Parasol

Smarter computing.
Texas A&M University

= Microsoft

Accept No Visitors

Yuriy Solodkyy
Microsoft

CppCon 2014
September 12, 2014, Bellevue, WA

Based on work performed in collaboration with:
Bjarne Stroustrup, Gabriel Dos Reis, Peter Pirkelbauer
at Texas A&M University
Partially supported by NSF grants:
CCF-0702765, CCF-1043084, CCF-1150055

Morgan Stanley
Executive Summary

Keep simple things simple
Don’t make complex things unnecessarily complex
Don’t make things impossible

Morgan Stanley

Constraint: Don’t sacrifice performance

C++ is expert friendly

; ; |
— and becoming more so Make Simple Tasks Simple!

Bjarne Stroustrup

C++ must not be just expert friendly
— Serving novices and “occasional users” is very important i
— Most of the time, I don’t want to be a language lawyer

Stroustrup - Simple - Cppcon'14 2

* Visitor Design Pattern
* Visitors solve real-world problems
* but there are better abstraction mechanisms to solve the class of problems they address

e Two Alternatives

e Pattern Matching
 demonstrated by a library, but it is the language solution based on it we advocate for

* Open Multi-Methods
* demonstrated on a language extension we worked on
* Goal

* Compare the solutions on some common examples
* In a hope to gather more supporters for a language feature
* Implementation details are not the goal, we have presented them before

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 3

Visitor Design Pattern

* A technique for performing an “Represents an operation to be performed
external case analysis on object on the elements of an object structure.
structure Visitor lets you define a new operation

without changing the classes of the

* Numerous implementations 2)
elements on which it operates.

* Polymorphic classes

* Tagged classes

* Polymorphic exceptions
* Templates

* We will use polymorphic classes for
demonstration
* most common when discussing VDP

* but many of the issues are present in all
of these implementations

-- GoF

Yuriy Solodkyy - Accept No Visitors - CppCon 2014

Visitor Design Pattern Use Cases

* Adding new functionality to class hierarchies
* functionality you haven’t foreseen

* Analysis in object graphs
* knowledge graphs
* traversals

* Interactions in games
* Objects with objects/scene

* Customization points
* Plug-ins
* Anything you’d otherwise use virtual functions for

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 5

Motivating Example

Grammar
// Abstract syntax of boolean expressions
BoolExp ::= VarExp | ValExp | NotExp | AndExp | OrExp | '(' BoolExp ')’
VarExp ::= 'A" | 'B" | ... | 'Z°
ValExp = "true'’ ‘false’
NotExp = 'not’' BoOlExp
AndExp = BoolExp 'and' BoolExp

OrExp BoolExp 'or‘® BoolExp

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 6

Motivating Example: Perfect Interface

struct BoolExp

{

¥

virtual
virtual
virtual
virtual
virtual
virtual

void

print()

BoolExp* copy()

bool

BoolExp* replace(const char*, const BoolExp*)

bool
bool

eval (Context&)

equal(const BoolExp*)
match(const BoolExp*, Assignments&)

Note to self:
" Did we miss any?

* unify, replace_subtree, cnf, dnf, etc.

Yuriy Solodkyy - Accept No Visitors - CppCon 2014

const
const
const

const
const

O O O OO O
o

o o

o o

. o o

o o

o o

Motivating Example: Perfect Interface

struct VarkExp : BoolExp { .. string name; };

struct ValExp : BoolExp { .. bool value; };

struct NotExp : BoolExp { .. BoolExp* e; };

struct AndExp : BoolExp { .. BoolExp* el; BoolExp* e2; };
struct OrExp : BoolExp { .. BoolExp* el; BoolExp* e2; };

void NotExp::print() const { std::cout << '!''; e->print(); }
BoolExp* NotExp::copy() const { return new NotExp(e->copy()); }
bool NotExp::eval(Context& c) const { return l!e->eval(c); }

BoolExp* NotExp::replace(const char* n, const BoolExp* x)
{ e = e->inplace(n,x); return this; }

Note to self:
= Should we group them by class or method in translation units?

