
Introduction to C++ AMP

Accelerated Massive Parallelism

It is time to start taking advantage of the computing power of GPUs…September 8th 2014

Marc Grégoire
marc.gregoire@nuonsoft.com

http://www.nuonsoft.com/
http://www.nuonsoft.com/blog/

Supported by
Nikon Metrology

Author of Professional C++, 3rd Edition

mailto:marc.gregoire@nuonsoft.com
http://www.nuonsoft.com/
http://www.nuonsoft.com/blog/
http://msdn.microsoft.com/nl-be/hh560770?ocid=ban-n-be-loc--meetmsdnnl
http://msdn.microsoft.com/nl-be/hh560770?ocid=ban-n-be-loc--meetmsdnnl

N-Body Simulation

N-Body Simulation Demo

Cartoonizer

Agenda

 Introduction

 Technical

 The C++ AMP Technology

 Coding Demo: Mandelbrot

 Visual Studio Integration

 Summary

 Resources

Introduction

 < 2005  “Free Lunch”

 Clock speed increased every year

 Single threaded performance increased every year

 > 2005  “Free Lunch” is finished

 Clock speeds are not increasing that fast anymore

 Instead, CPU’s get more powerful every year by adding
more cores

 Single threaded performance is now increasing much
slower

Introduction

 Conclusion:

Scalable performance with future hardware?

Parallelism (CPU, GPU, …) is required!

Parallelism?

 On the CPU:

 Vectorization (SIMD: SSE, AVX, …)

 Multithreading:

 Microsoft PPL (Parallel Patterns Library)

 Intel TBB (Threading Building Blocks) (compatible interface with

PPL)

 Since Visual Studio 2012, auto-vectorization and auto-

parallelization of your loops, if possible

Parallelism?

 On the GPU:

 CUDA: If you want to optimally use NVidia GPUs

 OpenCL : If you want to optimally use AMD GPUs

 DirectCompute: Uses HLSL, looks like C

 All of them are more C-like, and not truly C++ (so no type

safety, genericity, …), only CUDA is becoming similar to

C++

 Hard, you need to learn multiple technologies if you

want to optimally target multiple devices…

C++ AMP

 Solution for GPU’s and other accelerators: C++ AMP

 C++, not C, thus type safe and genericity using templates

 It’s an extension to C++, not a new language

 C++ AMP is almost all library; only 2 keywords added to
C++
 tile_static

 restrict

 Included in vcredist

 Open standard!

C++ AMP

 Vendor independent (NVidia, AMD, …)

 Abstracts “accelerators” (GPU’s, APU’s, …)

 Current version supports DirectX 11 GPU’s

 Fallback to WARP if no hardware GPU’s available

 In the future could support other accelerators like FPGA’s,

off-site cloud computing…

 Support heterogeneous mix of accelerators!

 Example: C++ AMP can use both an NVidia and AMD GPU in

your system at the same time splitting the workload

Faster is not “just Faster”

 2-3x faster is “just faster”

Do a little more, wait a little less

Doesn’t change how you work

 5-10x faster is “significant”
 Worth upgrading

 Worth re-writing (parts of) your applications

 100x+ faster is “fundamentally different”
 Worth considering a new platform

 Worth re-architecting your applications

 Makes completely new applications possible

source

30X

Cmatch exact string

matching to find

similar proteins and

gene sequences

24X

Highly optimized

object oriented

molecular dynamics

20X

Ultrasound medical

imaging for cancer

diagnostics

47X

GLAME@lab: An M-

script API for linear

Algebra operations

on GPU

100X

Astrophysics N-body

simulation

19X

Transcoding HD

video stream to

H.264

36X

Ionic placement for

molecular dynamics

simulation on GPU

Power of Heterogeneous Computing

146X

Interactive

visualization of

volumetric white

matter connectivity

Simulation in Matlab

using .mex file CUDA

function

149X

Financial simulation

of LIBOR model with

swaptions

17X

source

CPU’s vs GPU’s today

 CPU

 Low memory bandwidth

 Higher power consumption

 Medium level of parallelism

 Deep execution pipelines

 Random accesses

 Supports general code

 Mainstream programming

 GPU
 High memory bandwidth

 Lower power consumption

 High level of parallelism

 Shallow execution pipelines

 Sequential accesses

 Supports data-parallel code

 Mainstream programming
thanks to C++ AMP

images source: AMD

C++ AMP

 Part of Visual C++ since VC++ 2012

 Complete Visual Studio integration

(IntelliSense, GPU debugging, profiling, …)

 STL-like library for multidimensional data

 MS implementation builds on Direct3D

Agenda

 Introduction

 Technical

 The C++ AMP Technology

 Coding Demo: Mandelbrot

 Visual Studio Integration

 Summary

 Resources

Basics

 #include <amp.h>

 Everything is in the concurrency namespace

 Most important new classes:

array, array_view

extent, index

accelerator, accelerator_view

 New function: parallel_for_each()

