Introguction to C++ AMP

Accelerated Massive Parallelism

Marc Grégoire

marc.gregoire@nuonsoft.com
http://www.nuonsoft.com/
http://www.nuonsoft.com/blog/

AV
++

Supported by MostVluabl s pé“iom
Nikon Metrol
Kon VIerology Author of Professional C++, 3™ Edition

Marc Gregioire

September 8t 2014 It is time to start taking advantage of the computing power of GPUs...

mailto:marc.gregoire@nuonsoft.com
http://www.nuonsoft.com/
http://www.nuonsoft.com/blog/
http://msdn.microsoft.com/nl-be/hh560770?ocid=ban-n-be-loc--meetmsdnnl
http://msdn.microsoft.com/nl-be/hh560770?ocid=ban-n-be-loc--meetmsdnnl

N- Body Slmulatlon

N-Body Simulation Demo 2con.,

D3D11 14.79 fps Vsync off (800xz600). R8GBBBAS_UNORM_SRGE (MS1. Q0) q
HARDVARE: ATI Radeon HD 5800 Series (#0)

D3D11 121.90 fps Vsync off (800x600), RBGBBBAB_UNORM_SRGB (NS1, QD)
HARDVARE: ATI Radeon HD 5800 Series (#0) ~ Toggle full screen

Bodies: 10240 Toggle REF (F3)

FPS: 14.79 Bodies: 20480 Change device (F2)

G6Flops: 31.017675 | FPS: 121.90 -
GFlops: 1022.608887 Reset particles

Bodies: 20480

-
~ GEU Multi Device v

Applications | Pr 5 Performance | Ne

CPU Usage CPU Usage History

Ll j_._.l.l-

Up Time

Agenda

o Introduction

0 Technical
o The C++ AMP Technology
o Coding Demo: Mandelbrot

o Visual Studio Integration
0 Summary
0 Resources

Introduction Jcon |

0 < 2005 = “Free Lunch”

o Clock speed increased every year
o Single threaded performance increased every year

0 > 2005 = “Free Lunch” is finished

o Clock speeds are not increasing that fast anymore

o Instead, CPU's get more powerful every year by adding
more cores

o Single threaded performance is now increasing much
slower

Introduction Jcon |

0 Conclusion:

Scalable performance with future hardware?

!

Parallelism (CPU, GPU, ...) is required!

Parallelism? Jcon |

o On the CPU:
o Vectorization (SIMD: SSE, AVX, ..)

o Multithreading:
m Microsoft PPL (Parallel Patterns Library)

m Intel TBB (Threading Building Blocks) (compatible interface with
PPL)

o Since Visual Studio 2012, auto-vectorization and auto-
parallelization of your loops, it possible

Parallelism? Jcon |

o On the GPU:
o CUDA: If you want to optimally use NVidia GPUs
o OpenCL : If you want to optimally use AMD GPUs
o DirectCompute: Uses HLSL, looks like C

o All of them are more C-like, and not truly C++ (so no type

safety, genericity, ...), only CUDA is becoming similar to
C++

o Hard, you need to learn multiple technologies if you
want to optimally target multiple devices...

C++ AMP oI,

o Solution for GPU’s and other accelerators: C++ AMP
o C++, not C, thus type safe and genericity using templates
o It's an extension to C++, not a new language

o C++ AMP is almost all library; only 2 keywords added to
C++

m tile static
m restrict
o Included in vcredist

o Open standard!

C++ AMP QN

o Vendor independent (NVidia, AMD, ...)

o Abstracts “accelerators” (GPU’s, APU’s, ..)

o Current version supports DirectX 11 GPU's

o Fallback to WARP if no hardware GPU's available

o In the future could support other accelerators like FPGAS,
off-site cloud computing...

o Support heterogeneous mix of accelerators!

m Example: C++ AMP can use both an NVidia and AMD GPU in
your system at the same time splitting the workload

Faster is not “just Faster”