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 8

Polymorphic Interfaces: Summary

Pros Cons
* Extensibility of data * No extensibility of functions
* Adding new variant: easy - just derive it * Adding new function: hard - requires changing
from BoolExp the interface
« Modularity * No local reasoning

e (Cases can be scattered around translation units

* Non-relational
* Inherently on a single argument

* Encapsulation

* Works in the presence of

* multiple inheritance
e dynamic linking

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 9

Visitor Design Pattern

* List your cases

struct VarExp,
struct ValExp;
struct NotExp,
struct AndExp;
struct OrExp ;

So how can we implement these using
the Visitor Design Pattern instead?
* We assume the same class hierarchy,

but none of the earlier virtual functions
declared

* Define a case analysis (visitation) interface
struct BoolExpVisitor

{
virtual void
virtual void
virtual void
virtual void
virtual void
}s

visitVarkExp(const VarkExp&) {}
visitValExp(const ValExp&) {}
visitNotExp(const NotExp&) {} Note to self:

visitAndExp(const AndExp&) {} u Requires foresight of cases
ViSItOrExp (const Orexp &) 4} Don’t use overloading of visit
" unless you need to...

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 10

Visitor Design Pattern

* Embed accept into the class hierarchy
struct BoolExp { virtual void accept(BoolExpVisitor&) const = 0;

struct VarExp : BoolExp { void accept(BoolExpVisitor& v) const { v.visitVarExp(*this); }
struct ValExp : BoolExp { void accept(BoolExpVisitor& v) const { v.visitValExp(*this); }
struct NotExp : BoolExp { void accept(BoolExpVisitor& v) const { v.visitNotExp(*this); }
struct AndExp : BoolExp { void accept(BoolExpVisitor& v) const { v.visitAndExp(*this); }
struct OrExp : BoolExp { void accept(BoolExpVisitor& v) const { v.visitOrExp (*this); }

* And you are ready to use it!

Note to self:

" |ntrusive

= Cannot be added retroactively
= Specific to class hierarchy!

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 11

Example: eval

typedef std::map<std::string,bool> Context; Note to self:

bool eval(Context& ctx, const BoolExp* exp) = Return does not return from eval

{ = No access to function’s arguments
struct EvalVisitor : BoolExpVisitor . .
(= Both due to control inversion:
EvalVisitor(Context& c) = Don’t call us, we call you!

: m_ctx(c), result(false) {}

bool result;
Context& m ctx;

m_ctx[x.name]; }

x.value; }

leval(m ctx, x.e); }

eval(m ctx, x.el) && eval(m ctx, x.e2); }

void visitVarExp(const VarExp& x) { result
void visitValExp(const ValExp& x) { result
void visitNotExp(const NotExp& x) { result
void visitAndExp(const AndExp& x) { result

void visitOrExp (const OrExp & x) { result = eval(m ctx, x.el) || eval(m ctx, x.e2); }
} evaluator(ctx);
exp->accept(evaluator);
return evaluator. r‘esult; Yuriy Solodkyy - Accept No Visitors - CopCon 2014 12

Example: replace

BoolExp* replace(BoolExp* where, const char* name, const BoolExp* with)
{
|

struct ReplaceVisitor : BoolExpVisitor

NOTE: non- const areument! |

{
ReplaceVisitor(const char* n, const BoolExp* w) : name(n), with(w), result(nullptr) {}
BoolExp* result;
const char* hame;
const BoolExp* with; error C2440: '=' : cannot convert from 'const BoolExp *' to 'BoolExp *'
void visitVarExp(const VarExp& x) { result = x.name == name ? copy(with) : &x; }

void visitValExp(const ValExp& x) { result = &x; }

void visitNotExp(const NotExp& x) { result = &x; x.e replace(x.e, name, with); }

void visitAndExp(const AndExp& x) { result = &x; x.el = replace(x.el, name, with);
x.e2 = replace(x.e2, name, with); }

void visitOrExp (const OrExp & x) { result = &x; x.el = replace(x.el, name, with);

i X.e2 = replace(x.e2, name, with); }
} replacer(name, with); Note to self:
:) " const_cast them all?
where->accept(replacer); .-
return replacer.result; .YALW%Y§C&%§ISiQFSMFQOQJ£Lable reference? 13

Example: replace

BoolExp* replace(BoolExp* where, const char* name, const BoolExp* with)

