

name name_;

}; -46-

Accessor/Modifier Expressions

#pragma db value

struct name

{
name (std::string, std::string);
std::string first, last;

};

#pragma db object

class user

{
const std::string& first () const;
const std::string& last () const;
void first (std::string);
void last (std::string);

private:

#pragma db get(name (this.first (), this.last ())) \
set(this.first ((?).first); this.last ((?).last))
name name_;

}; -46-

Accessor/Modifier Expressions

#pragma db value

struct name

{
name (std::string, std::string);
std::string first, last;

};

#pragma db object

class user

{
const std::string& first () const;
const std::string& last () const;
void first (std::string);
void last (std::string);

private:

#pragma db get(name (this.first (), this.last ())) \
set(this.first ((?).first); this.last ((?).last))
name name_;

}; -46-

Accessor/Modifier Expressions

#pragma db value

struct name

{
name (std::string, std::string);
std::string first, last;

};

#pragma db object

class user

{
const std::string& first () const;
const std::string& last () const;
void first (std::string);
void last (std::string);

private:

#pragma db get(name (this.first (), this.last ())) \
set(this.first ((?).first); this.last ((?).last))
name name_;

}; -46-

Index Definition

#pragma db object
class user

{

#pragma db id
std::string email ;

#pragma db index
std::string first ;

std::string last ;

#pragma db index(”name i”) \
unique \
method (”"BTREE") \
members(first , last)

};

-47-

Index Definition

#pragma db object
class user

{

#pragma db id
std::string email ;

#pragma db index
std::string first ;

std::string last ;

#pragma db index(”name i”) \
unique \
method (”"BTREE") \
members(first , last)

};

-47-

Index Definition

#pragma db object
class user

{

#pragma db id
std::string email ;

#pragma db index
std::string first ;

std::string last ;

#pragma db index(”name i”) \
unique \
method (”"BTREE") \
members(first , last)

+i

-47-

Prepared and Cached Queries

typedef odb::query<bug> query;
typedef odb::prepared query<person> prep _query;

transaction t (db.begin ());
status s;
query g (query::status == query:: ref (s));

prep_query pq (db.prepare query<bug> (”bug-query”, q));

s = open;
pg.execute ();

s = confirmed;
pg.execute ();

t.commit ();
-48-

Prepared and Cached Queries

typedef odb::query<bug> query;
typedef odb::prepared query<person> prep _query;

transaction t (db.begin ());

status s;

query q (query::status == query:: ref (s));

prep_query pq (db.prepare query<bug> (”bug-query”, q));

s = open;
pg.execute ();

s = confirmed;
pg.execute ();

t.commit ();
-48-

Prepared and Cached Queries

typedef odb::query<bug> query;
typedef odb::prepared query<person> prep _query;

transaction t (db.begin ());
status s;
query g (query::status == query:: ref (s));

prep_query pq (db.prepare query<bug> (”bug-query”, q));

s = open;
pg.execute ();

s = confirmed;
pg.execute ();

t.commit ();
-48-

Prepared and Cached Queries

typedef odb::query<bug> query;
typedef odb::prepared query<person> prep _query;

transaction t (db.begin ());

status s;

query g (query::status == query:: ref (s));

prep_query pq (db.prepare query<bug> (”bug-query”, q));

S = open;
pg.execute ();

s = confirmed;
pg.execute ();

t.commit ();
-48-

Other Features

Extended database types

Objects as class template instantiations

on _delete

Connection management

Database operation callbacks

Transaction callbacks

Recoverable exceptions (deadlock, timeout)

-49-

Customizations

Custom value types
Custom containers
Custom smart pointers
Custom NULL wrappers
Custom session
Custom profiles

-50-

Future

* SQL to C++ compiler
e Containers in queries
* Mass UPDATE

-51-

Maybe Future

¢ Persistence to XML, JSON
* Document databases (MongoDB, RethinkDB)
e Sharding

-52-

Resources

* ODB Page
* www.codesynthesis.com/products/odb/

e ODB Manual
* www.codesynthesis.com/products/odb/doc/manual.xhtml

* Blog
e www.codesynthesis.com/~boris/blog/

-53-

http://www.codesynthesis.com/products/odb/
http://www.codesynthesis.com/products/odb/
http://www.codesynthesis.com/products/odb/doc/manual.xhtml
http://www.codesynthesis.com/products/odb/doc/manual.xhtml
http://www.codesynthesis.com/~boris/blog/
http://www.codesynthesis.com/~boris/blog/

