Gamgee: A C++14 library for genomic data processing and analysis

Mauricio Carneiro, PhD

Group Lead, Computational Technology Development Broad Institute

Talk breakdown

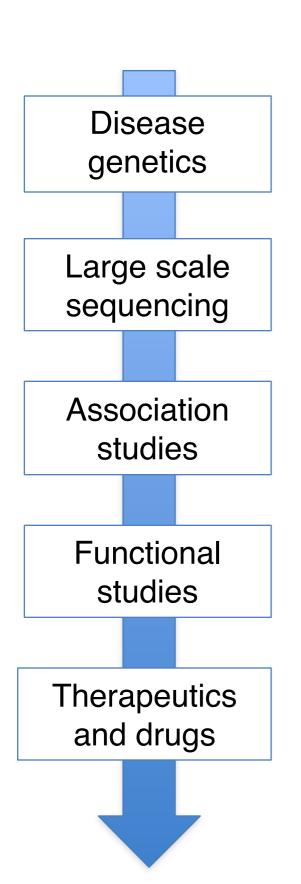
- An overview of genetics data and how complex disease research became a big data problem
- The first C++ example that steered us away from Java.
- Gamgee: the C++14 library memory model and examples
- Performance comparisons with the old Java framework.
- Discussion of C++11/14 features used in the library and how they affected development

To fully understand **one** genome we need hundreds of thousands of genomes

Rare Variant **Association Study** (RVAS)

Common Variant **Association Study** (CVAS)

Improving human health in 5 easy steps



Many simple and complex human diseases are heritable. Pick one.

Affected and unaffected individuals differ systematically in their genetic composition

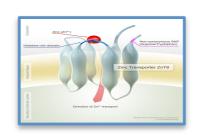
These systematic differences can be identified by comparing affected and unaffected individuals

These associated variants give insight into the biological mechanisms of disease

These insights can be used to intervene in the disease process itself

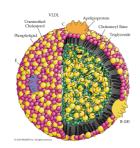
The Importance of Scale... Early Success Stories (at 1,000s of exomes)

Type 2 Diabetes



- 13,000 exomes
- SLC30A8
 (Beta-cell-specific Zn⁺⁺ transporter)
- 3-fold protection against T2D!
- 1 LoF per 1500 people

Coronary Heart Disease



- 3,700 exomes
- APOC3
- 2.5-fold protection from CHD
- 4 rare disruptive mutations (~1 in 200 carrier frequency)

Schizophrenia

- 5,000 exomes
- Pathways
 - Activity-regulated cytoskeletal (ARC) of post-synaptic density complex (PSD)
 - Voltage-gated Ca⁺⁺ Channel
- 13-21% risk in carriers
- Collection of rare disruptive mutations (~1/10,000 carrier frequency)

Early Heart Attack

- 5,000 exomes
- APOA5
- 22% risk in carriers
- 0.5% Rare disruptive / deleterious alleles