{
struct ReplaceVisitor : MutableBoolExpVisitor
{
ReplaceVisitor(const char* n, const BoolExp* w) : name(n), with(w), result(nullptr) {}
BoolExp* result;
const char* hame;

const BoolExp* with;

void visitVarExp(VarExp& x) { result = x.name == name ? copy(with) : &x; }

void visitValExp(ValExp& x) { result = &x; }

void visitNotExp(NotExp& x) { result = &; x.e = replace(x.e, name, with); }

void visitAndExp(AndExp& x) { result = &x; x.el = replace(x.el, name, with);
x.e2 = replace(x.e2, name, with); }

void visitOrExp (OrExp & x) { result = &; x.el = replace(x.el, name, with);

X.e2 = replace(x.e2, name, with); }
} replacer(name, with);

where->accept(replacer);
return r‘eplacer‘ . PESUlt; Yuriy Solodkyy - Accept No Visitors - CopCon 2014 14

Mutable Visitation

struct BoolExpVisitor

; Note to self:
virtual void visitVarExp(const VarExp&) {} - i
virtual void visitValExp(const ValExp&) {} Forwardlng can aISO be USEd to
virtual void visitNotExp(const NotExp&) {} default-implement derived cases via
virtual void visitAndExp(const AndExp&) {}
virtual void visitOrExp (const OrExp &) {} base cases
¥
struct MutableBoolExpVisitor
{
virtual void visitVarExp(VarExp& x) {}
virtual void visitValExp(ValExp& x) {}
virtual void visitNotExp(NotExp& x) {}
virtual void visitAndExp(AndExp& x) {}
virtual void visitOrExp (OrExp & x) {}
}s
struct BoolExp
{
virtual void accept(BoolExpVisitor&) const = 0; // Read-only introspection
virtual void accept(MutableBoolExpVisitor&) = @; // Mutable visitation
}s

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 15

Binary Methods with Visitors: equal

bool equal(const BoolExp* x1, const BoolExp* x2)

{

}

struct EqualityVisitor :
{

EqualityVisitor(const BoolExp* x2)

bool result;
const BoolExp* x2;

void visitVarExp(const

void visitValExp(const

void visitNotExp(const

void visitAndExp(const

void visitOrExp (const
} equator(x2);

x1->accept(equator);
return equator.result;

BoolExpVisitor

VarkExp&
ValExp&
NotExp&
AndExp&
OrExp &

x1) {
x1) {
x1) {
x1) {
x1) {

: x2(x2), result(false) {}

Note to self:

= Factor out at least this code:

x2->accept(v);
x2->accept(v);
x2->accept(v);
x2->accept(v);
x2->accept(v);

= Create visitor

= Accept it

= Copy result

Yuriy Solodkyy - Accept No Visitors - CppCon 2014

result
result
result
result
result

< < < < <

.result;
.result;
.result;
.result;
.result;

16

e

Binary Methods with Visitors: equal

bool

bool
bool
bool
bool
bool
bool

temp
stru

{

s

equal(const BoolExp*, const BoolExp*);

eq(const BoolExp& , const BoolExp&) return false; }
eq(const VarExp& a, const VarExp& b) return a.name == b.name; }
eq(const ValExp& a, const ValExp& b) return a.value == b.value; }

eq(const NotExp& a, const NotExp& b)
eq(const AndExp& a, const AndExp& b)
eq(const OrExp& a, const OrExp& b)

return equal(a.e, b.e); }
return equal(a.el, b.el) & & equal(a.e2, b.e2); }
return equal(a.el, b.el) & equal(a.e2, b.e2); }

late <typename Exp> Note to self:
ct EqualToVisitor : BoolExpVisitor » 5 vtbl entries

N e Y e N e e =S,

EqualToVisitor(const Exp* x) : x1(x), result(false) {} ® per eaCh Of the 5 instantiations

bool result; = plus 5 vtbl entries in EqualityVisitor
const Exp® x1; = assuming immutable visitation only
void visit (const Exp& x2) { result = eq(*x1,x2); } // Now generic name would have helped!

