
Accept No Visitors
Yuriy Solodkyy

Microsoft

CppCon 2014
September 12, 2014, Bellevue, WA

Based on work performed in collaboration with:

Bjarne Stroustrup, Gabriel Dos Reis, Peter Pirkelbauer

at Texas A&M University

Partially supported by NSF grants:

CCF-0702765, CCF-1043084, CCF-1150055

Executive Summary

• Keep simple things simple

• Don’t make complex things unnecessarily complex

• Don’t make things impossible

• Constraint: Don’t sacrifice performance

• C++ is expert friendly
– and becoming more so

• C++ must not be just expert friendly
– Serving novices and “occasional users” is very important

– Most of the time, I don’t want to be a language lawyer

Stroustrup - Simple - Cppcon'14 2

Outline
• Visitor Design Pattern

• Visitors solve real-world problems

• but there are better abstraction mechanisms to solve the class of problems they address

• Two Alternatives
• Pattern Matching

• demonstrated by a library, but it is the language solution based on it we advocate for

• Open Multi-Methods
• demonstrated on a language extension we worked on

• Goal
• Compare the solutions on some common examples

• In a hope to gather more supporters for a language feature

• Implementation details are not the goal, we have presented them before

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 3

Visitor Design Pattern
• A technique for performing an

external case analysis on object
structure

• Numerous implementations
• Polymorphic classes

• Tagged classes

• Polymorphic exceptions

• Templates

• We will use polymorphic classes for
demonstration
• most common when discussing VDP

• but many of the issues are present in all
of these implementations

“Represents an operation to be performed
on the elements of an object structure.
Visitor lets you define a new operation
without changing the classes of the
elements on which it operates.”

-- GoF

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 4

Visitor Design Pattern Use Cases
• Adding new functionality to class hierarchies

• functionality you haven’t foreseen

• Analysis in object graphs
• knowledge graphs

• traversals

• Interactions in games
• Objects with objects/scene

• Customization points

• Plug-ins

• Anything you’d otherwise use virtual functions for

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 5

Motivating Example
Grammar

// Abstract syntax of boolean expressions

BoolExp ::= VarExp | ValExp | NotExp | AndExp | OrExp | '(' BoolExp ')'

VarExp ::= 'A' | 'B' | ... | 'Z'

ValExp ::= 'true' | 'false'

NotExp ::= 'not' BoolExp

AndExp ::= BoolExp 'and' BoolExp

OrExp ::= BoolExp 'or‘ BoolExp

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 6

&

| Z

¬X

Z

Motivating Example: Perfect Interface
struct BoolExp

{

virtual void print() const = 0;

virtual BoolExp* copy() const = 0;

virtual bool eval(Context&) const = 0;

virtual BoolExp* replace(const char*, const BoolExp*) = 0;

virtual bool equal(const BoolExp*) const = 0;

virtual bool match(const BoolExp*, Assignments&) const = 0;

};

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 7

Note to self:
 Did we miss any?

 unify, replace_subtree, cnf, dnf, etc.

Motivating Example: Perfect Interface
struct VarExp : BoolExp { … string name; };

struct ValExp : BoolExp { … bool value; };

struct NotExp : BoolExp { … BoolExp* e; };

struct AndExp : BoolExp { … BoolExp* e1; BoolExp* e2; };

struct OrExp : BoolExp { … BoolExp* e1; BoolExp* e2; };

void NotExp::print() const { std::cout << '!'; e->print(); }
BoolExp* NotExp::copy() const { return new NotExp(e->copy()); }
bool NotExp::eval(Context& c) const { return !e->eval(c); }
BoolExp* NotExp::replace(const char* n, const BoolExp* x)

{ e = e->inplace(n,x); return this; }

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 8

Note to self:
 Should we group them by class or method in translation units?

Polymorphic Interfaces: Summary
Pros

• Extensibility of data
• Adding new variant: easy - just derive it

from BoolExp

• Modularity

• Encapsulation

• Works in the presence of
• multiple inheritance

• dynamic linking

Cons
• No extensibility of functions

• Adding new function: hard - requires changing
the interface

• No local reasoning
• Cases can be scattered around translation units

• Non-relational
• Inherently on a single argument

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 9

Visitor Design Pattern
• List your cases

struct VarExp;
struct ValExp;
struct NotExp;
struct AndExp;
struct OrExp ;

• Define a case analysis (visitation) interface
struct BoolExpVisitor
{

virtual void visitVarExp(const VarExp&) {}
virtual void visitValExp(const ValExp&) {}
virtual void visitNotExp(const NotExp&) {}
virtual void visitAndExp(const AndExp&) {}
virtual void visitOrExp (const OrExp &) {}

};

So how can we implement these using
the Visitor Design Pattern instead?