Broad Institute in 2013

50 HiSeqs

10 MiSeqs

2 NextSeqs **14** HiSeq X

6.5 Pb of data

427 projects

180 people **2.1** Tb/day

Broad Institute in 2013

44,130 exomes

2,484 exome express

2,247 genomes

2,247 assemblies

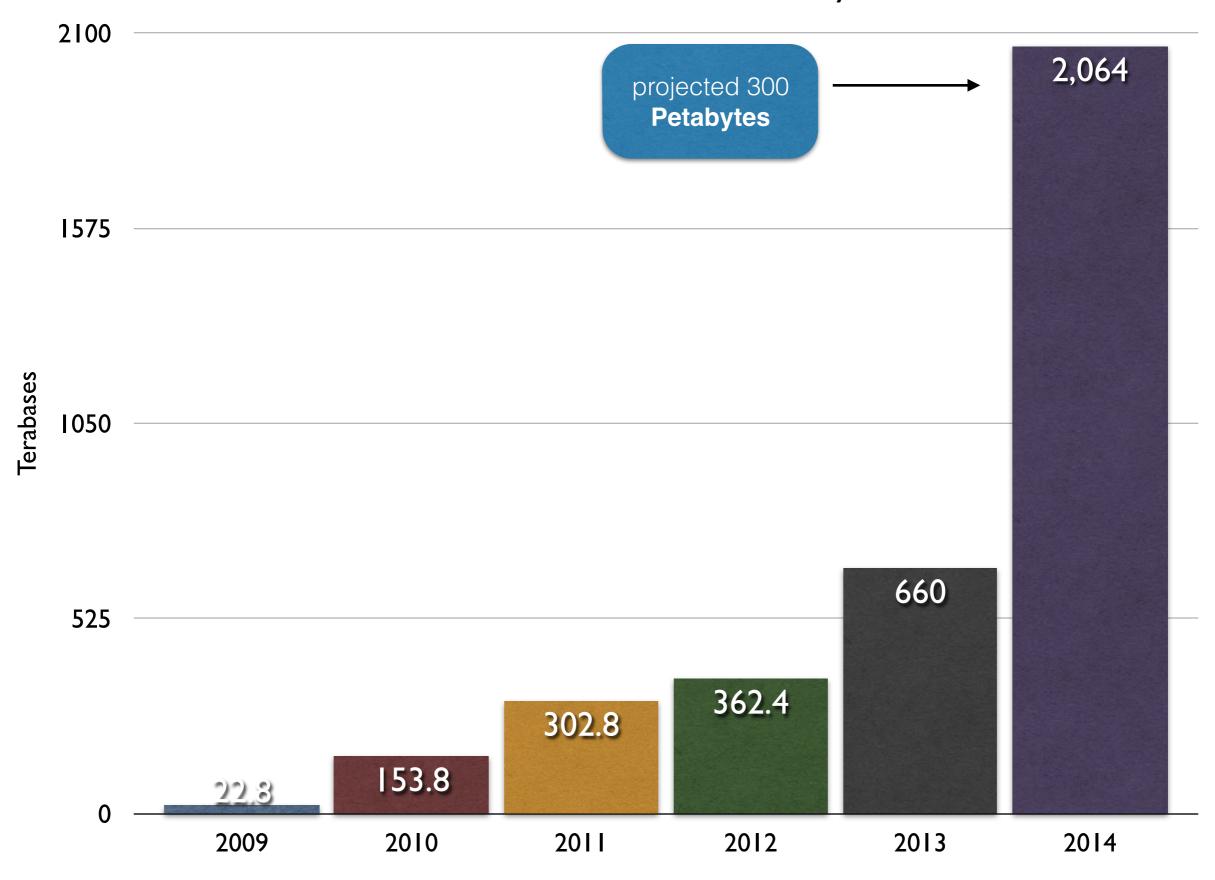
8,189 RNA

9,788 16S

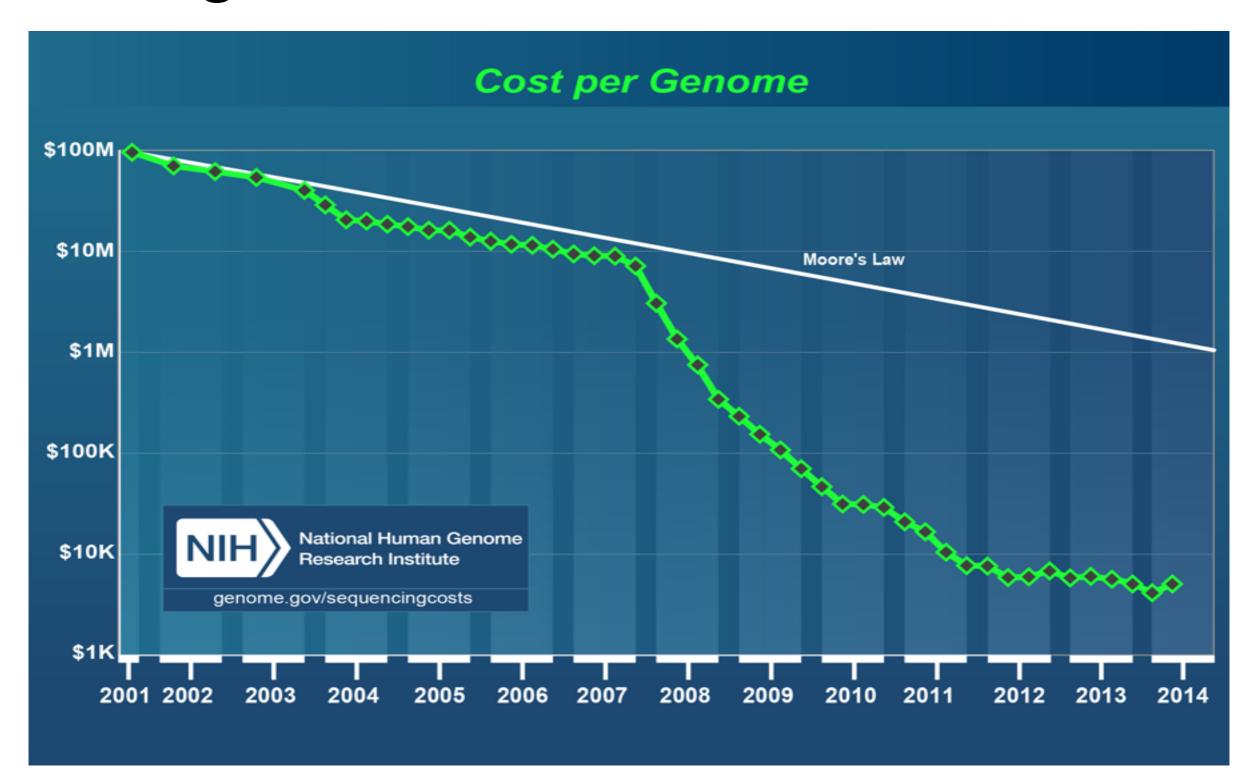
47,764 arrays

228 cell lines

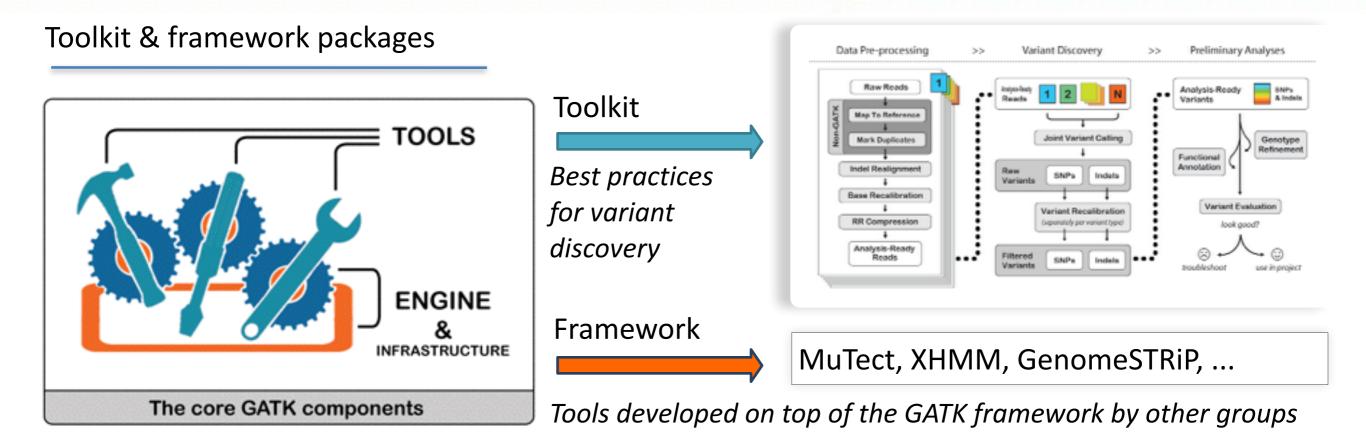
Terabases of Data Produced by Year



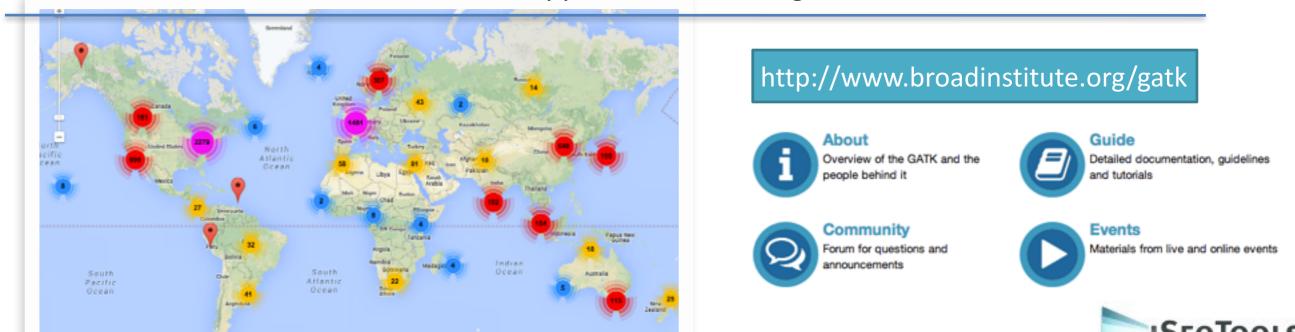
...and these numbers will continue to grow faster than Moore's law



GATK is both a toolkit and a programming framework, enabling NGS analysis by scientists worldwide



Extensive online documentation & user support forum serving >10K users worldwide



Workshop series educates local and worldwide audiences

Past:

- Dec 4-5 2012, Boston
- July 9-10 2013, Boston
- July 22-23 2013, Israel
- Oct 21-22 2013, Boston
- March 3-5 2014, Thailand
- June 6-9 2014, Belgium

Upcoming:

- Sep 17-18 2014, Philadelphia
- Oct 18-29 2014, San Diego

iTunes U Collections

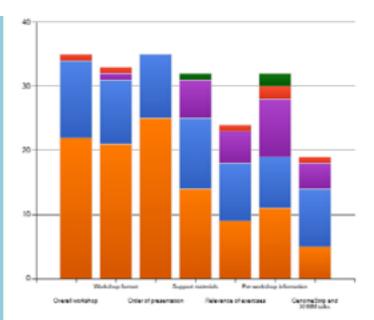
• GAT • Buil

- **Format**
- Lecture series (general audience)
- Hands-on sessions (for beginners)

Portfolio of workshop modules

- GATK Best Practices for Variant Calling
- Building Analysis Pipelines with Queue
- Third-party Tools:
 - GenomeSTRiP
 - O XHMM

Tutorial materials, slide decks and videos all available online through the GATK website, YouTube and iTunesU

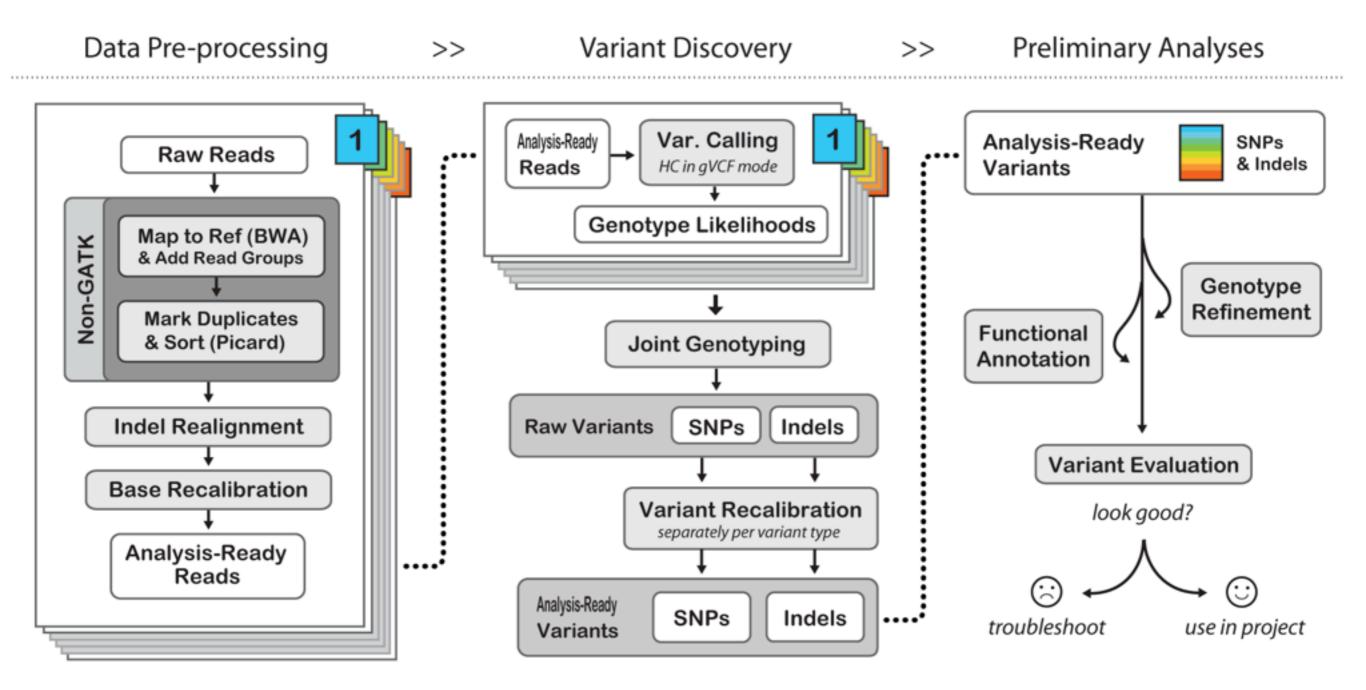


- High levels of satisfaction reported by users in polls
- Detailed feedback helps improve further iterations

by broadinstitute • 1 week ago • 1 view

Copyright Broad Institute, 2013. All rights reserved. The presentations below were filmed during the 2013 GATK Workshop, part of ...