// .. because interesting cases here are only those where both arguments have the same type

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 17

Binary Methods with Visitors: match

typedef std::map<std::string,const BoolExp*> Assignments;

All this boilerplate code

bool match(const BoolExp*, const BoolExp*, Assignments&);

bool mc(const BoolExp& , const BoolExp& , Assignments& ctx) { return false; }
bool mc(const VarExp& a, const BoolExp& b, Assignments& ctx)

{ if (ctx[a.name] == nullptr) { ctx[a.name] = copy(&b); return true; } else { return equal(ctx[a.name],&b); } }
bool mc(const ValExp& a, const ValExp& b, Assignments& ctx) { return a.value == b.value; } . H .
bool mc(const NotExp& a, const NotExp& b, Assignments& ctx) { return match(a.e, b.e, ctx); } éjust to do thIS tlny Case analySIS
bool mc(const AndExp& a, const AndExp& b, Assignments& ctx) { return match(a.el, b.el, ctx) && match(a.e2,b.e2, ctx); }
bool mc(const OrExp& a, const OrExp& b, Assignments& ctx) { return match(a.el, b.el, ctx) && match(a.e2,b.e2, ctx); }

template <typename Exp>
struct MatchToVisitor : BoolExpVisitor

{ MatchToVisitor(const Exp* p, Assignments& ctx) : m_p(p), m_ctx(ctx), result(false) {} o Th iS does n’t inC| Ude VD P

bool result;

const Exp* m_p; deC|aratiOnS

Assignments& m_ctx;

void visitVarExp(const VarExp& x) { result = mc(*m_p,x,m_ctx);
void visitValExp(const ValExp& x) { result = mc(*m_p,x,m_ctx);
void visitNotExp(const NotExp& x) { result = mc(*m_p,x,m_ctx);
void visitAndExp(const AndExp& x) { result = mc(*m_p,x,m_ctx);

* Specific to both:
. void visitOrExp (const OrExp & x) { result = mc(*m_p,x,m_ctx); ° CIaSS hiera rChy

bool match(const BoolExp* p, const BoolExp* x, Assignments& ctx)

{ * method

struct MatchVisitor : BoolExpVisitor

{

B e

MatchVisitor(const BoolExp* x, Assignments& ctx) : x(x), ctx(ctx), result(false) {}

bool result;

e Attempts for any reuse will
g o e further complicate the code

void visitVarExp(const VarExp& p) { MatchToVisitor<VarExp> v(&p,ctx); x->accept(v); result = v.result; }
void visitValExp(const ValExp& p) { MatchToVisitor<ValExp> v(&p,ctx); x->accept(v); result = v.result; } PY k H I
void visitNotExp(const NotExp& p) { MatchToVisitor<NotExp> v(&p,ctx); x->accept(v); result = v.result; } I I Ia e It S Ower
void visitAndExp(const AndExp& p) { MatchToVisitor<AndExp> v(&p,ctx); x->accept(v); result = v.result; }
void visitOrExp (const OrExp & p) { MatchToVisitor<OrExp> v(&p,ctx); x->accept(v); result = v.result; }
} matcher(x,ctx);
p->accept(matcher); Yuriy Solodkyy - Accept No Visitors - CppCon 2014 18

return matcher.result;

Visitor Design Pattern: Summary

Pros Cons
* Extensibility of functions * Hard to teach
e Speed (open world) * Intrusive
* Library solution * Specific to hierarchy

* Lots of boilerplate code
e Control inversion
* Hinders extensibility of classes

e Erich Gamma, Richard Helm, Ralph E. Johnson, and John M. Vlissides. 1993. Design Patterns: Abstraction and Reuse of Object-
Oriented Design. In Proceedings of the 7th European Conference on Object-Oriented Programming (ECOOP '93), Oscar
Nierstrasz (Ed.). Springer-Verlag, London, UK, UK, 406-431.

* Daniel H. H. Ingalls. “A simple technique for handling multiple polymorphism”

OOPLSA ’86, pages 347-349, New York, NY, USA, 1986. ACM.

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 19

Alternative 1: Pattern Matching

* What is a pattern?
* aterm representing an immediate predicate on an implicit argument

* What is pattern matching?

* alanguage feature that provides intuitive laconic syntax and an efficient decision procedure for checking
the structure of data and decomposing it into subcomponents

* Examples of patterns
* Wildcards, Variables, Values, Regular Expressions, Terms of the above, grammars etc.