0 2-3x faster is “just faster”
o Do a little more, wait a little less
o Doesn’t change how you work
0 5-10x faster is “significant”

o Worth upgrading

o Worth re-writing (parts of) your applications
0 100x+ faster is “fundamentally different”

o Worth considering a new platform

o Worth re-architecting your applications

o Makes completely new applications possible

source

X
nVIDIA

Power of Heterogeneous Computing eicAR

146X 36X 19X | 17X 100X

Interactive lonic placement for Transcoding HD Simulation in Matlab Astrophysics N-body
visualization of molecular dynamics video stream to using .mex file CUDA simulation
volumetric white simulation on GPU H.264 function

matter connectivity

149X 47X 24X 30X

source
Financial simulation GLAME@lab: An M- Ultrasound medical Highly optimized Cmatch exact string «-’
of LIBOR model with script API for linear imaging for cancer object oriented matching to find -
swaptions Algebra operations diagnostics molecular dynamics similar proteins and nvinDia

on GPU gene sequences

CPU’s vs GPU's today

o Low memory bandwidth

o Higher power consumption
o Medium level of parallelism
o Deep execution pipelines

o Random accesses

o Supports general code

o Mainstream programming

images source: AMD

o High memory bandwidth
o Lower power consumption
o High level of parallelism

o Shallow execution pipelines
o Sequential accesses

o Supports data-parallel code

o Mainstream programming
thanks to C++ AMP

C++ AMP con;

o Part of Visual C++ since VC++ 2012

0 Complete Visual Studio integration
(IntelliSense, GPU debugging, profiling, ...)

o STL-like library for multidimensional data
o MS implementation builds on Direct3D

Agenda

[

0 Technical
o The C++ AMP Technology
o Coding Demo: Mandelbrot

o Visual Studio Integration
0 Summary
0 Resources

Basics

0 #include <amp.h>
0 Everything is in the concurrency namespace
0 Most important new classes:
oarray, array_view
oextent, index
o accelerator, accelerator view
o New function: parallel_for_each()
o New keywords: restrict / tile_static

array LI,

0 concurrency::array<type, dim>
o Allocates a buffer on an accelerator

o Explicitly call copy() to copy data back from an
accelerator to the CPU

0 Example: A 1D array of 10 floats:
o array<float, 1> arr(10)

0 A 3D array of doubles:
o array<double, 3> arr(3, 2, 1);

array_view QN

0 concurrency::array_view<type, dim>
o Wraps a user-allocated buffer so that C++ AMP can use it

o C++ AMP automatically transfers data between those
buffers and memory on the accelerators

0 Dense in least significant dimension

array_view QN

o Read/write buffer of given dimensionality, with elements of
given type:

o array_view<type, dim> av(...);
0 Read-only buffer:
O array_view< type, dim> av(...);

o Only copies data from the CPU to the accelerator at the start, not
back to the CPU at the end

o Write-only buffer:
o array_view<type, dim> av(...);

o Only copies data from the accelerator to the CPU at the end, not to
the accelerator at the start

extent<N> - size of an N-dim space “PREON.O

extent<1> e(5);

index<N> - an N-dimensional point ©PREON.©

I

index<1> i(3);

parallel_for_each() 2CON.

o concurrency::parallel_for_each(extent, lambda),
o Basically, the entry point to C++ AMP
o Takes number (and shape) of threads needed

o Takes function or lambda to be executed by each thread
= Must be restrict(amp)

o Sends the work to the accelerator
m Scheduling etc handled there

o Returns — no blocking/waiting

o Lambda must capture everything by value, except
concurrency:.array objects

Hello World: Array Addition SOl

#include <amp.h>
using namespace concurrency;
void AddArrays(int n, int * pA, int * pB, int * pSum) void AddArrays(int n, int * pA, int * pB, int * pSum)
{ {
array_view<const int,1> a(n, pA);
array_view<const int,1> b(n, pB);
array_view<int,1> sum(n, pSum);
sum.discard_data();
for (int i=0; i<n; i++) parallel_for_each(
sum.extent,
[a,b,sum](index<1> i) restrict(amp)
{ {
pSumli] = pA[i] + pBl[i]; suml[i] = a[i] + b[i];
} }
);
} }

Hello World: Array Addition SOl

parallel_for_each: void AddArrays(int n, int * pA, int * pB, int * pSum)

executes the lambda { .

array_view: wraps the data to
on the accelerator once . .
per thread array_view<const int,1> a(n, pA); operate on the accelerator
array_view<const int,1> b(n, pB);
array_view<int,1> sum(n, pSum); check that this code conforms to C++

sum.discard_data(); AMP language restrictions

extent: the number and parallel_for_each(
shape of threads to sum.extent,

execute the lambda [a,b,sum](index<1> i) restrict(amp)

restrict(amp): tells the compiler to

{ index: the thread ID that is running the
suml[i] = a[i] + b[i]; REshsElEATECE RNV AT NCC]
array view variables Same dimensionality as the extent, so if
y— . } extent is 2D, index is also 2D:
captured and associated); index<2> idx
. ?