• We assume the same class hierarchy,
but none of the earlier virtual functions
declared

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 10

Note to self:
 Requires foresight of cases
 Don’t use overloading of visit

 unless you need to…

Visitor Design Pattern
• Embed accept into the class hierarchy
struct BoolExp { virtual void accept(BoolExpVisitor&) const = 0;
struct VarExp : BoolExp { void accept(BoolExpVisitor& v) const { v.visitVarExp(*this); }
struct ValExp : BoolExp { void accept(BoolExpVisitor& v) const { v.visitValExp(*this); }
struct NotExp : BoolExp { void accept(BoolExpVisitor& v) const { v.visitNotExp(*this); }
struct AndExp : BoolExp { void accept(BoolExpVisitor& v) const { v.visitAndExp(*this); }
struct OrExp : BoolExp { void accept(BoolExpVisitor& v) const { v.visitOrExp (*this); }

• And you are ready to use it!

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 11

Note to self:
 Intrusive
 Cannot be added retroactively
 Specific to class hierarchy!

Example: eval
typedef std::map<std::string,bool> Context;

bool eval(Context& ctx, const BoolExp* exp)
{

struct EvalVisitor : BoolExpVisitor
{

EvalVisitor(Context& c)
: m_ctx(c), result(false) {}

bool result;
Context& m_ctx;

void visitVarExp(const VarExp& x) { result = m_ctx[x.name]; }
void visitValExp(const ValExp& x) { result = x.value; }
void visitNotExp(const NotExp& x) { result =!eval(m_ctx, x.e); }
void visitAndExp(const AndExp& x) { result = eval(m_ctx, x.e1) && eval(m_ctx, x.e2); }
void visitOrExp (const OrExp & x) { result = eval(m_ctx, x.e1) || eval(m_ctx, x.e2); }

} evaluator(ctx);

exp->accept(evaluator);
return evaluator.result;

}
Yuriy Solodkyy - Accept No Visitors - CppCon 2014 12

Note to self:
 Return does not return from eval
 No access to function’s arguments
 Both due to control inversion:

 Don’t call us, we call you!

Example: replace
BoolExp* replace(BoolExp* where, const char* name, const BoolExp* with)
{

struct ReplaceVisitor : BoolExpVisitor
{

ReplaceVisitor(const char* n, const BoolExp* w) : name(n), with(w), result(nullptr) {}

BoolExp* result;
const char* name;
const BoolExp* with;

void visitVarExp(const VarExp& x) { result = x.name == name ? copy(with) : &x; }
void visitValExp(const ValExp& x) { result = &x; }
void visitNotExp(const NotExp& x) { result = &x; x.e = replace(x.e, name, with); }
void visitAndExp(const AndExp& x) { result = &x; x.e1 = replace(x.e1, name, with);

x.e2 = replace(x.e2, name, with); }
void visitOrExp (const OrExp & x) { result = &x; x.e1 = replace(x.e1, name, with);

x.e2 = replace(x.e2, name, with); }
} replacer(name, with);

where->accept(replacer);
return replacer.result;

}
Yuriy Solodkyy - Accept No Visitors - CppCon 2014 13

error C2440: '=' : cannot convert from 'const BoolExp *' to 'BoolExp *'

Note to self:
 const_cast them all?
 Always pass a modifiable reference?

NOTE: non- const argument!

Example: replace
BoolExp* replace(BoolExp* where, const char* name, const BoolExp* with)
{

struct ReplaceVisitor : MutableBoolExpVisitor
{

ReplaceVisitor(const char* n, const BoolExp* w) : name(n), with(w), result(nullptr) {}

BoolExp* result;
const char* name;
const BoolExp* with;

void visitVarExp(VarExp& x) { result = x.name == name ? copy(with) : &x; }
void visitValExp(ValExp& x) { result = &x; }
void visitNotExp(NotExp& x) { result = &x; x.e = replace(x.e, name, with); }
void visitAndExp(AndExp& x) { result = &x; x.e1 = replace(x.e1, name, with);

x.e2 = replace(x.e2, name, with); }
void visitOrExp (OrExp & x) { result = &x; x.e1 = replace(x.e1, name, with);

x.e2 = replace(x.e2, name, with); }
} replacer(name, with);

where->accept(replacer);
return replacer.result;

}
Yuriy Solodkyy - Accept No Visitors - CppCon 2014 14

Mutable Visitation
struct BoolExpVisitor
{

virtual void visitVarExp(const VarExp&) {}
virtual void visitValExp(const ValExp&) {}
virtual void visitNotExp(const NotExp&) {}
virtual void visitAndExp(const AndExp&) {}
virtual void visitOrExp (const OrExp &) {}