* Why should | care?

e Pattern matching has been known in other languages to drastically simplify code, making it more readable,
easier to teach and understand, more maintainable and efficient

* When is it useful?
 Whenever you need to perform an analysis of the structure of data

 We demonstrate it with a syntax of an experimental library
* So please ignore the quirks of the syntax

* The actual language feature would have a better one
Yuriy Solodkyy - Accept No Visitors - CppCon 2014 20

Mach?7: https://github.com/solodon4/Mach7

* Alibrary solution to pattern matching in C++
* Implemented in standard C++ (mostly 03, but benefits from 11)

¢ Open to new patterns
 All patterns are user-definable

* First-class patterns
e Patterns can be saved in variables and passed to functions

* Type safe
* Incorrect application is manifested at compile time

* Non-intrusive

* Can be applied retroactively
* Works with the existing C++ object model, including multiple inheritance

e Efficient

* Works on top of an efficient type switch construct
* Faster than existing alternatives to open pattern matching in C++

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 21

Working with Mach?7

struct
struct
struct
struct
struct
struct

BoolEXxp

Varkxp :

ValExp :
NotExp :
AndExp :

OrExp

namespace mch {
template
template
template
template
template

}

<>
<>
<>
<>
<>

* Declare your variants

BoolExp {
BoolExp {
BoolExp A
BoolExp
: BoolExp {

{ virtual ~BoolExp() {}
std::string name; };
bool value; };
BoolExp* e; };

BoolExp* el; BoolExp*
BoolExp* el; BoolExp*

s

e2; };
e2; };

///< Mach?7 library namespace

struct
struct
struct
struct
struct

bindings<VarExp> {
bindings<ValExp> {
bindings<NotExp> {
bindings<AndExp> {
bindings<OrExp> {

Members (VarExp:
Members (ValExp:
Members (NotExp:
Members (AndExp:
Members(OrExp:

* Pick the patterns you'd like to use

using mch::C; using mch::var; using mch:: ;

Yuriy Solodkyy - Accept No Visitors - CppCon 2014

Note to

myself:

= Non-intrusive!
" Respects member access

:name); };
:value); };
e); };
:el, AndExp
:el,

OrExp

* Define bindings (mapping of members to pattern-matching positions)

11e2); };
r:e2); };

22

Example: eval

bool eval(Context& ctx, const BoolExp* exp)

{
var<std::string> name; var<bool> value; var<const BoolExp*> el, e2;
Match(exp)
{
Case C<VarExp>(name)
Case C<ValExp>(value)
Case C<NotExp>(el)
Case C<AndExp>(el,e2)
Case C<OrExp >(el,e2)
}
EndMatch
} Note to self:

= Patterns in the LHS, values in the RHS

= No control inversion!
= Direct access to arguments
® Direct return from the function

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 23

Example: replace

BoolExp* replace(BoolExp* where, const char* what, const BoolExp* with)

{
var<std: :string> name; var<bool> value; var<BoolExp*> el, e2;
Match(where)

Case C<VarExp>(name) return name == what ? copy(with) : &matcho;

Case C<ValExp>(value) return &matcho;

Case C<NotExp>(el) match@.e = replace(el, what, with); return &matcho;

Case C<AndExp>(el,e2)
match@.el = replace(el, what, with);
match@.e2 = replace(e2, what, with); Note to self:
return &matcho;

Case C<OrExp >(el,e2) " Mutability of matchO is
match@.el = replace(el, what, with); ‘I .
match@.e2 = replace(e2, what, with); mUtabIIIty of the SUbJeCt!
return &matcho; * Forget the fall-through!

EndMatch
}

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 24

Example: match

bool match(const BoolExp* p, const BoolExp* x, Assignments& ctx)

{

var<std::string> name; var<bool> value; var<const BoolExp*> pl, p2, el, e2;

Match(p , X)

Case(C<VarExp>(name) , _) if (ctx[name] == nullptr) {

ctx[name] = copy(x);

return true;

} else

return equal(ctx[name],x);
Case(C<ValExp>(value), C<ValExp>(+value)) return true;
Case(C<NotExp>(pl) , C<NotExp>(el)) return match(pl, el, ctx);
Case(C<AndExp>(pl,p2), C<AndExp>(el,e2)) return match(pl, el, ctx) && match(p2, e2, ctx);
Case(C< OrExp>(pl,p2), C< OrExp>(el,e2)) return match(pl, el, ctx) && match(p2, e2, ctx);
Otherwise() return false;

EndMatch
} i Note to self:

= Relational matching!
= Pattern combinators!