 New keywords: restrict / tile_static

array

 concurrency::array<type, dim>

 Allocates a buffer on an accelerator

 Explicitly call copy() to copy data back from an

accelerator to the CPU

 Example: A 1D array of 10 floats:

 array<float, 1> arr(10)

 A 3D array of doubles:

 array<double, 3> arr(3, 2, 1);

array_view

 concurrency::array_view<type, dim>

 Wraps a user-allocated buffer so that C++ AMP can use it

 C++ AMP automatically transfers data between those

buffers and memory on the accelerators

 Dense in least significant dimension

array_view

 Read/write buffer of given dimensionality, with elements of
given type:
 array_view<type, dim> av(…);

 Read-only buffer:
 array_view<const type, dim> av(…);

 Only copies data from the CPU to the accelerator at the start, not
back to the CPU at the end

 Write-only buffer:
 array_view<type, dim> av(…);

av.discard_data();

 Only copies data from the accelerator to the CPU at the end, not to
the accelerator at the start

extent<N> - size of an N-dim space

index<N> - an N-dimensional point

parallel_for_each()

 concurrency::parallel_for_each(extent, lambda);







 restrict(amp)







 ust capture everything by value, except
concurrency::array objects

void AddArrays(int n, int * pA, int * pB, int * pSum)
{

for (int i=0; i<n; i++)

{
pSum[i] = pA[i] + pB[i];

}

}

#include <amp.h>
using namespace concurrency;
void AddArrays(int n, int * pA, int * pB, int * pSum)
{

array_view<const int,1> a(n, pA);
array_view<const int,1> b(n, pB);
array_view<int,1> sum(n, pSum);
sum.discard_data();
parallel_for_each(

sum.extent,
[a,b,sum](index<1> i) restrict(amp)
{

sum[i] = a[i] + b[i];
}

);
}

Hello World: Array Addition

void AddArrays(int n, int * pA, int * pB, int * pSum)
{

for (int i=0; i<n; i++)

{
pSum[i] = pA[i] + pB[i];

}

}

Hello World: Array Addition

void AddArrays(int n, int * pA, int * pB, int * pSum)
{

array_view<const int,1> a(n, pA);
array_view<const int,1> b(n, pB);
array_view<int,1> sum(n, pSum);
sum.discard_data();
parallel_for_each(

sum.extent,
[a,b,sum](index<1> i) restrict(amp)
{

sum[i] = a[i] + b[i];
}

);
}

array_view variables

captured and associated

data copied to accelerator

(on demand)

restrict(amp): tells the compiler to

check that this code conforms to C++

AMP language restrictions

parallel_for_each:

executes the lambda

on the accelerator once

per thread

extent: the number and

shape of threads to

execute the lambda

index: the thread ID that is running the
lambda, used to index into data.
Same dimensionality as the extent, so if
extent is 2D, index is also 2D:
index<2> idx
Access the two dimensions as idx[0] and
idx[1]

array_view: wraps the data to

operate on the accelerator

restrict(amp) restrictions

 Several restrictions apply to code marked as

restrict(amp):

 Can only call other restrict(amp) functions

 Function must be inlinable

 Can only use
 int, unsigned int, float, double, and bool

 structs & arrays of these types

restrict(amp) restrictions

 No

 recursion

 'volatile'

 virtual functions

 pointers to functions

 pointers to member functions

 pointers in structs

 pointers to pointers

 bitfields

 No

 goto or labeled statements

 throw, try, catch

 globals

 statics (use tile_static keyword instead)

 dynamic_cast or typeid

 asm declarations

 varargs

 unsupported types

 e.g. char, short, long double

restrict()

 restrict() is really part of the signature

 Thus, can be overloaded on

 Example:
 float foo(float) restrict(cpu, amp); // Code runs on both CPU and C++ AMP accelerators

 float bar(float); // General code
float bar(float) restrict(amp); // C++ AMP specific code

parallel_for_each() – lambda

 The lambda executes in parallel with CPU code that follows

parallel_for_each() until a synchronization point is reached

 Synchronization:

 Manually when calling array_view::synchronize()

 Good idea, because you can handle exceptions gracefully

 Automatically, when CPU code observes the array_view

 Not recommended, because you might lose error information if there is

no try/catch block catching exceptions at that point

 Automatically when for example array_view goes out of scope

 Bad idea, errors will be ignored silently because destructors are not

allowed to throw exceptions

accelerator / accelerator_view

 accelerator and accelerator_view can be used to query for

information on installed accelerators

 accelerator::get_all() returns a vector of accelerators in the

system #include <iostream>
#include <amp.h>
using namespace std;
using namespace concurrency;
int main() {
auto accelerators = accelerator::get_all();
for (auto&& accel : accelerators) {
wcout << accel.get_description() << endl;