data copied to accelerator } Access the two dimensions as idx[0] and
(on demand) idx[1]

restrict(amp) restrictions

0 Several restrictions apply to code marked as
restrict(amp):
o Can only call other restrict(amp) functions
o Function must be inlinable

o Can only use

m int, unsigned int, float, double, and bool
m structs & arrays of these types

restrict(amp) restrictions SOl

o No o No

O recursion

o 'volatile’

o virtual functions

o pointers to functions

o pointers to member functions
o pointers in structs

o pointers to pointers
o bitfields

o goto or labeled statements

o throw, try, catch

o globals

o statics (use tile_static keyword instead)
o dynamic_cast or typeid

o asm declarations

o varargs

O unsupported types
m e.g. char, short, long double

restrict() SOn,

o restrict() is really part of the signature
o Thus, can be overloaded on
o Example:

o float foo(float) restrict(cpu, amp); // Code runs on both CPU and C++ AMP accelerators

o float bar(float); // General code
float bar(float) restrict(amp); // C++ AMP specific code

parallel_for_each() — lambda 2Son.

0 The lambda executes in parallel with CPU code that follows
parallel_for_each() until a synchronization point is reached

0 Synchronization:
o Manually when calling array_view::synchronize()
m Good idea, because you can handle exceptions gracefully
o Automatically, when CPU code observes the array_view

O , because you might lose error information if there is
no try/catch block catching exceptions at that point

o Automatically when for example array_view goes out of scope

m Bad idea, errors will be ignored silently because destructors are not
allowed to throw exceptions

accelerator / accelerator view con

the c++ conference

o accelerator and accelerator_view can be used to query for
information on installed accelerators

o accelerator::get_all() returns a vector of accelerators in the

Systern #include <iostream>
#include <amp.h>
using namespace std;
using namespace concurrency;
int main() {
auto accelerators = accelerator::get_all();
for (auto&& accel : accelerators) {
wcout << accel.get description() << endl;

}

return 0;

}

Tiling con|

0 Rearrange algorithm to do the calculation in tiles
n Each thread in a tile shares a programmable cache
o tile_static memory
o Access 100x as fast as global memory
o Excellent for algorithms that use each piece of information
again and again
o Overload of parallel_for_each() that takes a tiled extent

0 Because a tile of threads shares the programmable cache,
you must prevent race conditions

o Tile barrier can ensure a wait

Agenda

O
o Coding Demo: Mandelbrot

o Visual Studio Integration
0 Summary
0 Resources

Mandelbrot - Single-Threaded con.

for (int y = -halfHeight; y < halfHeight; ++y) {
// Formula: zi = z"2 + z@
float Z0 i = view i + y * zoomLevel;
for (int x = -halfWidth; x < halfWidth; ++x) {
float Z0 r = view r + x * zoomLevel;
float Z r = Z0 r;
float Z i = Z0 i;
float res = 0.0f;
for (int iter = 0@; iter < maxiter; ++iter) {
float Z rSquared = Z r * Z r;
float Z iSquared = Z i * Z i;
if (Z_rSquared + Z_iSquared > escapeValue) {
// We escaped
res = iter + 1 - log(log(sqrt(Z_rSquared + Z_iSquared))) * invLogOf2;

break;
}
Zi=2*Zr*Zi+ 7201i;
Z_r = Z_rSquared - Z_iSquared + Z0_r;

}

unsigned _ int32 grayValue = static_cast<unsigned __int32>(res * 50);
unsigned _ int32 result = grayValue | (grayValue << 8) | (grayValue << 16);
pBuffer[(y + halfHeight) * m_nBuffWidth + (x + halfWidth)] = result;

Mandelbrot — PPL

parallel for(-halfHeight, halfHeight, 1, [&](int y) {

1)