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 25

Example: Nested Matching

BoolExp* dnf(BoolExp* exp)
{

var<BoolExp*> e, el, e2;

Match(exp)
Case C<NotExp>(C<NotExp>(e)) return e;
Case C<AndExp>(e, C<OrExp>(el,e2)) return new OrExp(new AndExp(e,el), new AndExp(e,e2));
Case C<AndExp>(C<OrExp>(el,e2), e) return new OrExp(new AndExp(el,e), new AndExp(e2,e));
Otherwise() return exp;

EndMatch

}

Note to self:
= Visitors are not directly suitable for nested matching!

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 26

What about boost::Variant?

void foo(const variant<double,float,int,complex<double>,unsigned int*>& v)

{

var<double> a, b;

Match(v)

{
Case C<double>() cout << "double " << match@; break;
Case C<float> () cout << "float " << match@; break;
Case C<int> () cout << "int " << match@; break;
Case C<complex<double>>(a,b) cout << a << "+' << b << 'i';break;
Otherwise() break;

}

EndMatch

Note to self:
= Almost done, check on github soon
= Required generalization of some parts

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 27

Pattern Matching: Summary

Pros Cons
* Intuitive, easy to teach and understand * Not available as a language feature yet
e Direct show of intent e Can be abused for writing ad-hoc code,
« Relational matching where hierarchies and virtual functions

should have been normally used

Nested matching
No control inversion
Local reasoning

https://github.com/solodon4/Mach7

* Y.Solodkyy, G.Dos Reis, B.Stroustrup. "Open Pattern Matching for C++" In Proceedings of the 12th international conference on
Generative programming: concepts & experiences (GPCE '13). ACM, New York, NY, USA, pp. 33-42.

* Y.Solodkyy, G.Dos Reis, B.Stroustrup. "Open and Efficient Type Switch for C++" In Proceedings of the ACM international
conference on Object Oriented Programming Systems Languages and Applications (OOPSLA '12). ACM, New York, NY, USA, pp.
963-982

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 28

http://dx.doi.org/10.1145/2517208.2517222
http://doi.acm.org/10.1145/2384616.2384686
https://github.com/solodon4/Mach7

Alternative 2: Open Multi-Methods

* Multi-Methods + Open Class Extensions

* Multiple Dispatch
* The selection of a function to be invoked based on the dynamic type of two or more arguments

* Open Class Extensions
 Ability to introduce polymorphic functions outside of their class

* Examples of Open Multi-Methods uses
* equality, shape intersection, object interactions in games.

 Why should | care?

* They help retroactively introduce a virtual function into a class without changes to the interface
* They help implement dynamic dispatch on 2 or more polymorphic arguments: e.g. equal

* When is it useful?
* Whenever you need to perform an analysis of interaction between 2 or more given objects

* We demonstrate it with the syntax of an experimental implementation

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 29

Example: Open Class Extension

bool
bool
bool
bool
bool
bool

eval (Context&
eval (Context&
eval (Context&
eval (Context&
eval (Context&
eval (Context&

ctx,
ctx,
ctx,
ctx,
ctx,
ctx,

virtual
virtual
virtual
virtual
virtual
virtual

const
const
const
const
const
const

BoolExp* x) { return false; }

VarExp* x) { return ctx[x->name]; }
ValExp* x) { return x->value; }
NotExp* x) { returnl!eval(ctx, x->e); }

AndExp* x) { return eval(ctx, x->el)&&eval(ctx, x->e2);
OrExp * x) { return eval(ctx, x->el)||eval(ctx, x->e2);

Note to myself:

" No need to foresee all the virtual functions!
" Mix of virtual and non-virtual arguments

=" Hard to reason locally about

= Semi-inverted control

Yuriy Solodkyy - Accept No Visitors - CppCon 2014

30

wJd \w.J

Example: Open Multi-Method

bool
bool
bool
bool
bool

bool

equal(virtual
equal(virtual
equal(virtual
equal(virtual
equal(virtual

equal(virtual

const
const
const
const
const

const

BoolExp&
VarkExp&
ValExp&
NotExp&
AndExp&

OrExpé&

virtual
virtual
virtual
virtual
virtual

virtual

const
const
const
const
const

const

Note to myself:

BoolExp&) {
VarkExp& b) {
ValExp& b) {
NotExp& b) {
AndExp& b) {

OrExp& b) {

return
return
return
return
return

&&
return

&&

false; }

a.name == b.

a.value ==

equal(*a.
equal(*a.
equal(*a.
equal(*a.
equal(*a.