}
return 0;

}

Tiling

 Rearrange algorithm to do the calculation in tiles

 Each thread in a tile shares a programmable cache
 tile_static memory

 Access 100x as fast as global memory

 Excellent for algorithms that use each piece of information
again and again

 Overload of parallel_for_each() that takes a tiled extent

 Because a tile of threads shares the programmable cache,
you must prevent race conditions
 Tile barrier can ensure a wait

Agenda

 Introduction

 Technical

 The C++ AMP Technology

 Coding Demo: Mandelbrot

 Visual Studio Integration

 Summary

 Resources

Mandelbrot – Single-Threaded
for (int y = -halfHeight; y < halfHeight; ++y) {

// Formula: zi = z^2 + z0
float Z0_i = view_i + y * zoomLevel;
for (int x = -halfWidth; x < halfWidth; ++x) {

float Z0_r = view_r + x * zoomLevel;
float Z_r = Z0_r;
float Z_i = Z0_i;
float res = 0.0f;
for (int iter = 0; iter < maxiter; ++iter) {

float Z_rSquared = Z_r * Z_r;
float Z_iSquared = Z_i * Z_i;
if (Z_rSquared + Z_iSquared > escapeValue) {

// We escaped
res = iter + 1 - log(log(sqrt(Z_rSquared + Z_iSquared))) * invLogOf2;
break;

}
Z_i = 2 * Z_r * Z_i + Z0_i;
Z_r = Z_rSquared - Z_iSquared + Z0_r;

}
unsigned __int32 grayValue = static_cast<unsigned __int32>(res * 50);
unsigned __int32 result = grayValue | (grayValue << 8) | (grayValue << 16);
pBuffer[(y + halfHeight) * m_nBuffWidth + (x + halfWidth)] = result;

}
}

Mandelbrot – PPL
parallel_for(-halfHeight, halfHeight, 1, [&](int y) {

// Formula: zi = z^2 + z0
float Z0_i = view_i + y * zoomLevel;
for (int x = -halfWidth; x < halfWidth; ++x) {

float Z0_r = view_r + x * zoomLevel;
float Z_r = Z0_r;
float Z_i = Z0_i;
float res = 0.0f;
for (int iter = 0; iter < maxiter; ++iter) {

float Z_rSquared = Z_r * Z_r;
float Z_iSquared = Z_i * Z_i;
if (Z_rSquared + Z_iSquared > escapeValue) {

// We escaped
res = iter + 1 - log(log(sqrt(Z_rSquared + Z_iSquared))) * invLogOf2;
break;

}
Z_i = 2 * Z_r * Z_i + Z0_i;
Z_r = Z_rSquared - Z_iSquared + Z0_r;

}
unsigned __int32 grayValue = static_cast<unsigned __int32>(res * 50);
unsigned __int32 result = grayValue | (grayValue << 8) | (grayValue << 16);
pBuffer[(y + halfHeight) * m_nBuffWidth + (x + halfWidth)] = result;

}
});

Mandelbrot – C++ AMP
array_view<unsigned __int32, 2> a(m_nBuffHeight, m_nBuffWidth, pBuffer);
a.discard_data();
parallel_for_each(a.extent, [=](index<2> idx) restrict(amp) {

// Formula: zi = z^2 + z0
int x = idx[1] - halfWidth; int y = idx[0] - halfHeight;
float Z0_i = view_i + y * zoomLevel;
float Z0_r = view_r + x * zoomLevel;
float Z_r = Z0_r; float Z_i = Z0_i;
float res = 0.0f;
for (int iter = 0; iter < maxiter; ++iter) {

float Z_rSquared = Z_r * Z_r;
float Z_iSquared = Z_i * Z_i;
if (Z_rSquared + Z_iSquared > escapeValue) {

// We escaped
res = iter + 1 – fast_log(fast_log(fast_sqrt(Z_rSquared + Z_iSquared))) * invLogOf2;
break;

}
Z_i = 2 * Z_r * Z_i + Z0_i;
Z_r = Z_rSquared - Z_iSquared + Z0_r;

}
unsigned __int32 grayValue = static_cast<unsigned __int32>(res * 50);
unsigned __int32 result = grayValue | (grayValue << 8) | (grayValue << 16);
a[idx] = result;

});
a.synchronize();

fast_math namespace for single precision

precise_math namespace for double precision

Mandelbrot – C++ AMP

 Wrap C++ AMP code inside a try-catch block to handle errors!

try
{

array_view<unsigned __int32, 2> a(m_nBuffHeight, m_nBuffWidth, pBuffer);
a.discard_data();
parallel_for_each(a.extent, [=](index<2> idx) restrict(amp) {

...