We have defined the best practices for sequencing data processing



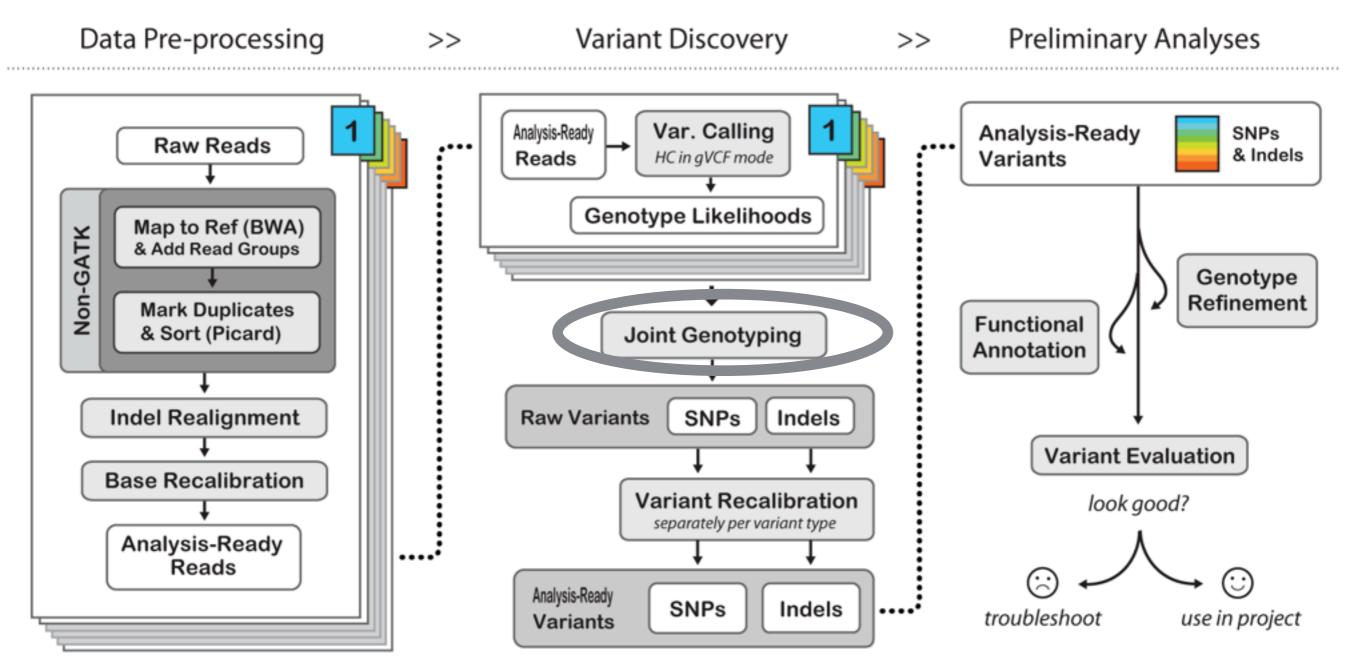
To fully understand one genome we need hundreds of thousands of genomes

Rare Variant **Association Study** (RVAS)

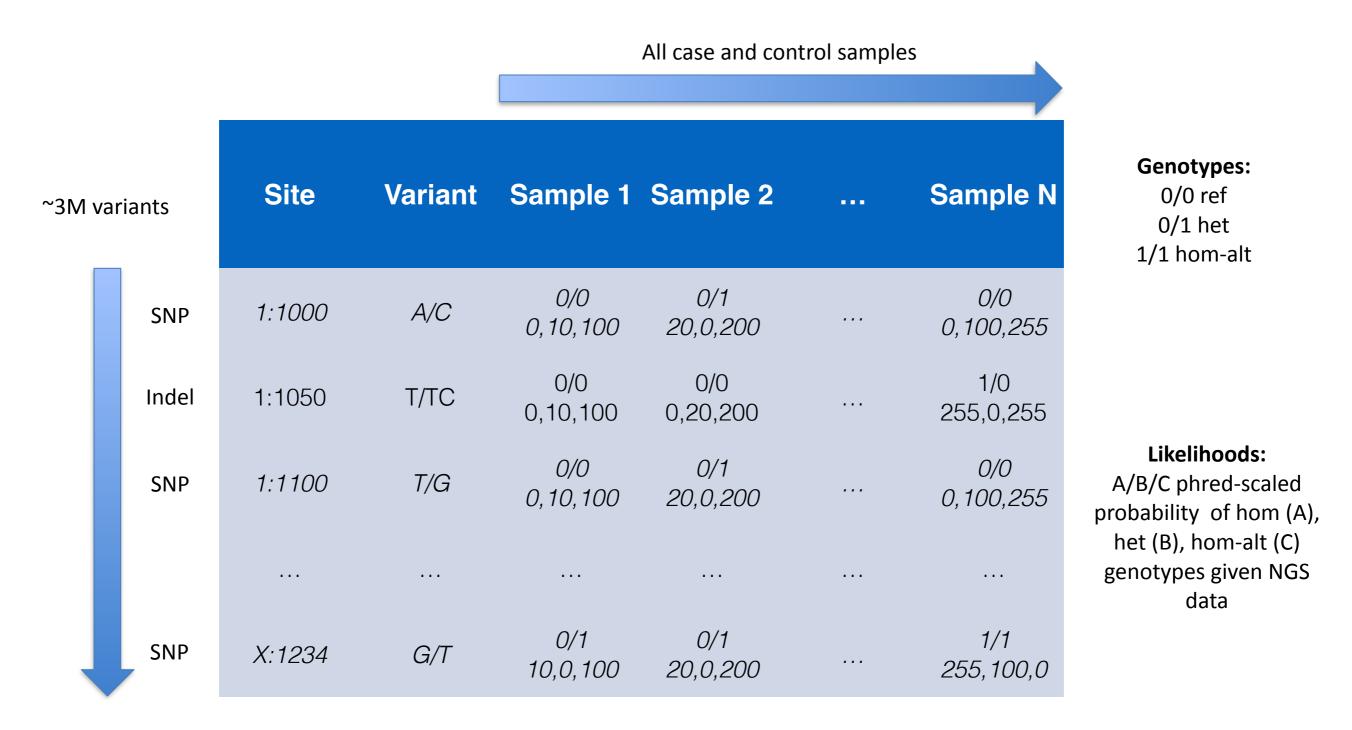
Common Variant **Association Study** (CVAS)

The motivating example

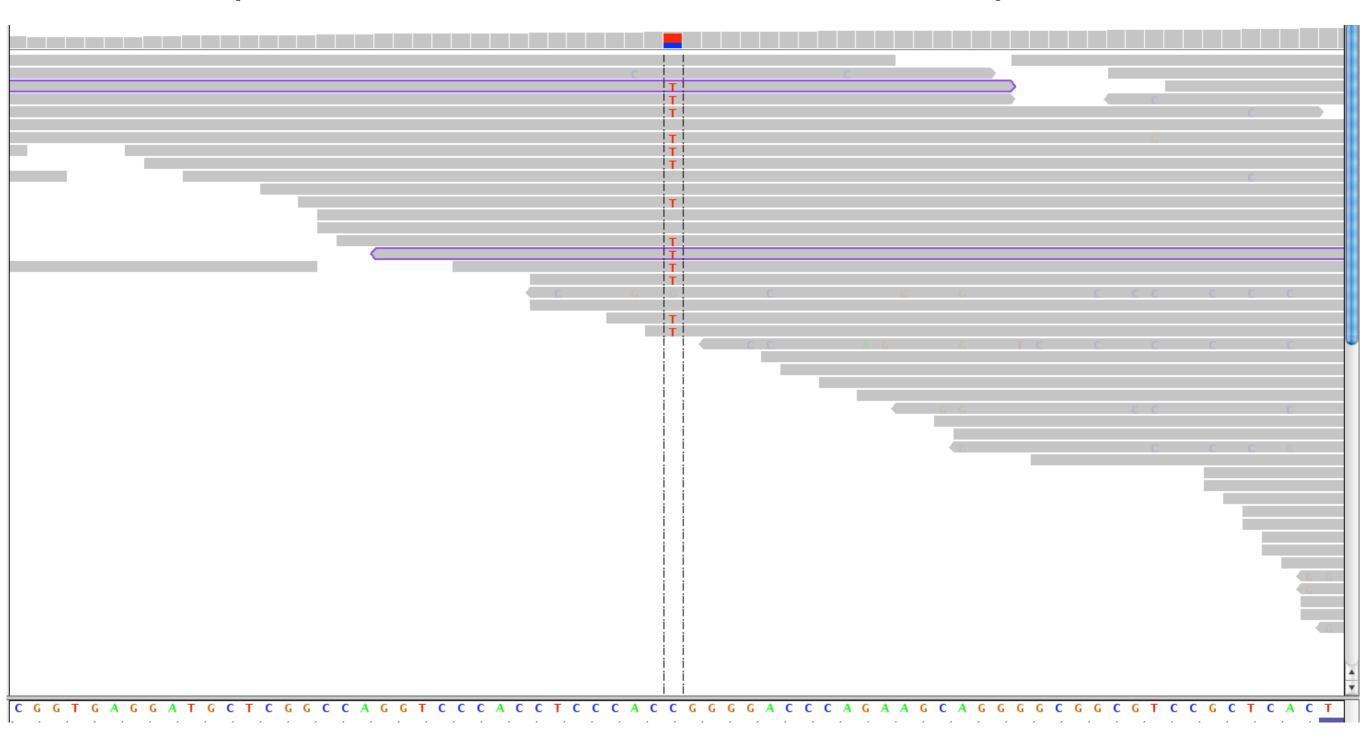
Joint genotyping is an important step in Variant Discovery