= Subject to ambiguities
= Requires changes to linker and loader
= Works with current C++ object model

Yuriy Solodkyy - Accept No Visitors - CppCon 2014

el,
e2,
el,
ez,

name; }

*b

.value; }
.e); }
*b.
*b.
*b.
*b.

el)

e2); }
el)

e2); }

31

Open Multi-Methods

Pros Cons
Extensibility of functions
Extensibility of classes
Speed

Easy to teach
Non-intrusive

General

Breve

Relational

Subject to ambiguities

Requires changes to linker and loader
Semi-inverted control

No local reasoning

https://parasol.tamu.edu/groups/pttlgroup/omm/

e P.Pirkelbauer, Y.Solodkyy, B.Stroustrup."Design and evaluation of C++ open multi-methods", Science of Computer
Programming, 2009.

* P.Pirkelbauer, Y.Solodkyy, B.Stroustrup."Open multi-methods for C++", In Proceedings of the 6th international conference on
Generative Programming and Component Engineering, October 01-03, 2007, Salzburg, Austria

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 32

http://www.sciencedirect.com/science/article/pii/S016764230900094X
http://dl.acm.org/citation.cfm?doid=1289971.1289993
https://parasol.tamu.edu/groups/pttlgroup/omm/

Performance Comparison

nis the number of
subobjects in a class
Memory: nV+n¥"1+..+n?2+n Q@N+3NV+N+7 n¥ + Nn+ N hierarchy of arguments

300 I I I

B N-Dispatch B Open Type Switch B Open Multi-methods

250

200

150

Cycles per Iteration

100

50

1 2 3 4
Number of Arguments N

43597
B L R At
[SICRGING NS
00055
2 .2
> >

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 33

Comparison of Possibilities

SUDI3Y)D
ssaudla|dwo)
sUDI3Y)
Aduepunpay
UOISIDAU|
|]oJjuo) oN

Suluoseay |e207

9Al}Je04)9Yy

Jeuone|ay

ERIVETIED
a|diyInAl

9jes adAL

ejeq
jo AMjiqisuaix3

suoiaung
o AMjiqisuaixy

Virtual Functions

+

Visitor Design Pattern

+ + + + + + + + +

+ + + + +

Open Pattern Matching

Open Multi

38

-methods

34

Yuriy Solodkyy - Accept No Visitors - CppCon 2014

Conclusions

Visitor Design Pattern

 Unnecessarily complicates things . Vergnm iy
. Executive Summary
* Extremely hard to teach to novices
. * Keep simple things simple
* EXpert frlendly * Don’t make complex things unnecessarily complex
. * Don’t make things impossible
Open Pattern Matching
. . . * Constraint: Don’t sacrifice performance

e Keeps simple things simple

o o * Citis EXpENL friendly Make Simple Tasks Simple!
* Does not sacrifice the performance - andbecomingmoreso e

. * C++ must not be just expert friendly

* Easy to teach novices s | I —
* Also available as a library solution " ' |

Open Multi-Methods
e Keeps simple things simple
e Ultimate performance
* Integrates with the rest of the language

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 35

Thank You!

Acknowledgements

Abe Skolnik
Bjarne Stroustrup
Gabriel Dos Reis
Jason Wilkins
Michael Lopez
Jasson Casey
Peter Pirkelbauer
Andrew Sutton
Karel Driesen
Emil 'Skeen' Madsen
Visual C++ Team

https://github.com/solodon4/Mach?7
http://parasol.tamu.edu/~yuriys/
http://parasol.tamu.edu/mach7/
https://parasol.tamu.edu/groups/pttlgroup/omm/

|
I
]

Yuriy Solodkyy - AcceptiNo Visitors - CppCon 2014 36

https://github.com/solodon4/Mach7
http://parasol.tamu.edu/~yuriys/
http://parasol.tamu.edu/mach7/
https://parasol.tamu.edu/groups/pttlgroup/omm/

Chicken or Egg: Double Dispatch or Visitor Design Pattern?