// Formula: zi = z"2 + z0
float Z0 i = view i + y * zoomLevel;
for (int x = -halfWidth; x < halfWidth; ++x) {

float Z0 r = view r + x * zoomLevel;
float Z r = Z0 r;
float Z i = Z0 i;
float res = 0.0f;
for (int iter = 0@; iter < maxiter; ++iter) {
float Z rSquared = Z r * Z r;
float Z iSquared = Z i * Z i;
if (Z_rSquared + Z_iSquared > escapeValue) {
// We escaped
res = iter + 1 - log(log(sqrt(Z_rSquared + Z_iSquared))) * invLogOf2;

break;
}
Zi=2*Zr*Zi+ 7201i;
Z_r = Z_rSquared - Z_iSquared + Z0_r;

}

unsigned _ int32 grayValue = static_cast<unsigned __int32>(res * 50);
unsigned _ int32 result = grayValue | (grayValue << 8) | (grayValue << 16);
pBuffer[(y + halfHeight) * m_nBuffWidth + (x + halfWidth)] = result;

con

the c++ conference

Mandelbrot - C++ AMP con !

array_view<unsigned _ int32, 2> a(m_nBuffHeight, m_nBuffWidth, pBuffer);

a.discard data();

parallel for each(a.extent, [=](index<2> idx) restrict(amp) {

// Formula: zi = z*2 + z0

int x = idx[1] - halfWidth; int y = idx[@] - halfHeight;

float Z0 i = view i + y * zoomLevel;
float Z0 r = view r + x * zoomLevel;

float Z r = 20 r; float Z i
float res = 0.0f;

for (int iter = 0@; iter < maxiter; ++iter) {
float Z rSquared = Z r * Z r;
float Z iSquared = Z i * Z i;
if (Z_rSquared + Z_iSquared > escapeValue) {

// We escaped

res = iter + 1 - fast_log(fast_log(fast_sqrt(Z_rSquared + Z_iSquared))) * invLogOf2;

break;

N N -

i
_r

}

unsigned __int32 grayValue =

2 *Zr *Zi1i+ Z01;
Z rSquared - Z_iSquared + Z0 r;

fast_math namespace for single precision
precise_math namespace for double precision

static_cast<unsigned __int32>(res * 50);

unsigned __ int32 result = grayValue | (grayValue << 8) | (grayValue << 16);

a[idx] = result;

1)

a.synchronize();

Mandelbrot - C++ AMP con !

o Wrap C++ AMP code inside a try-catch block to handle errors!

try

{
array_view<unsigned __int32, 2> a(m_nBuffHeight, m_nBuffWidth, pBuffer);
a.discard _data();
parallel for_each(a.extent, [=](index<2> 1idx) restrict(amp) {

1)

a.synchronize();
}
catch (const Concurrency::runtime_exception& ex)
{

MessageBoxA(nullptr, ex.what(), "Error", MB_ICONERROR);
}

Mandelbrot

O
o Visual Studio Integration
0 Summary
0 Resources

cppeon)

Visual Studio con !

0 C++ AMP is deeply integrated into VC++ >= 2012

o Debugging

o CPU/GPU breakpoints (even simultaneously)
o GPU threads

o Parallel Stacks
o Parallel Watch

0 Concurrency Visualizer

Debugging con.,

0 GPU breakpoints are supported

0 On Windows 8 and 7, no CPU/GPU simultaneous
debugging possible

0 You need to enable the GPU Only debugging option

D'd Mandelbrot - Microsoft Visual Studio
FILE EDT VIEW PROJECT BUILD DEBUG TEAM TOOLS TEST ARCHITECTURE AN

o - | B~-2 W f| o - '| P Local Windows Debugger ~ GPU Cnly -
Mative Only

LAl ChildView.cpp + X
= CChildView

Solution Explorer
Gj| °-a |§|—I§'|:§]|<> j -
Search Solution Explorer (Ctrl+5) P~

Managed Only
Mixed

h - Auto

else i =

I Script
I try GPU Only

fal Solution 'Mandelbrot' (1 project)
4 [%] Mandelbrot

Debugging

o Simultaneous CPU/GPU debugging:

o Requires Windows 8.1 and at least VC++2013
o Requires the WARP accelerator

Mandelbrot Property Pages

? BEN|

Configuration: | Active(Releasze)

v| Platform: Active(Win32)

V| | Configuration Manager... |

- Common Properties

4 Configuration Properties
General

Debugging

WC++ Directories
C/C++

Linker

Manifest Tool
Resources

XML Document Generator
Browse Information
Build Bvents

Custom Build Step
Code Analysis

A T A

Debugger to launch:

Local Windows Debugger

v]

Command $(TargetPath)
Command Arguments

Working Directory S(ProjectDir)
Attach Mo
Debugger Type
Environment

Merge Environment Yes

S0L Debugging No

Amp Default Accelerator

WARF software accelerator

con

the c++ conference

Debugging cppeen,

else if (efMP == m_renderMode)

1

array wviewdunsigned int32, 2» a(m_nBuffHeight, m_nBuffWidth, pBuffer);

a.discard data();
= parallel for _each({a.extent, [=](index<2> idx) restrict{amp)

1
/f Formula: zi = z2 + z@
(] | int x = idx[1] - halfWidth; int y = idx[@] - halfHeight;
float Z@ i = view 1 + y * zoomlLevel;
float Z@ r = view r + x * zoomlLevel;

Debugging con.,

1 GPU

(Global Scope) v @ main()
127 tile_static float sA[TS][TS], sB[TS][TS];
Threads o 128 sA[row] [col] = a(tidx.global[0], col + 13;
129 sB[row] [col] = b(row + i, tidx.global[1]);
¥ 130} tidx.barrier.wait();
2 131 for (int k = 0; k < TS; k++)
132 sum += sA[row] [k] * sB[k][col];
133 tidx.barrier.wait();
134 }
135 c[tidx.global] = sum;
136 | });
137 |
138 | c.synchronize();
139
100% ~ <
T . e T ———————— R
©® Tile:[0,0] Thread: [6, 0] Name
: =% : © main.cpp_line_121!main:;_
Thread Count Line Location Status Tile main.cpp_line_1211_kerne
Y 252 threads Line 130 main:_I23:<lambda_c92d3 © Active [0, 0]

Y © 4threads Line 131 main:_I23:<lambda_c92d3 © Active [0, 0]

Debugging 2con.,

D‘ Chapter4 (Debugging) - Microsoft Visual Studio Quick Launch (Ctrl+Q) P = B Xg
FILE EDIT VIEW PROJECT BUILD DEBUG TEAM SQL TOOLS TEST ~ ARCHITECTURE ~ANALYZE WINDOW HELP
o - c o ~ & ~| P Continue ~ |GPU On Win32 A L) 2 6.6 @ ;. =

D Pa ra | |e| Process: [3884] Chapterd.exe - Suspend ~ @ Thread: [0, 0][0, 4] - Y Stack Frame: main:_I23:<lambda_c92d372ddc6bd558 ~ -

g v Parallel Watch 1 -...3b1fela>ioperator() # X v
Watc h §' (Global Scope) > @ main(v c - Filter by Boolean Expression R ~
g 126 | { + : .
5 127 tile_static float sA[Ts][Ts], sB[TS][Ts]l; ~ [Tile][Thread] @ sum <
= }gg sAEr‘ow% ECOH = ggt'idx.g'!oba'! d[O:l ,_Icg'l_l-fl?ig; Y [0,0] [0,0] 529245663
= sB[row] [col] = row + i, tidx.globa :
] S hOWS 2@ 130 tidx.barrier.wait(); T G R [reesssto
2 131 for (int k = 0; k < TS; k++) v [0,0] [0,2] 724177313
o 132 . sum +? SA[r'(?W] [k] 3 SB[k] [CO-I] 5 v [0, 0] [0,3] 7.36989260
va UeS © 133 tidx.barrier.wait(Q;
134 } ¥ © [0,0] [0,4] 6.04233170
135 c[tidx.global] = sum; ¥ 0,00 [0,5] 645951271
aClross }g? | B Y [00 [06] 830030918
. 138 | c.synchronize(); « ¥ 001 [07] 63268885 @ .
m U |t| |e 100% ~ < > < >
p GPU Threads v o x
© Tile:[0,0] Thread: [0, 4] [
t h re a d S Thread Count Line Loc;tion Status Tile
X 4 threads Line 133 main:_I23:<lambda_c92d3 @ Blocked [0, 0]
Y © 4threads Line 133 main:_I23:<lambda_c92d3 © Active [0, 0]
L o 248 threads Line 130 main:_I23:<lambda_c92d3 © Active [0, 0]