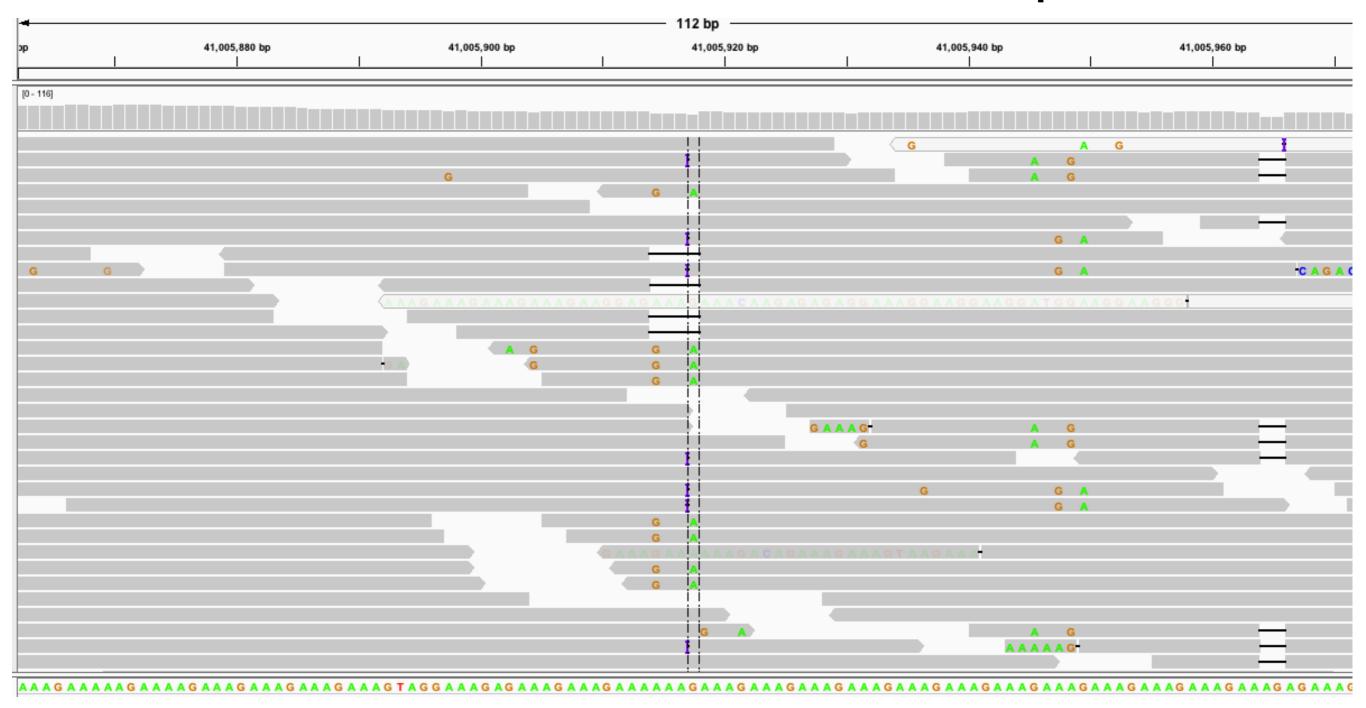
The ideal database for RVAS and CVAS studies is a complete mutation matrix



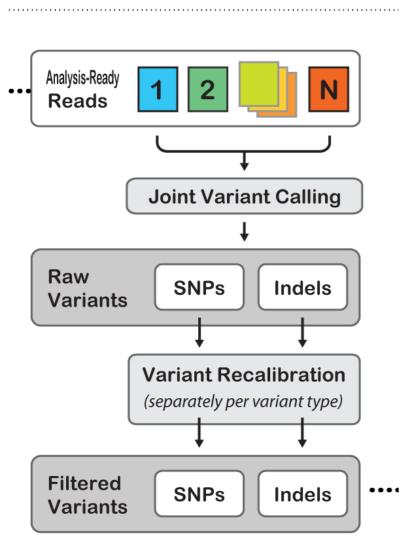
Identifying mutations in a genome is a simple "find the differences" problem

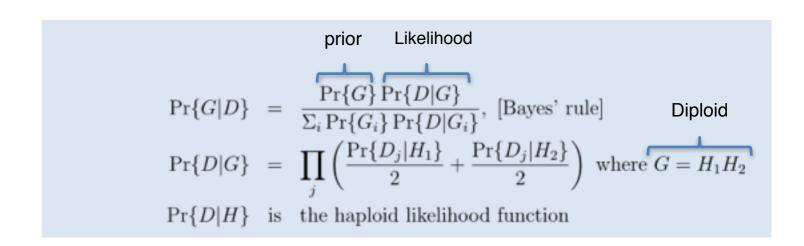


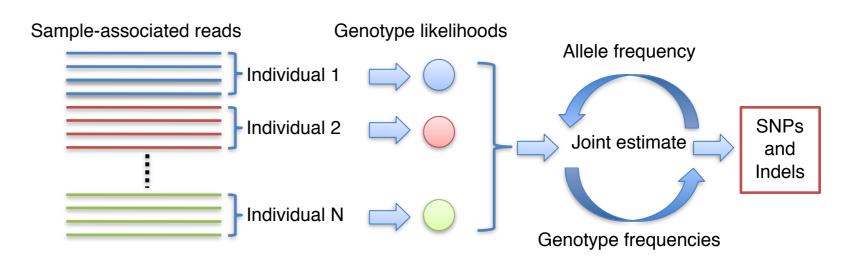
Unfortunately, real data doesn't look that simple



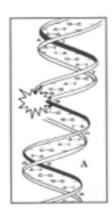
Variant calling is a large-scale bayesian modeling problem



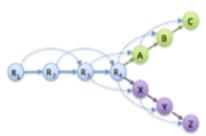




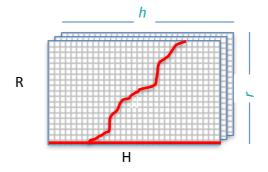
Understanding the Haplotype Caller



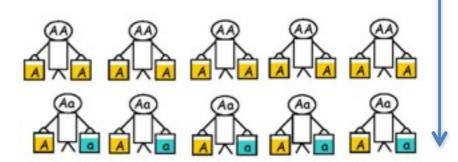
1. Active region traversal identifies the regions that need to be reassembled



2. **Local de-novo assembly** builds the most likely haplotypes for evaluation



3. Pair-Hmm evaluation of all reads against all haplotypes (scales exponentially)

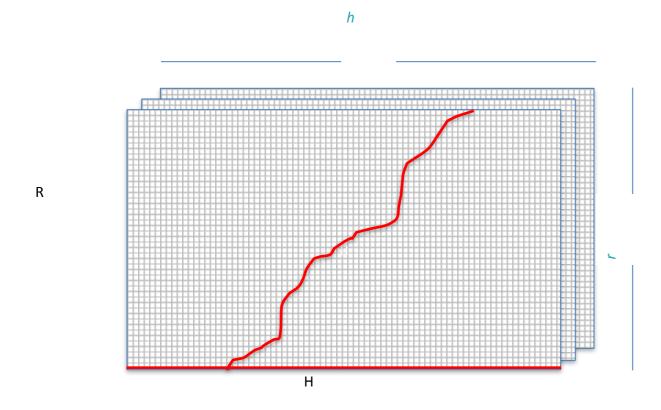


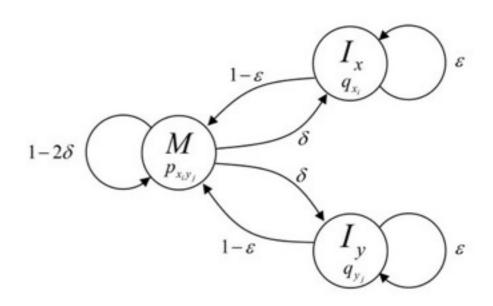
4. **Genotyping** using the exact model

Pair-HMM is the biggest culprit for the low performance of the Haplotype Caller

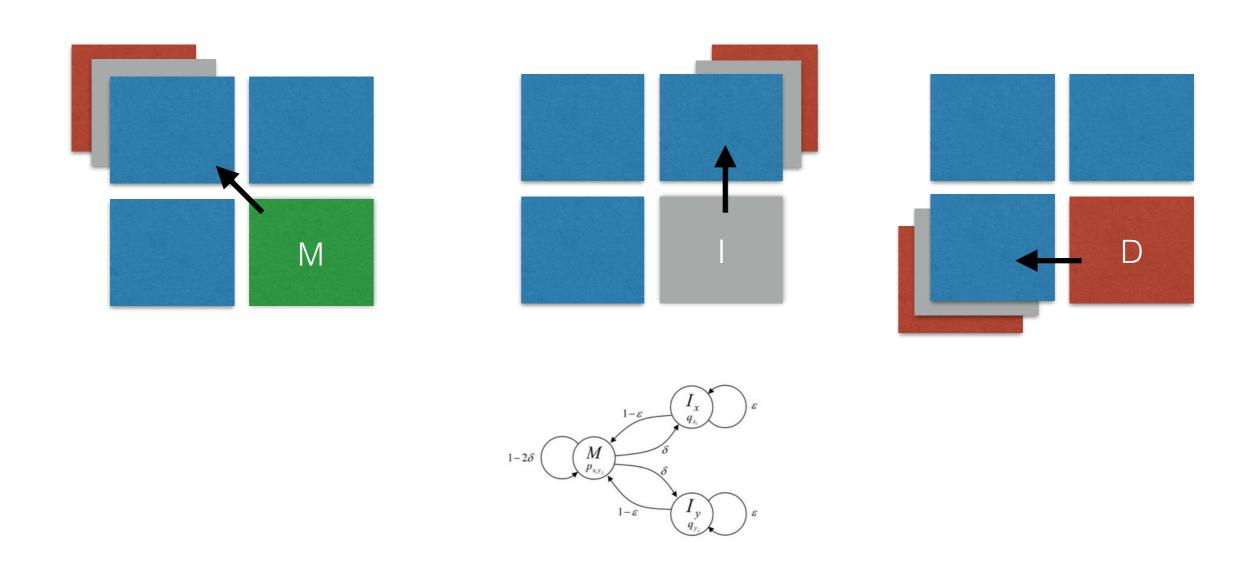
Stage	Time	Runtime %
Assembly	2,598s	13%
Pair-HMM	14,225s	70%
Traversal + Genotyping	3,379s	17%