};

struct MutableBoolExpVisitor : BoolExpVisitor
{

virtual void visitVarExp(VarExp& x) { BoolExpVisitor::visitVarExp(x); } // Forward to immutable case
virtual void visitValExp(ValExp& x) { BoolExpVisitor::visitValExp(x); }
virtual void visitNotExp(NotExp& x) { BoolExpVisitor::visitNotExp(x); }
virtual void visitAndExp(AndExp& x) { BoolExpVisitor::visitAndExp(x); }
virtual void visitOrExp (OrExp & x) { BoolExpVisitor::visitOrExp (x); }

};

struct BoolExp
{

virtual void accept(BoolExpVisitor&) const = 0; // Read-only introspection
virtual void accept(MutableBoolExpVisitor&) = 0; // Mutable visitation

};
Yuriy Solodkyy - Accept No Visitors - CppCon 2014 15

}
}
}
}
}

Note to self:
 Forwarding can also be used to

default-implement derived cases via
base cases

Binary Methods with Visitors: equal
bool equal(const BoolExp* x1, const BoolExp* x2)
{
struct EqualityVisitor : BoolExpVisitor
{
EqualityVisitor(const BoolExp* x2) : x2(x2), result(false) {}

bool result;
const BoolExp* x2;

void visitVarExp(const VarExp& x1) { EqualToVisitor<VarExp> v(&x1); x2->accept(v); result = v.result; }
void visitValExp(const ValExp& x1) { EqualToVisitor<ValExp> v(&x1); x2->accept(v); result = v.result; }
void visitNotExp(const NotExp& x1) { EqualToVisitor<NotExp> v(&x1); x2->accept(v); result = v.result; }
void visitAndExp(const AndExp& x1) { EqualToVisitor<AndExp> v(&x1); x2->accept(v); result = v.result; }
void visitOrExp (const OrExp & x1) { EqualToVisitor<OrExp> v(&x1); x2->accept(v); result = v.result; }

} equator(x2);

x1->accept(equator);
return equator.result;

}

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 16

Note to self:
 Factor out at least this code:

 Create visitor
 Accept it
 Copy result

Binary Methods with Visitors: equal
bool equal(const BoolExp*, const BoolExp*);

bool eq(const BoolExp& , const BoolExp&) { return false; }
bool eq(const VarExp& a, const VarExp& b) { return a.name == b.name; }
bool eq(const ValExp& a, const ValExp& b) { return a.value == b.value; }
bool eq(const NotExp& a, const NotExp& b) { return equal(a.e, b.e); }
bool eq(const AndExp& a, const AndExp& b) { return equal(a.e1, b.e1) && equal(a.e2, b.e2); }
bool eq(const OrExp& a, const OrExp& b) { return equal(a.e1, b.e1) && equal(a.e2, b.e2); }

template <typename Exp>
struct EqualToVisitor : BoolExpVisitor
{

EqualToVisitor(const Exp* x) : x1(x), result(false) {}

bool result;
const Exp* x1;

void visitVarExp(const VarExp& x2) { result = eq(*x1,x2); }
void visitValExp(const ValExp& x2) { result = eq(*x1,x2); }
void visitNotExp(const NotExp& x2) { result = eq(*x1,x2); }
void visitAndExp(const AndExp& x2) { result = eq(*x1,x2); }
void visitOrExp (const OrExp & x2) { result = eq(*x1,x2); }

};
Yuriy Solodkyy - Accept No Visitors - CppCon 2014 17

void visit (const Exp& x2) { result = eq(*x1,x2); } // Now generic name would have helped!
// … because interesting cases here are only those where both arguments have the same type

Note to self:
 5 vtbl entries
 per each of the 5 instantiations
 plus 5 vtbl entries in EqualityVisitor
 assuming immutable visitation only

Binary Methods with Visitors: match
typedef std::map<std::string,const BoolExp*> Assignments;

bool match(const BoolExp*, const BoolExp*, Assignments&);

bool mc(const BoolExp& , const BoolExp& , Assignments& ctx) { return false; }
bool mc(const VarExp& a, const BoolExp& b, Assignments& ctx)