GPU Threads Autos Locals Threads Modules Watch 1

Ready Ln 127 Col 1 Ch1 INS

Debugging con.,

0 Other things supported:

o Help with race condition detection
o Flagging, filtering, grouping

o Freezing, thawing

o Run tile to cursor

Debugging cpReen ©

0 Concurrency Visualizer is not included with VC++2013
anymaore

0 Download and install it from:

http://visualstudiogallery.msdn.microsoft.com/24b56e51-fcc’-
4231-b811-f16f3ta3af/a

http://visualstudiogallery.msdn.microsoft.com/24b56e51-fcc2-423f-b811-f16f3fa3af7a

Debugging

0 Concurrency Visualizer
o Shows activity on CPU and GPU
o Locate performance bottlenecks
o Copy times to/from the accelerator
o CPU underutilization
o Thread contention
o Cross-core thread migration
o Synchronization delays
o DirectX activity

Debugging CPRSON.

CPU Utilization

-"‘l.l. |
Rl L | |

7- : L. 1 |

P ‘.5‘_: o R :_ kel b i ke it i o e Bl o == ol c b B b i bk il L b i ,'..r,_ . "-':.'.'l. caib R .I.-\.ler‘-wa.'- - 'I“- ST R r .1_..' T r'.' e l,__.r o LA T I“"- kM e ‘II T
TRl TN B Y i | I J 7 1 | [|

Mumber of Logical Cores
=y

1-
0

GPU Activity (Directk)

Engines
s

|
0 Summary
0 Resources

cppeon)

Summary con,

0 C++ AMP makes heterogeneous computing mainstream
and allows anyone to make use of parallel hardware

o Easy-to-use

o High-level abstractions in C++ (not C)

o Excellent integration of C++ AMP in VS, including the debugger
o Abstracts multi-vendor hardware

0 C++ AMP is an open specification ©

Other Presentations con !

o Juesday, September 9 « 9:00am - 10:00am:
“Writing Data Parallel Algorithms on GPUs"
Ade Miller

o Juesday, September 9 « 2:00pm - 3:00pm:
“Another fundamental shift in Parallelism Paradigm?
OpenMP 4.0 for GPU/Accelerators and other things”
Michael Wong

0 Tuesday, September 9 « 3:15pm - 4:15pm:
“Decomposing a Problem for Parallel Execution”
Pablo Halpern

The C++ AMP Book C++ AMP ‘

Accelerated Massive Parallelism

BOOk/ Source COde / B|Ogs with Microsoft' Visual C++

o Written by Kate Gregory & Ade Miller,
two experienced C++ programmers

o Covers all the C++ AMP features in detail, 350 pages

0 Source code for each chapter and all three case studies
available online

o eBook also available form Amazon or O'Reilly Books

http://www.gregcons.com/cppamp

Resources cpReon

O

d

MSDN Native parallelism blog (team blog)

o http://blogs.msdn.com/b/nativeconcurrency/

Samples (36 at the time of this presentation)
o http://blogs.msdn.com/b/nativeconcurrency/archive/2012/01/30/c-amp-sample-projects-for-download.aspx

Spec
o http://blogs.msdn.com/b/nativeconcurrency/archive/2012/02/03/c-amp-open-spec-published.aspx

Videos

o http://channel9.msdn.com/Tags/c++-accelerated-massive-parallelism

Daniel Moth's blog (previous PM of C++ AMP), interesting C++ AMP posts

o http://www.danielmoth.com/Blog/

MSDN Dev Center for Parallel Computing

o http://msdn.com/concurrency

MSDN Forums to ask questions
o http://social.msdn.microsoft.com/Forums/en/parallelcppnative/threads

http://blogs.msdn.com/b/nativeconcurrency/
http://blogs.msdn.com/b/nativeconcurrency/archive/2012/01/30/c-amp-sample-projects-for-download.aspx
http://blogs.msdn.com/b/nativeconcurrency/archive/2012/02/03/c-amp-open-spec-published.aspx
http://channel9.msdn.com/Tags/c++-accelerated-massive-parallelism
http://www.danielmoth.com/Blog/
http://msdn.com/concurrency
http://social.msdn.microsoft.com/Forums/en/parallelcppnative/threads

Microsoft Contact Person

o Sharma Raman (Program Manager C++ AMP)
o Sharma.Raman@microsoft.com

eeeeeeeeeeee

mailto:Sharma.Raman@microsoft.com

Questions cppcon)