Understanding the Pair-HMM





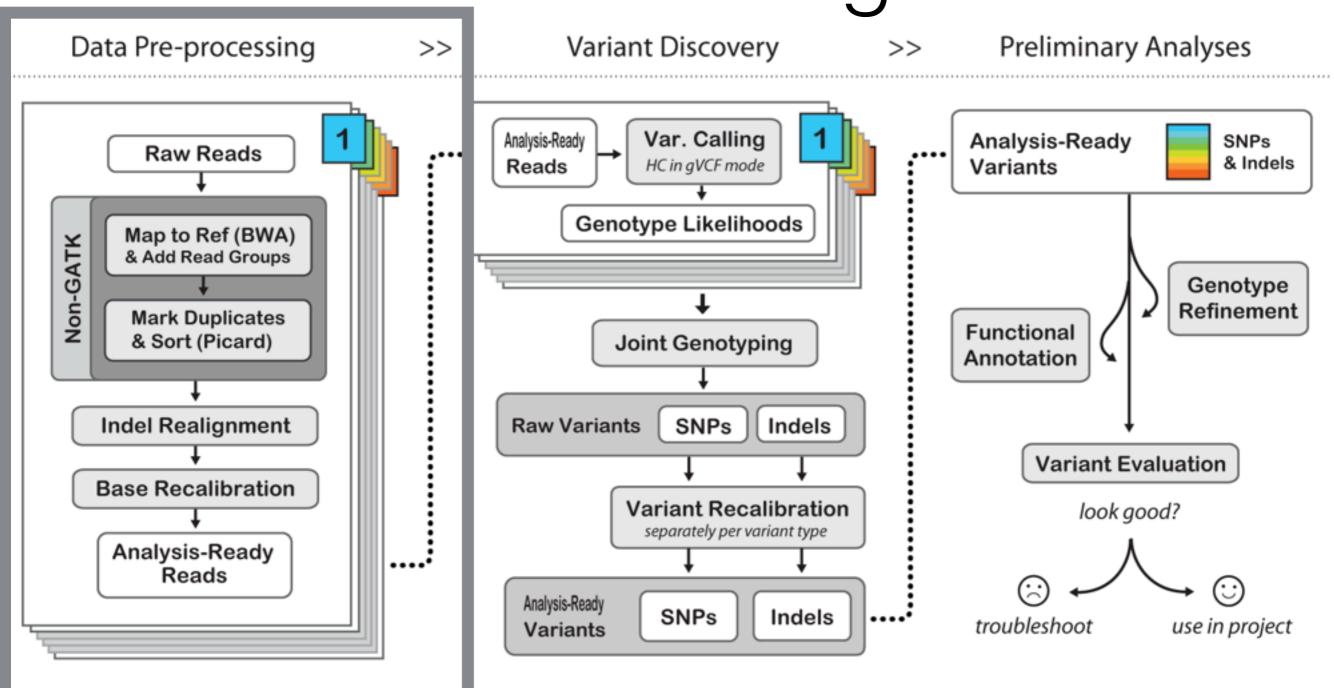
Data dependencies of each cell in each of the three matrices (states)



Heterogeneous compute speeds up variant calling significantly

Technology	Hardware	Runtime	Improvement
_	Java (gatk 2.8)	10,800	_
_	C++ (baseline)	1,267	9x
FPGA	Convey Computers HC2	834	13x
AVX	Intel Xeon 1-core	309	35x
GPU	NVidia GeForce GTX 670	288	38x
GPU	NVidia GeForce GTX 680	274	40x
GPU	NVidia GeForce GTX 480	190	56x
GPU	NVidia GeForce GTX Titan	80	135x
GPU	NVidia Tesla K40	70	154x

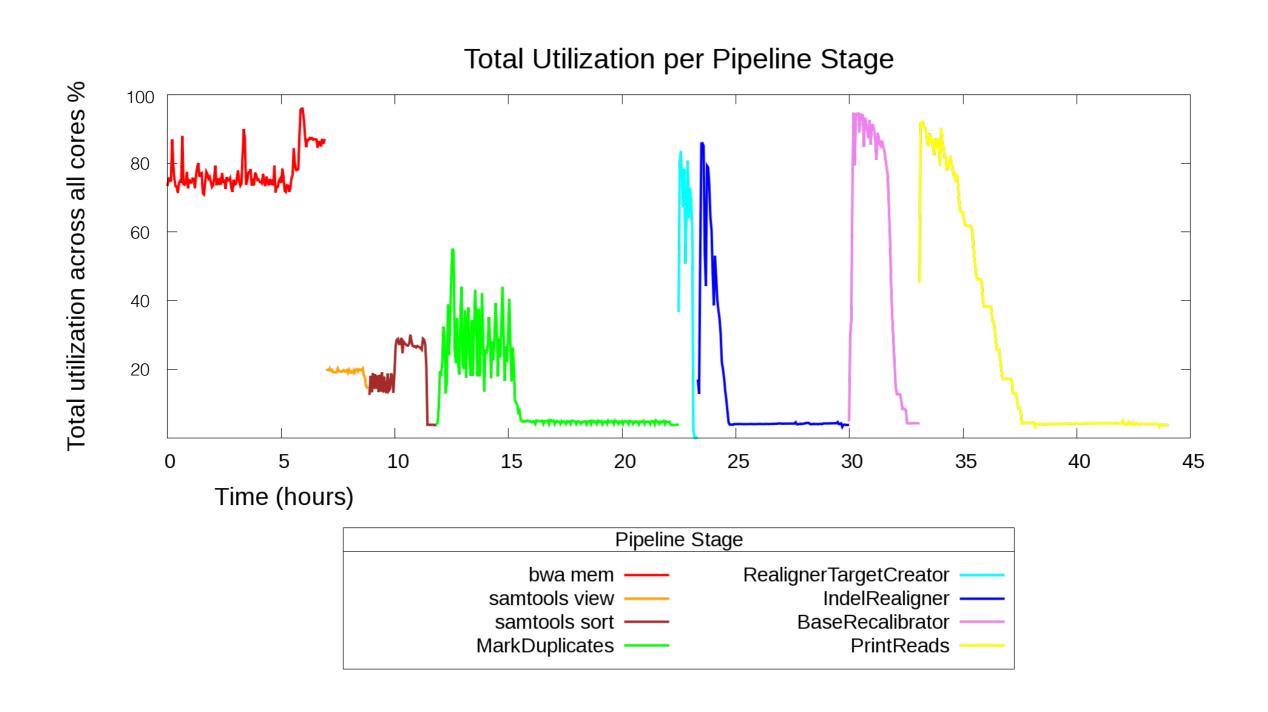
The rest of the pipeline is also not scaling well



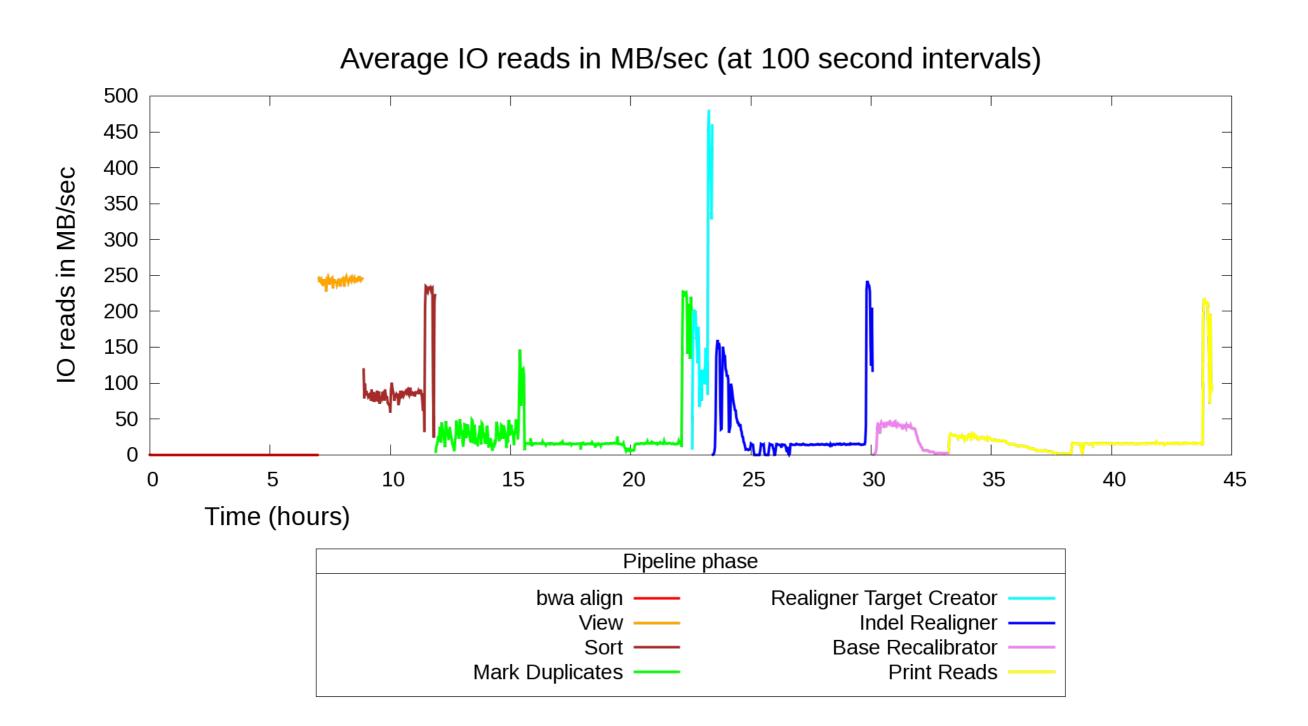
It takes 2 days to process a single genome!

step	threads	time
BWA	24	7
samtools view	1	2
sort + index	1	3
MarkDuplicates	1	11
RealignTargets	24	1
IndelRealigner	24	6.5
BaseRecalibrator	24	1.3
PrintReads + index	24	12.3
Total		44

Processing is a big cost on whole genome sequencing



And it is never I/O bound

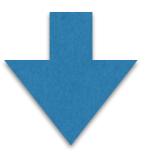


The GATK java codebase has severe limitations

- More than 70% of the instructions in the current GATK pipeline are memory access — the processor is just waiting.
- Excessive use of strings, maps and sets to handle basic data structures that are frequently used in the codebase.
- Java makes it extremely difficult to explore memory contiguity in its data structures.
- Java floating point model is incompatible with modern x86 hardware.
- Java does not offer access to the hardware for optimizations even when desired. As a result, we are forced to underutilize modern hardware.