{ if (ctx[a.name] == nullptr) { ctx[a.name] = copy(&b); return true; } else { return equal(ctx[a.name],&b); } }
bool mc(const ValExp& a, const ValExp& b, Assignments& ctx) { return a.value == b.value; }
bool mc(const NotExp& a, const NotExp& b, Assignments& ctx) { return match(a.e, b.e, ctx); }
bool mc(const AndExp& a, const AndExp& b, Assignments& ctx) { return match(a.e1, b.e1, ctx) && match(a.e2,b.e2, ctx); }
bool mc(const OrExp& a, const OrExp& b, Assignments& ctx) { return match(a.e1, b.e1, ctx) && match(a.e2,b.e2, ctx); }

template <typename Exp>
struct MatchToVisitor : BoolExpVisitor
{

MatchToVisitor(const Exp* p, Assignments& ctx) : m_p(p), m_ctx(ctx), result(false) {}

bool result;
const Exp* m_p;
Assignments& m_ctx;

void visitVarExp(const VarExp& x) { result = mc(*m_p,x,m_ctx); }
void visitValExp(const ValExp& x) { result = mc(*m_p,x,m_ctx); }
void visitNotExp(const NotExp& x) { result = mc(*m_p,x,m_ctx); }
void visitAndExp(const AndExp& x) { result = mc(*m_p,x,m_ctx); }
void visitOrExp (const OrExp & x) { result = mc(*m_p,x,m_ctx); }

};

bool match(const BoolExp* p, const BoolExp* x, Assignments& ctx)
{

struct MatchVisitor : BoolExpVisitor
{

MatchVisitor(const BoolExp* x, Assignments& ctx) : x(x), ctx(ctx), result(false) {}

bool result;
const BoolExp* x;
Assignments& ctx;

void visitVarExp(const VarExp& p) { MatchToVisitor<VarExp> v(&p,ctx); x->accept(v); result = v.result; }
void visitValExp(const ValExp& p) { MatchToVisitor<ValExp> v(&p,ctx); x->accept(v); result = v.result; }
void visitNotExp(const NotExp& p) { MatchToVisitor<NotExp> v(&p,ctx); x->accept(v); result = v.result; }
void visitAndExp(const AndExp& p) { MatchToVisitor<AndExp> v(&p,ctx); x->accept(v); result = v.result; }
void visitOrExp (const OrExp & p) { MatchToVisitor<OrExp> v(&p,ctx); x->accept(v); result = v.result; }

} matcher(x,ctx);

p->accept(matcher);
return matcher.result;

}

All this boilerplate code

←Just to do this tiny case analysis

• This doesn’t include VDP
declarations

• Specific to both:
• class hierarchy

• method

• Attempts for any reuse will
• further complicate the code

• make it slower

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 18

Visitor Design Pattern: Summary

Pros
• Extensibility of functions

• Speed (open world)

• Library solution

Cons
• Hard to teach

• Intrusive

• Specific to hierarchy

• Lots of boilerplate code

• Control inversion

• Hinders extensibility of classes

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 19

• Erich Gamma, Richard Helm, Ralph E. Johnson, and John M. Vlissides. 1993. Design Patterns: Abstraction and Reuse of Object-
Oriented Design. In Proceedings of the 7th European Conference on Object-Oriented Programming (ECOOP '93), Oscar
Nierstrasz (Ed.). Springer-Verlag, London, UK, UK, 406-431.

• Daniel H. H. Ingalls. “A simple technique for handling multiple polymorphism”
OOPLSA ’86, pages 347–349, New York, NY, USA, 1986. ACM.

Alternative 1: Pattern Matching
• What is a pattern?

• a term representing an immediate predicate on an implicit argument

• What is pattern matching?
• a language feature that provides intuitive laconic syntax and an efficient decision procedure for checking

the structure of data and decomposing it into subcomponents

• Examples of patterns
• Wildcards, Variables, Values, Regular Expressions, Terms of the above, grammars etc.

• Why should I care?
• Pattern matching has been known in other languages to drastically simplify code, making it more readable,

easier to teach and understand, more maintainable and efficient

• When is it useful?
• Whenever you need to perform an analysis of the structure of data

• We demonstrate it with a syntax of an experimental library
• So please ignore the quirks of the syntax

• The actual language feature would have a better one
Yuriy Solodkyy - Accept No Visitors - CppCon 2014 20

Mach7: https://github.com/solodon4/Mach7
• A library solution to pattern matching in C++

• Implemented in standard C++ (mostly 03, but benefits from 11)

• Open to new patterns
• All patterns are user-definable

• First-class patterns
• Patterns can be saved in variables and passed to functions

• Type safe
• Incorrect application is manifested at compile time

• Non-intrusive
• Can be applied retroactively
• Works with the existing C++ object model, including multiple inheritance

• Efficient
• Works on top of an efficient type switch construct
• Faster than existing alternatives to open pattern matching in C++

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 21

Working with Mach7
• Declare your variants

struct BoolExp { virtual ~BoolExp() {} };
struct VarExp : BoolExp { std::string name; };
struct ValExp : BoolExp { bool value; };
struct NotExp : BoolExp { BoolExp* e; };
struct AndExp : BoolExp { BoolExp* e1; BoolExp* e2; };
struct OrExp : BoolExp { BoolExp* e1; BoolExp* e2; };