});
a.synchronize();

}
catch (const Concurrency::runtime_exception& ex)
{

MessageBoxA(nullptr, ex.what(), "Error", MB_ICONERROR);
}

Mandelbrot

Agenda

 Introduction

 Technical

 The C++ AMP Technology

 Coding Demo: Mandelbrot

 Visual Studio Integration

 Summary

 Resources

Visual Studio

 C++ AMP is deeply integrated into VC++ >= 2012

 Debugging

 CPU/GPU breakpoints (even simultaneously)

 GPU threads

 Parallel Stacks

 Parallel Watch

 Concurrency Visualizer

Debugging

 GPU breakpoints are supported

 On Windows 8 and 7, no CPU/GPU simultaneous

debugging possible

 You need to enable the GPU Only debugging option

Debugging

 Simultaneous CPU/GPU debugging:

 Requires Windows 8.1 and at least VC++2013

 Requires the WARP accelerator

Debugging

Debugging

 GPU

Threads

Debugging

 Parallel

Watch

 Shows

values

across

multiple

threads

Debugging

 Other things supported:

 Help with race condition detection

 Flagging, filtering, grouping

 Freezing, thawing

 Run tile to cursor

Debugging

 Concurrency Visualizer is not included with VC++2013

anymore

 Download and install it from:
http://visualstudiogallery.msdn.microsoft.com/24b56e51-fcc2-

423f-b811-f16f3fa3af7a

http://visualstudiogallery.msdn.microsoft.com/24b56e51-fcc2-423f-b811-f16f3fa3af7a

Debugging

 Concurrency Visualizer

 Shows activity on CPU and GPU

 Locate performance bottlenecks

 Copy times to/from the accelerator

 CPU underutilization

 Thread contention

 Cross-core thread migration

 Synchronization delays

 DirectX activity

Debugging

Agenda

 Introduction

 Technical

 The C++ AMP Technology

 Coding Demo: Mandelbrot

 Visual Studio Integration

 Summary

 Resources

Summary

 C++ AMP makes heterogeneous computing mainstream

and allows anyone to make use of parallel hardware

 Easy-to-use

 High-level abstractions in C++ (not C)

 Excellent integration of C++ AMP in VS, including the debugger

 Abstracts multi-vendor hardware

 C++ AMP is an open specification 

Other Presentations

 Tuesday, September 9 • 9:00am - 10:00am:

“Writing Data Parallel Algorithms on GPUs”

Ade Miller

 Tuesday, September 9 • 2:00pm - 3:00pm:

“Another fundamental shift in Parallelism Paradigm?

OpenMP 4.0 for GPU/Accelerators and other things”

Michael Wong

 Tuesday, September 9 • 3:15pm - 4:15pm:

“Decomposing a Problem for Parallel Execution”

Pablo Halpern

The C++ AMP Book

Book / Source Code / Blogs:

http://www.gregcons.com/cppamp

 Written by Kate Gregory & Ade Miller,
two experienced C++ programmers

 Covers all the C++ AMP features in detail, 350 pages

 Source code for each chapter and all three case studies
available online

 eBook also available form Amazon or O’Reilly Books

http://www.gregcons.com/cppamp

Resources

 MSDN Native parallelism blog (team blog)
 http://blogs.msdn.com/b/nativeconcurrency/

 Samples (36 at the time of this presentation)
 http://blogs.msdn.com/b/nativeconcurrency/archive/2012/01/30/c-amp-sample-projects-for-download.aspx

 Spec
 http://blogs.msdn.com/b/nativeconcurrency/archive/2012/02/03/c-amp-open-spec-published.aspx

 Videos
 http://channel9.msdn.com/Tags/c++-accelerated-massive-parallelism

 Daniel Moth's blog (previous PM of C++ AMP), interesting C++ AMP posts
 http://www.danielmoth.com/Blog/

 MSDN Dev Center for Parallel Computing
 http://msdn.com/concurrency

 MSDN Forums to ask questions
 http://social.msdn.microsoft.com/Forums/en/parallelcppnative/threads

http://blogs.msdn.com/b/nativeconcurrency/
http://blogs.msdn.com/b/nativeconcurrency/archive/2012/01/30/c-amp-sample-projects-for-download.aspx
http://blogs.msdn.com/b/nativeconcurrency/archive/2012/02/03/c-amp-open-spec-published.aspx
http://channel9.msdn.com/Tags/c++-accelerated-massive-parallelism
http://www.danielmoth.com/Blog/
http://msdn.com/concurrency
http://social.msdn.microsoft.com/Forums/en/parallelcppnative/threads

Microsoft Contact Person

 Sharma Raman (Program Manager C++ AMP)

 Sharma.Raman@microsoft.com

mailto:Sharma.Raman@microsoft.com

Questions

?