A typical GATK-Java Data Structure: A Map-of-Maps-of-Maps

```
Map<String, PerReadAlleleLikelihoodMap> map;
```



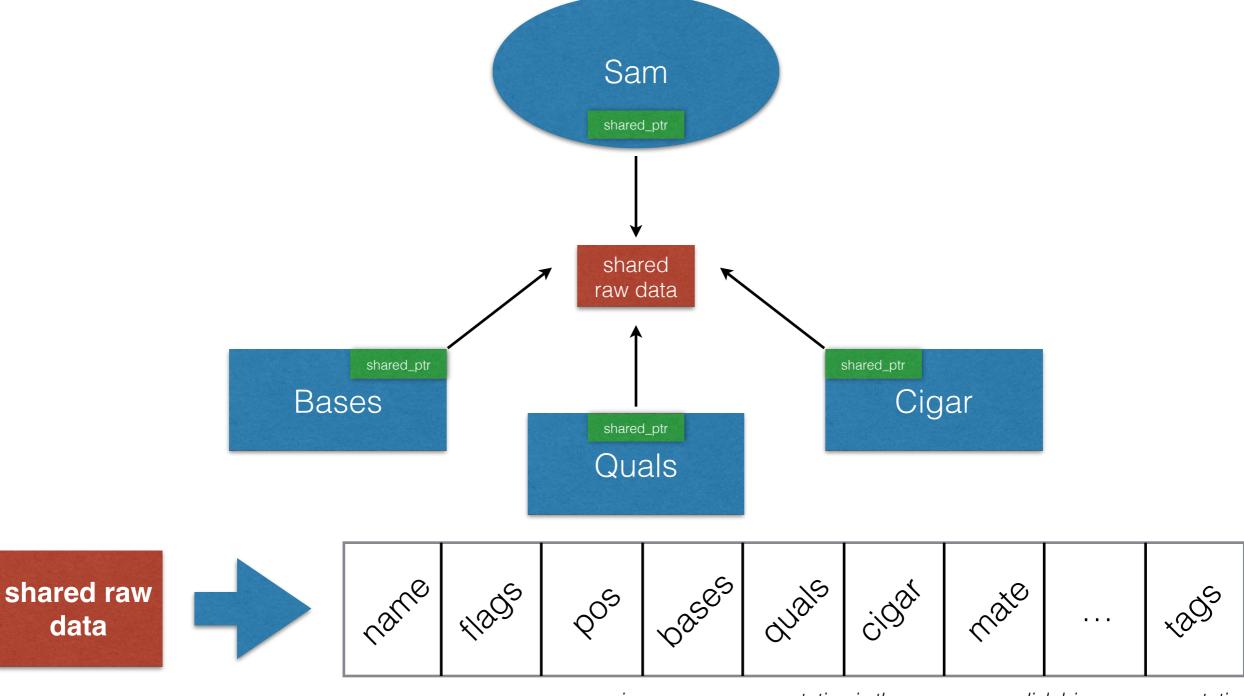
To fully understand **one** genome we need hundreds of thousands of genomes

Rare Variant **Association Study** (RVAS)

Common Variant **Association Study** (CVAS)

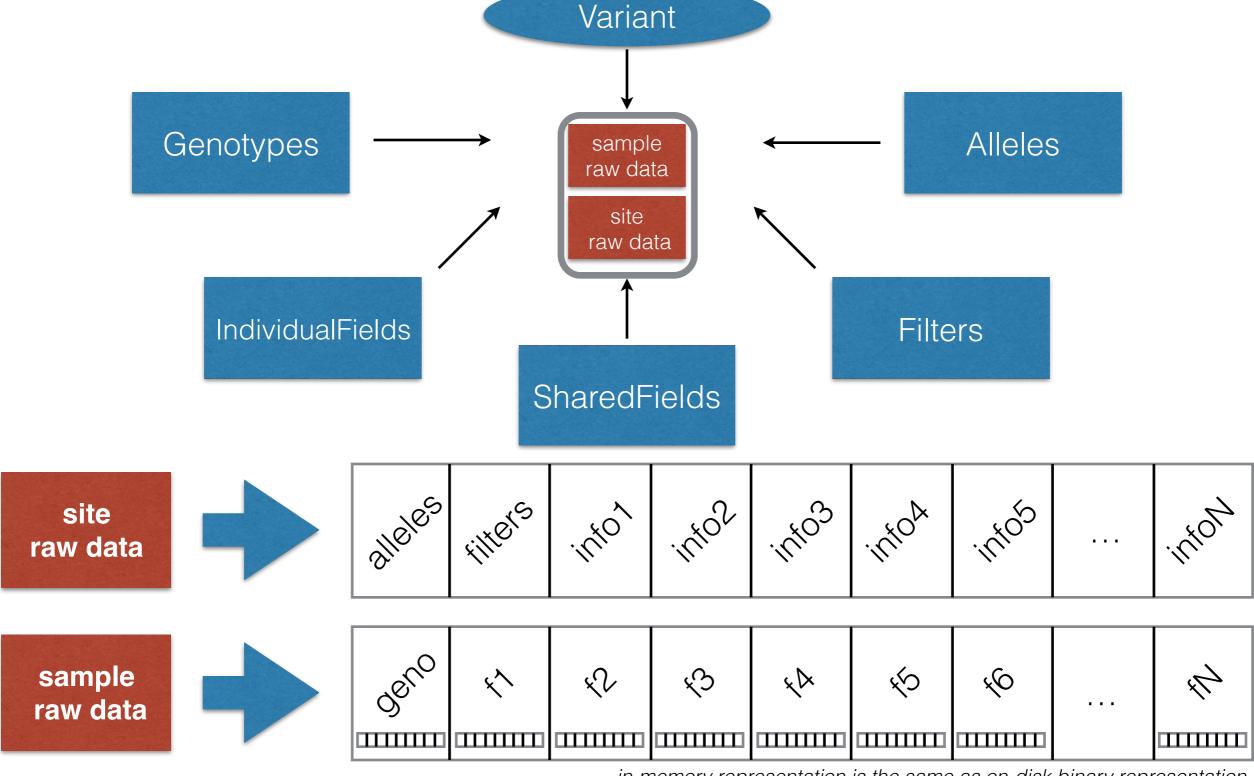
How we are using C++ to address these issues

Gamgee memory model



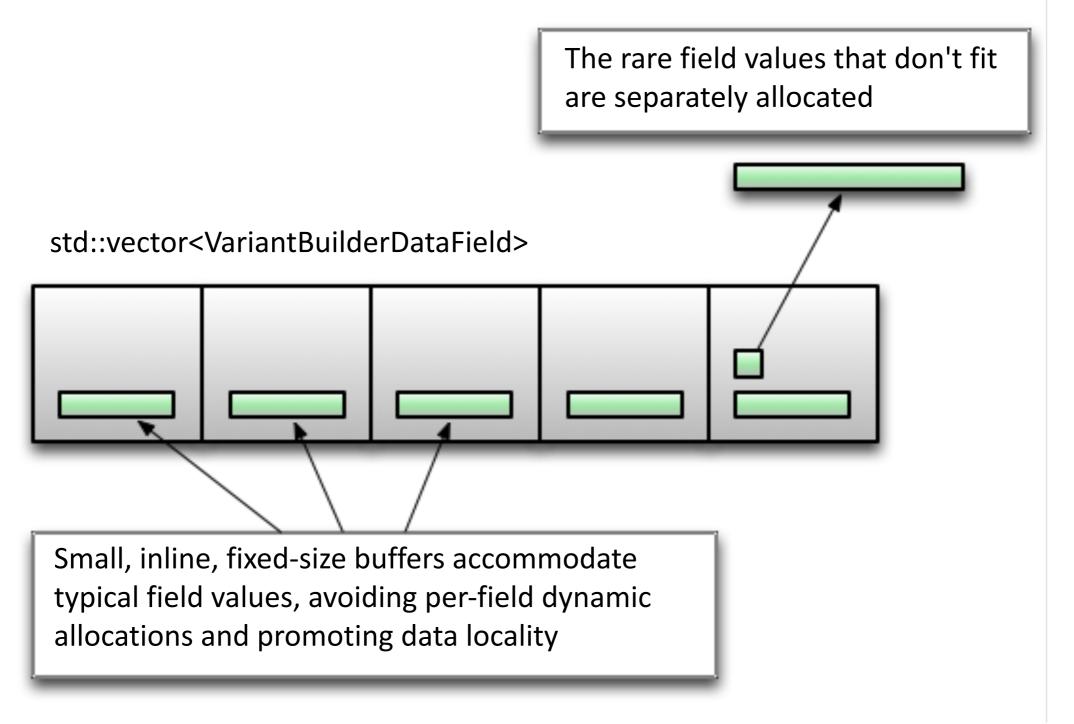
in-memory representation is the same as on-disk binary representation