• Define bindings (mapping of members to pattern-matching positions)
namespace mch { ///< Mach7 library namespace

template <> struct bindings<VarExp> { Members(VarExp::name); };

template <> struct bindings<ValExp> { Members(ValExp::value); };

template <> struct bindings<NotExp> { Members(NotExp::e); };

template <> struct bindings<AndExp> { Members(AndExp::e1, AndExp::e2); };

template <> struct bindings<OrExp> { Members(OrExp::e1, OrExp::e2); };

}

• Pick the patterns you’d like to use
using mch::C; using mch::var; using mch::_;

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 22

Note to myself:
 Non-intrusive!
 Respects member access

Example: eval
bool eval(Context& ctx, const BoolExp* exp)
{

var<std::string> name; var<bool> value; var<const BoolExp*> e1, e2;

Match(exp)
{

Case(C<VarExp>(name)) return ctx[name];
Case(C<ValExp>(value)) return value;
Case(C<NotExp>(e1)) return!eval(ctx, e1);
Case(C<AndExp>(e1,e2)) return eval(ctx, e1) && eval(ctx, e2);
Case(C<OrExp >(e1,e2)) return eval(ctx, e1) || eval(ctx, e2);

}
EndMatch

}

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 23

Note to self:
 Patterns in the LHS, values in the RHS
 No control inversion!

 Direct access to arguments
 Direct return from the function

Example: replace
BoolExp* replace(BoolExp* where, const char* what, const BoolExp* with)
{

var<std::string> name; var<bool> value; var<BoolExp*> e1, e2;

Match(where)
Case(C<VarExp>(name)) return name == what ? copy(with) : &match0;
Case(C<ValExp>(value)) return &match0;
Case(C<NotExp>(e1)) match0.e = replace(e1, what, with); return &match0;
Case(C<AndExp>(e1,e2))

match0.e1 = replace(e1, what, with);
match0.e2 = replace(e2, what, with);
return &match0;

Case(C<OrExp >(e1,e2))
match0.e1 = replace(e1, what, with);
match0.e2 = replace(e2, what, with);
return &match0;

EndMatch
}

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 24

Note to self:
 Mutability of match0 is

mutability of the subject!
 Forget the fall-through!

Example: match
bool match(const BoolExp* p, const BoolExp* x, Assignments& ctx)
{
var<std::string> name; var<bool> value; var<const BoolExp*> p1, p2, e1, e2;

Match(p , x)
Case(C<VarExp>(name) , _) if (ctx[name] == nullptr) {

ctx[name] = copy(x);
return true;

} else
return equal(ctx[name],x);

Case(C<ValExp>(value), C<ValExp>(+value)) return true;
Case(C<NotExp>(p1) , C<NotExp>(e1)) return match(p1, e1, ctx);
Case(C<AndExp>(p1,p2), C<AndExp>(e1,e2)) return match(p1, e1, ctx) && match(p2, e2, ctx);
Case(C< OrExp>(p1,p2), C< OrExp>(e1,e2)) return match(p1, e1, ctx) && match(p2, e2, ctx);
Otherwise() return false;

EndMatch
}

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 25

Note to self:
 Relational matching!
 Pattern combinators!

Example: Nested Matching
BoolExp* dnf(BoolExp* exp)
{
var<BoolExp*> e, e1, e2;

Match(exp)
Case(C<NotExp>(C<NotExp>(e))) return e;
Case(C<AndExp>(e, C<OrExp>(e1,e2))) return new OrExp(new AndExp(e,e1), new AndExp(e,e2));
Case(C<AndExp>(C<OrExp>(e1,e2), e)) return new OrExp(new AndExp(e1,e), new AndExp(e2,e));
Otherwise() return exp;

EndMatch
}

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 26

Note to self:
 Visitors are not directly suitable for nested matching!

What about boost::Variant?
void foo(const variant<double,float,int,complex<double>,unsigned int*>& v)
{

var<double> a, b;
Match(v)
{

Case(C<double>()) cout << "double " << match0; break;
Case(C<float> ()) cout << "float " << match0; break;
Case(C<int> ()) cout << "int " << match0; break;
Case(C<complex<double>>(a,b)) cout << a << '+' << b << 'i';break;
Otherwise() break;

}
EndMatch

}

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 27

Note to self:
 Almost done, check on github soon
 Required generalization of some parts

Pattern Matching: Summary
Pros

• Intuitive, easy to teach and understand

• Direct show of intent

• Relational matching

• Nested matching

• No control inversion

• Local reasoning

Cons
• Not available as a language feature yet

• Can be abused for writing ad-hoc code,
where hierarchies and virtual functions
should have been normally used

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 28

• Y.Solodkyy, G.Dos Reis, B.Stroustrup. "Open Pattern Matching for C++" In Proceedings of the 12th international conference on
Generative programming: concepts & experiences (GPCE '13). ACM, New York, NY, USA, pp. 33-42.

• Y.Solodkyy, G.Dos Reis, B.Stroustrup. "Open and Efficient Type Switch for C++" In Proceedings of the ACM international
conference on Object Oriented Programming Systems Languages and Applications (OOPSLA '12). ACM, New York, NY, USA, pp.
963-982

https://github.com/solodon4/Mach7

http://dx.doi.org/10.1145/2517208.2517222
http://doi.acm.org/10.1145/2384616.2384686
https://github.com/solodon4/Mach7

Alternative 2: Open Multi-Methods
• Multi-Methods + Open Class Extensions

• Multiple Dispatch
• The selection of a function to be invoked based on the dynamic type of two or more arguments

• Open Class Extensions
• Ability to introduce polymorphic functions outside of their class

• Examples of Open Multi-Methods uses
• equality, shape intersection, object interactions in games.

• Why should I care?
• They help retroactively introduce a virtual function into a class without changes to the interface

• They help implement dynamic dispatch on 2 or more polymorphic arguments: e.g. equal

• When is it useful?
• Whenever you need to perform an analysis of interaction between 2 or more given objects

• We demonstrate it with the syntax of an experimental implementation

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 29

Example: Open Class Extension
bool eval(Context& ctx, virtual const BoolExp* x) { return false; }
bool eval(Context& ctx, virtual const VarExp* x) { return ctx[x->name]; }
bool eval(Context& ctx, virtual const ValExp* x) { return x->value; }
bool eval(Context& ctx, virtual const NotExp* x) { return!eval(ctx, x->e); }
bool eval(Context& ctx, virtual const AndExp* x) { return eval(ctx, x->e1)&&eval(ctx, x->e2); }
bool eval(Context& ctx, virtual const OrExp * x) { return eval(ctx, x->e1)||eval(ctx, x->e2); }

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 30

Note to myself:
 No need to foresee all the virtual functions!
 Mix of virtual and non-virtual arguments
 Hard to reason locally about
 Semi-inverted control

Example: Open Multi-Method
bool equal(virtual const BoolExp& , virtual const BoolExp&) { return false; }
bool equal(virtual const VarExp& a, virtual const VarExp& b) { return a.name == b.name; }
bool equal(virtual const ValExp& a, virtual const ValExp& b) { return a.value == b.value; }
bool equal(virtual const NotExp& a, virtual const NotExp& b) { return equal(*a.e, *b.e); }
bool equal(virtual const AndExp& a, virtual const AndExp& b) { return equal(*a.e1, *b.e1)

&& equal(*a.e2, *b.e2); }
bool equal(virtual const OrExp& a, virtual const OrExp& b) { return equal(*a.e1, *b.e1)

&& equal(*a.e2, *b.e2); }

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 31

Note to myself:
 Subject to ambiguities
 Requires changes to linker and loader
 Works with current C++ object model

Open Multi-Methods
Pros

• Extensibility of functions

• Extensibility of classes

• Speed

• Easy to teach

• Non-intrusive

• General

• Breve

• Relational

Cons
• Subject to ambiguities

• Requires changes to linker and loader

• Semi-inverted control

• No local reasoning

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 32

• P.Pirkelbauer, Y.Solodkyy, B.Stroustrup."Design and evaluation of C++ open multi-methods", Science of Computer
Programming, 2009.

• P.Pirkelbauer, Y.Solodkyy, B.Stroustrup."Open multi-methods for C++", In Proceedings of the 6th international conference on
Generative Programming and Component Engineering, October 01-03, 2007, Salzburg, Austria

https://parasol.tamu.edu/groups/pttlgroup/omm/

http://www.sciencedirect.com/science/article/pii/S016764230900094X
http://dl.acm.org/citation.cfm?doid=1289971.1289993
https://parasol.tamu.edu/groups/pttlgroup/omm/