Gamgee memory model



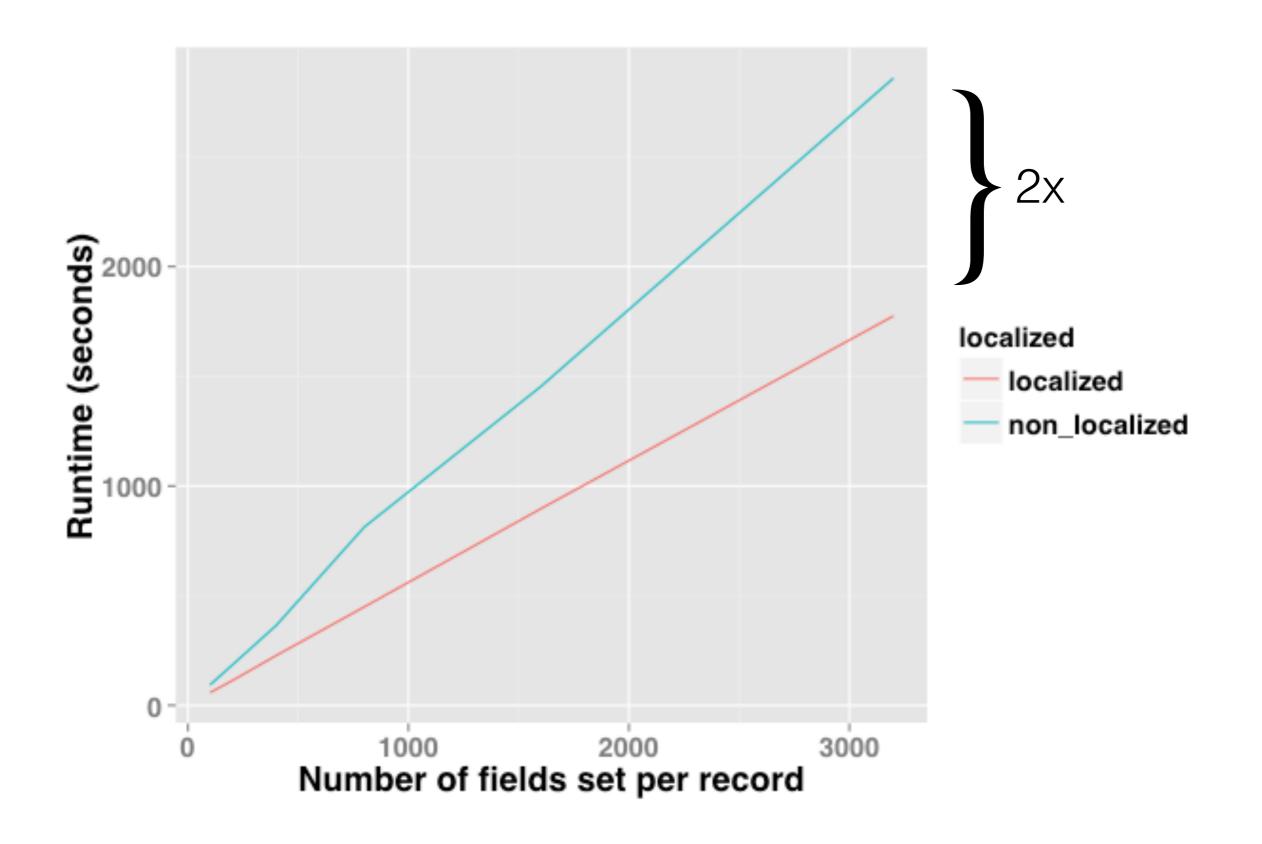
in-memory representation is the same as on-disk binary representation

VariantBuilder is optimized to preserve data locality and avoid dynamic allocation as much as possible when building records

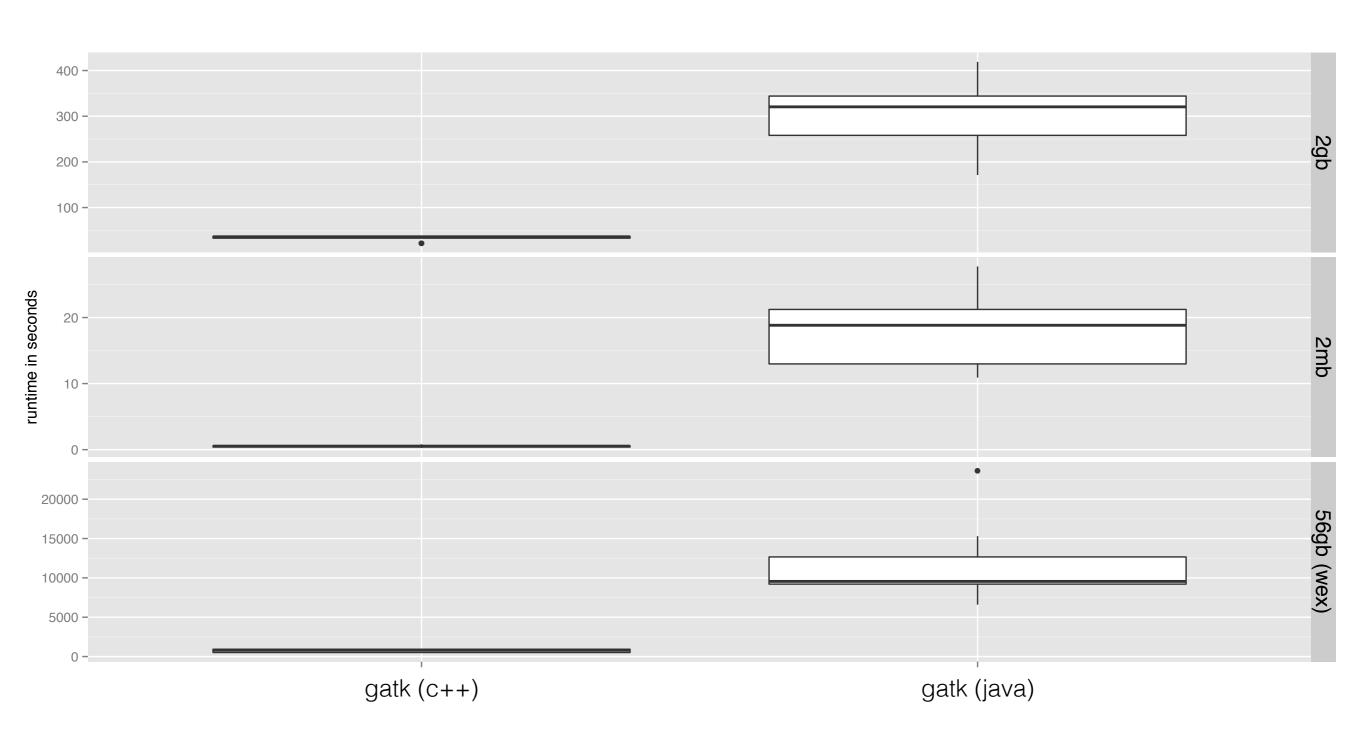


- Same idea as Short String Optimization (SSO) in std::string
- Almost impossible to achieve in Java

Time to create 3,000,000 variant records in VariantBuilder, with and without data locality optimizations



Reading BAM files is 17x faster in gamgee



Reading variant files is much faster in gamgee

2GB (1KG)	GATK C++	GATK Java
Text Variant File (VCF)	32.71s	137.57s
Binary Variant File (BCF)	4.61s	242.33s

the new memory model makes the binary version of the file extremely fast to read and write

MarkDuplicates is 5x faster

	GATK C++	new Picard (java)	old Picard (java)
Exome	4m	20m	2h23m
Genome	1h15m	4h47m	11h06m

exact same implementation in Java after our C++ version was presented

To fully understand **one** genome we need hundreds of thousands of genomes

Rare Variant **Association Study** (RVAS)

Common Variant Association Study (CVAS)

C++11/14

AAA makes it easy to change interfaces

Gamgee library public API code:

```
// first implementation quick and dirty
vector<vector<int32_t>> integer_individual_field(const string& tag) const;
vector<Genotype> genotypes() const;

// after refactor -- avoid unnecessary copies of shared data
IndividualField<IndividualFieldValue<int32_t>> integer_individual_field(const string& tag) const;
IndividualField<Genotype> genotypes() const;
```

Client code written before API change never had to change:

```
// count variants, skip low quality genotypes
for (const auto record : svr) {
  const auto quals = record.integer_individual_field("GQ");
  const auto genotypes = record.genotypes();
  for (auto i = 0u; i != record.n_samples(); ++i)
    if (!missing(quals[i][0]) && quals[i][0] >= m_min_qual &&
        (genotypes[i].het() || genotypes[i].hom_var()))
    {
        nvar[i]++;
    }
}
```

Diligent use of auto has already saved us from modifying client code as the library changes underneath them.

— Thank's Herb!