Performance Comparison

Yuriy Solodkyy - Accept No Visitors - CppCon 2014

0

50

100

150

200

250

300

1 2 3 4

C
yc

le
s

p
er

 It
er

at
io

n

Number of Arguments N

N-Dispatch Open Type Switch Open Multi-methods

G
C

C
 4

.5
.2

G
C

C
 4

.6
.1

G
C

C
 4

.7
.2

V
is

u
al

 C
++

 1
0

V
is

u
al

 C
++

 1
1

𝑛𝑁 + 𝑛𝑁−1 +⋯+ 𝑛2 + 𝑛 2𝑁 + 3 𝑛𝑁 + 𝑁 + 7 𝑛𝑁 +𝑁𝑛 + 𝑁Memory:

n is the number of
subobjects in a class
hierarchy of arguments

33

Comparison of Possibilities

Ex
te

n
si

b
ili

ty
 o

f
Fu

n
ct

io
n

s
Ex

te
n

si
b

ili
ty

 o
f

D
at

a

Ty
p

e
 S

af
e

M
u

lt
ip

le

In
h

e
ri

ta
n

ce

R
e

la
ti

o
n

al

N
e

st
in

g

R
et

ro
ac

ti
ve

Lo
ca

l R
e

as
o

n
in

g

N
o

 C
o

n
tr

o
l

In
ve

rs
io

n
R

e
d

u
n

d
an

cy

C
h

e
ck

in
g

C
o

m
p

le
te

n
e

ss

C
h

e
ck

in
g

Sp
e

e
d

 in
 C

yc
le

s

Virtual Functions − + + + − − − − − − 29

Visitor Design Pattern + * + + * − − + − − 55

Open Pattern Matching + + + + + + + + + * − 70

Open Multi-methods + + + + + − + − − + 38

34Yuriy Solodkyy - Accept No Visitors - CppCon 2014

Conclusions
Visitor Design Pattern

• Unnecessarily complicates things

• Extremely hard to teach to novices

• Expert friendly

Open Pattern Matching
• Keeps simple things simple

• Does not sacrifice the performance

• Easy to teach novices

• Also available as a library solution

Open Multi-Methods
• Keeps simple things simple

• Ultimate performance

• Integrates with the rest of the language

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 35

Thank You!
Acknowledgements

Abe Skolnik

Bjarne Stroustrup

Gabriel Dos Reis

Jason Wilkins

Michael Lopez

Jasson Casey

Peter Pirkelbauer

Andrew Sutton

Karel Driesen

Emil 'Skeen' Madsen

Visual C++ Team

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 36

https://github.com/solodon4/Mach7
http://parasol.tamu.edu/~yuriys/
http://parasol.tamu.edu/mach7/
https://parasol.tamu.edu/groups/pttlgroup/omm/

https://github.com/solodon4/Mach7
http://parasol.tamu.edu/~yuriys/
http://parasol.tamu.edu/mach7/
https://parasol.tamu.edu/groups/pttlgroup/omm/

Chicken or Egg: Double Dispatch or Visitor Design Pattern?
bool VarExp::equal(const BoolExp* x) const { auto p=dynamic_cast<const VarExp*>(x); return p && name == p->name; }
bool ValExp::equal(const BoolExp* x) const { auto p=dynamic_cast<const ValExp*>(x); return p && value == p->value; }
bool NotExp::equal(const BoolExp* x) const { auto p=dynamic_cast<const NotExp*>(x); return p && e->equal(p->e); }
bool AndExp::equal(const BoolExp* x) const { auto p=dynamic_cast<const AndExp*>(x); return p && e1->equal(p->e1)&&e2->equal(p->e2); }
bool OrExp ::equal(const BoolExp* x) const { auto p=dynamic_cast<const OrExp *>(x); return p && e1->equal(p->e1)&&e2->equal(p->e2); }

struct BoolExp
{ …

virtual bool equal_to_VarExp(const VarExp*) const { return false; }
virtual bool equal_to_ValExp(const ValExp*) const { return false; }
virtual bool equal_to_NotExp(const NotExp*) const { return false; }
virtual bool equal_to_AndExp(const AndExp*) const { return false; }
virtual bool equal_to_OrExp (const OrExp *) const { return false; }

};

bool VarExp::equal(const BoolExp* x) const { return equal_to_VarExp(this); }
bool ValExp::equal(const BoolExp* x) const { return equal_to_ValExp(this); }
bool NotExp::equal(const BoolExp* x) const { return equal_to_NotExp(this); }
bool AndExp::equal(const BoolExp* x) const { return equal_to_AndExp(this); }
bool OrExp ::equal(const BoolExp* x) const { return equal_to_OrExp (this); }

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 37

Chicken or Egg: Double Dispatch or Visitor Design Pattern?
struct BoolExp
{ …

virtual bool equal_to_VarExp(const VarExp*) const { return false; }
virtual bool equal_to_ValExp(const ValExp*) const { return false; }
virtual bool equal_to_NotExp(const NotExp*) const { return false; }
virtual bool equal_to_AndExp(const AndExp*) const { return false; }
virtual bool equal_to_OrExp (const OrExp *) const { return false; }