Smart pointers make interfacing with C libraries manageable

```
class Sam {
  private:
    std::shared_ptr<baml_t> m_body;

public:
    Cigar cigar() const { return Cigar{m_body}; }
    ReadBases bases() const { return ReadBases{m_body}; }
    BaseQuals base_quals() const { return BaseQuals{m_body}; }
};
```

Writing tools to perform operations on variants is very simple

percent missing.cpp

Writing tools to perform operations on read data is very simple

insert_size_distribution.cpp

```
#include "gamgee/gamgee.h"
#include <iostream>

constexpr auto EXPECTED_MAX_INSERT_SIZE = 5'000u;

void main() {
  for (const auto& record : SingleSamReader{"input.bam"}) {
     auto abq = 0.0;
     const auto bqs = record.base_quals();
     accumulate(bqs.begin(), bqs.end(), [&abq](const auto q) {abq += q;}
     cout << abq / bqs.size() << endl;
  }
}</pre>
```

select_if enables functional style programming across samples

variant.h

```
template <class VALUE, template <class class ITER>
    static boost::dynamic_bitset<> select_if(
        const ITER < VALUE > & first,
        const ITER < VALUE > & last,
        const std::function < bool (const decltype(*first) & value) > pred)

{
    const auto n_samples = last - first;
    auto selected_samples = boost::dynamic_bitset <> (n_samples);
    auto it = first;
    for (auto i = 0; i != n_samples; ++i)
        selected_samples[i] = pred(*it++);
    return selected_samples;
}
```

select_if statements make it trivial to parallelize batch operations over samples

indel_length.cpp

```
auto select_high_quality_variants(const Variant& var, const int32_t q) {
   const auto quals = var.integer_individual_field("GQ");
   const auto genotypes = var.genotypes();

const auto pass_qual = select_if(quals.begin(), quals.end(),
        [&q](const auto& gq) { return gq[0] > q; });

const auto is_var = select_if(genotypes.begin(), genotypes.end(),
        [](const auto& g) { return !g.missing() && !g.hom_ref(); });

return pass_qual & is_var;
}
```

A lambda configurable class for locus level operations

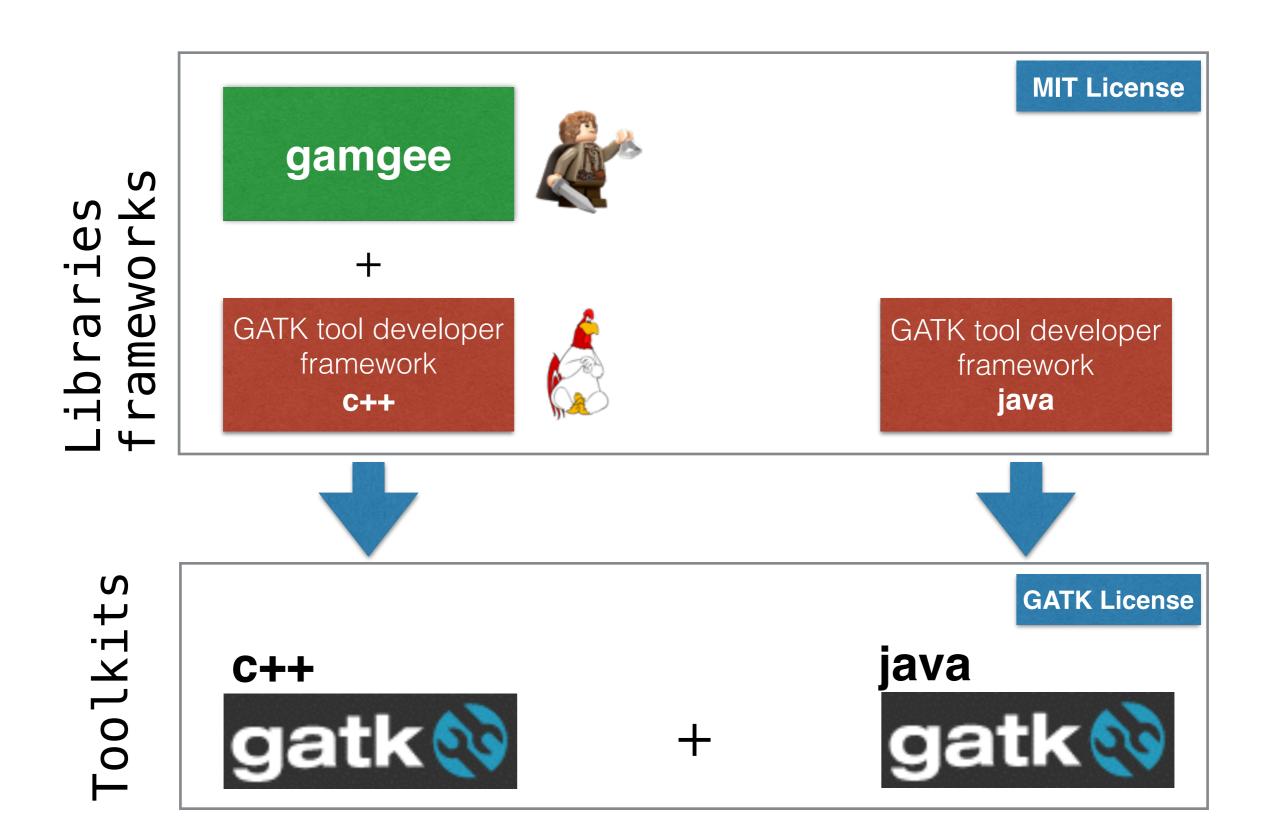
locus_coverage.h

```
class LocusCoverage {
    public:
     LocusCoverage(
(1)
       const std::function<uint32 t (</pre>
            const std::vector<uint32_t>& locus_coverage,
            const uint32 t chr,
            const uint32 t start,
            const uint32 t stop ) >& window op,
(2)
       const std::function<uint32 t (const uint32 t)>& locus op =
            [](const auto){return 1;}
     );
     void add read(const Sam& read);
     void flush() const;
```

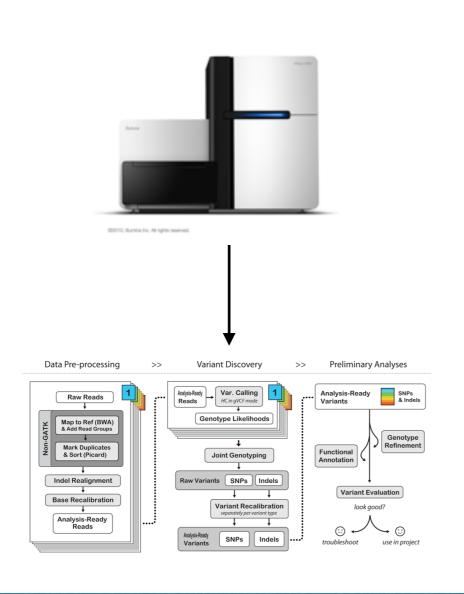
Coverage distribution tool: functional style

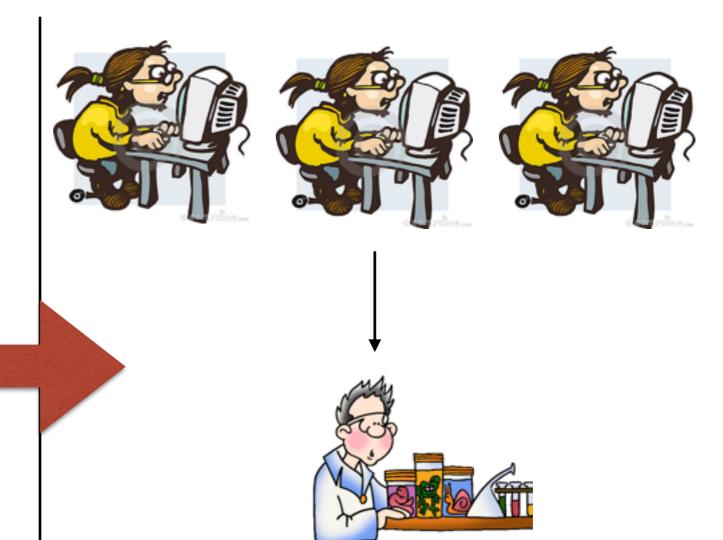
```
coverage_distribution.cpp
using Histogram = std::vector<uint32 t>;
constexpr auto MAX COV = 50'000u;
void main() {
  auto hist = Histogram(MAX COV, 0u);
  auto window op = [&hist](const auto& lcov, const auto,
                           const auto start, const auto stop)
    std::for each(lcov.begin() + start,
                  lcov.begin() + stop + 1,
                  [&hist](const auto& coverage)
                     ++hist[min(coverage, MAX COV-1)];
    );
    return stop;
  };
  auto reader = SingleSamReader{"file.bam"};
  auto state = LocusCoverage{window op};
  for each(reader.begin(), reader.end(),
    [&state](const auto& read) { if (!read.unmapped()) state.add read(read); });
  output coverage histogram(hist);
```

The future of the GATK



Research tools need this scalability for the next wave of scientific advances





Data Processing from DNA to Variants ready for ~1 million genomes

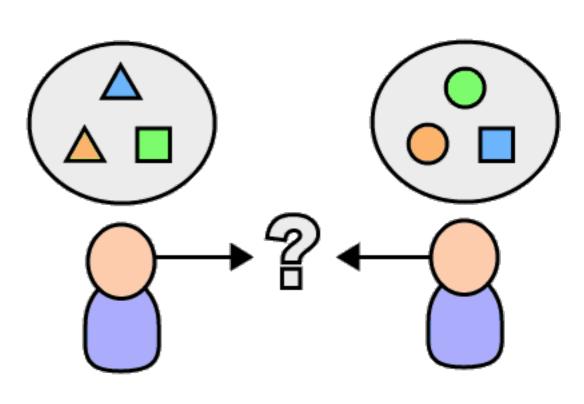
(will need more work to reach tens-hundreds of millions)

Variant analysis and association studies

fails today at just a few thousand genomes

Post-calling pipeline standardization and scaling is the next big challenge

- Tools are not generalized and performance does not scale. (typically written in matlab, R, PERL and Python...)
- Most code is written by one grad student/postdoc and is no longer maintained.
- Not standardized.
- Analyses are very often unrepeatable.
- Complementary data types are not standardized (e.g. phenotypic data).



This is the work of many...

the team

Broad colleagues

Khalid Shakir **David Roazen** Joel Thibault Geraldine VanDerAuwera Ami Levy-Moonshine Valentin Rubio **Bertrand Haas** Laura Gauthier Christopher Wheelan Sheila Chandran

collaborators

Menachem Fromer Paolo Narvaez Diego Nehab

Heng Li Daniel MacArthur **Timothy Fennel** Steven McCarrol Mark Daly

Stacey Gabriel David Altshuler

Sheila Fisher