};

bool VarExp::equal(const BoolExp* x) const { return equal_to_VarExp(this); }
bool ValExp::equal(const BoolExp* x) const { return equal_to_ValExp(this); }
bool NotExp::equal(const BoolExp* x) const { return equal_to_NotExp(this); }
bool AndExp::equal(const BoolExp* x) const { return equal_to_AndExp(this); }
bool OrExp ::equal(const BoolExp* x) const { return equal_to_OrExp (this); }

bool VarExp::equal_to_VarExp(const VarExp* p) const { return name == p->name; }
bool ValExp::equal_to_ValExp(const ValExp* p) const { return value == p->value; }
bool NotExp::equal_to_NotExp(const NotExp* p) const { return e->equal(p->e); }
bool AndExp::equal_to_AndExp(const AndExp* p) const { return e1->equal(p->e1) && e2->equal(p->e2); }
bool OrExp ::equal_to_OrExp (const OrExp * p) const { return e1->equal(p->e1) && e2->equal(p->e2); }

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 38

Double Dispatch
• Doesn’t have to be symmetric

• One type presents its cases to another

• Allows us to uncover dynamic types of 2 arguments
• Well, not necessarily the actual dynamic type

• Only 2 virtual function calls
• Hence “double dispatch”

Daniel H. H. Ingalls. “A simple technique for handling multiple polymorphism”
OOPLSA ’86, pages 347–349, New York, NY, USA, 1986. ACM.

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 39

Example: print
void print(const BoolExp* exp)
{

struct PrintVisitor : BoolExpVisitor
{

void visitVarExp(const VarExp& x) { std::cout << x.name; }
void visitValExp(const ValExp& x) { std::cout << x.value; }
void visitNotExp(const NotExp& x) { std::cout << '!'; print(x.e); }
void visitAndExp(const AndExp& x) { std::cout << '('; print(x.e1);

std::cout << '&'; print(x.e2);
std::cout << ')'; }

void visitOrExp (const OrExp & x) { std::cout << '('; print(x.e1);
std::cout << '|'; print(x.e2);
std::cout << ')'; }

} printer;

exp->accept(printer);
}

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 40

Note to self:
 Return does not return from print
 No access to function’s arguments

Returning Result
BoolExp* copy(const BoolExp* exp)
{

struct CopyVisitor : BoolExpVisitor
{
BoolExp* result;

void visitVarExp(const VarExp& x) { result = new VarExp(x.name.c_str()); }
void visitValExp(const ValExp& x) { result = new ValExp(x.value); }
void visitNotExp(const NotExp& x) { result = new NotExp(copy(x.e)); }
void visitAndExp(const AndExp& x) { result = new AndExp(copy(x.e1),copy(x.e2)); }
void visitOrExp (const OrExp & x) { result = new OrExp(copy(x.e1),copy(x.e2)); }

} copier;

exp->accept(copier);
return copier.result;

}

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 41

Note to myself:
 Can’t accept/visit return BoolExp*?
 Parameterized BoolExpVisitor<R>?
 Parameterized BoolExpVisitorImpl<R>

Example: replace
BoolExp* replace(const BoolExp* where, const char* what, const BoolExp* with)
{

struct ReplaceVisitor : BoolExpVisitor
{

ReplaceVisitor(const char* n, const BoolExp* w) : name(n), with(w), result(nullptr) {}

BoolExp* result;
const char* name;
const BoolExp* with;

void visitVarExp(const VarExp& x) { result = x.name == name ? copy(with) : copy(&x); }
void visitValExp(const ValExp& x) { result = copy(&x); }
void visitNotExp(const NotExp& x) { result = new NotExp(replace(x.e, name, with)); }
void visitAndExp(const AndExp& x) { result = new AndExp(replace(x.e1, name, with), replace(x.e2, name, with)); }
void visitOrExp (const OrExp & x) { result = new OrExp(replace(x.e1, name, with), replace(x.e2, name, with)); }

} replacer(what, with);

where->accept(replacer);
return replacer.result;

}

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 42

Note to myself:
 Bad name: creates a copy of the

entire tree with applied replacements

Example: print
void print(const BoolExp* exp)
{

var<std::string> name; var<bool> value; var<const BoolExp*> e1, e2;

Match(exp)
{

Case(C<VarExp>(name)) std::cout << name; break;
Case(C<ValExp>(value)) std::cout << value; break;
Case(C<NotExp>(e1)) std::cout << '!'; print(e1); break;
Case(C<AndExp>(e1,e2)) std::cout << '('; print(e1);

std::cout << '&'; print(e2); std::cout << ')';
break;

Case(C<OrExp >(e1,e2)) std::cout << '('; print(e1);
std::cout << '|'; print(e2); std::cout << ')';
break;

}
EndMatch

}

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 43

Note to myself:
 Patterns in the LHS
 Values in the RHS