bool VarExp::equal(const BoolExp* x)
bool ValExp::equal(const BoolExp* x)
bool NotExp::equal(const BoolExp* x)
bool AndExp::equal(const BoolExp* x)
bool OrExp ::equal(const BoolExp* x)

struct BoolExp

{ ..
virtual bool
virtual bool
virtual bool
virtual bool
virtual bool
¥

bool VarExp::
bool ValExp::
bool NotExp::
bool AndExp::
bool OrExp :

equal(const
equal(const
equal(const
equal(const

:equal(const

const
const
const
const
const

e e

auto
auto
auto
auto
auto

p=dynamic_cast<const VarExp*>(x); return
p=dynamic_cast<const ValExp*>(x); return
p=dynamic
p=dynamic_cast<const AndExp*>(x); return
p=dynamic_cast<const OrExp *>(x); return

BoolExp* x)
BoolExp* x)
BoolExp* x)
BoolExp* x)
BoolExp* x)

equal_to VarExp(const VarExp*)
equal_to ValExp(const ValExp*)
equal to NotExp(const NotExp*)
equal to AndExp(const AndExp*)
equal to OreExp (const OrExp *)

const {
const {
const {
const {
const {

return
return
return
return
return

const
const
const
const
const

&& name == p->name; }
&& value == p->value; }

p
p
cast<const NotExp*>(x); return p && e->equal(p->e); }
p
p

return false;
return false;
return false;
return false;
return false;

el e N N e N
i s et e o

equal_to VarExp(this);
equal_to ValExp(this);
equal_to NotExp(this);
equal_to AndExp(this);
equal_to OrExp (this);

Yuriy Solodkyy - Accept No Visitors - CppCon 2014

&& el->equal(p->el)&&e2->equal(p->e2);
&& el->equal(p->el)&&e2->equal(p->e2);

(S G S S

Chicken or Egg: Double Dispatch or Visitor Design Pattern?

struct BoolExp

{ .

}s

bool
bool
bool
bool
bool

bool
bool
bool
bool
bool

virtual
virtual
virtual
virtual
virtual

Varkxp:
ValExp:
NotExp:
AndExp:
OrExp :

Varkxp:
ValExp:
NotExp:
AndExp:
OrExp :

bool
bool
bool
bool
bool

:equal(const
requal(const
requal(const
requal(const
requal(const

BoolExp*
BoolExp*
BoolExp*
BoolExp*
BoolExp*

const
const
const
const
const

:equal_to VarExp(const VarExp*
:equal_to ValExp(const ValExp*
:equal to NotExp(const NotExp*
:equal_to AndExp(const AndExp*
:equal_to OrExp (const OrExp *

equal to VarExp(const VarExp*)
equal to ValExp(const ValExp*)
equal to NotExp(const NotExp*)
equal to AndExp(const AndExp*)
equal to OrExp (const OrExp *)

const
const
const
const
const

return
return
return
return
return

const
const
const
const
const

e N e

e e

return
return value
return
return
return

return
return
return
return
return

name

false;
false;
false;
false;
false;

equal to VarExp(this);
equal to ValExp(this);
equal to NotExp(this);
equal to_ AndExp(this);
equal to OrExp

Yuriy Solodkyy - Accept No Visitors - CppCon 2014

e N

S

(this); }

== p->name; }
== p->value; }
e->equal(p->e); }
el->equal(p->el) && e2->equal(p->e2); }
el->equal(p->el) && e2->equal(p->e2); }

38

Double Dispatch

* Doesn’t have to be symmetric
* One type presents its cases to another

* Allows us to uncover dynamic types of 2 arguments
* Well, not necessarily the actual dynamic type

e Only 2 virtual function calls
* Hence “double dispatch”

Daniel H. H. Ingalls. “A simple technique for handling multiple polymorphism”
OOPLSA ’86, pages 347-349, New York, NY, USA, 1986. ACM.

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 39

Example: print

void print(const BoolExp* exp)

{
struct PrintVisitor : BoolExpVisitor
{
void visitVarExp(const VarExp& x) { std::cout << x.name; }
void visitValExp(const ValExp& x) { std::cout << x.value; }
void visitNotExp(const NotExp& x) { std::cout << '!'; print(x.e); }
void visitAndExp(const AndExp& x) { std::cout << '('; print(x.el);
std::cout << '&'; print(x.e2);
std::cout << ")'; }
void visitOrExp (const OrExp & x) { std::cout << '('; print(x.el);
std::cout << '|'; print(x.e2);
std::cout << ")'; }
} printer; Note to self:
exp->accept(printer); = Return does not return from print
} = No access to function’s arguments

Yuriy Solodkyy - Accept No Visitors - CppCon 2014

40

Returning Result

BoolExp* copy(const BoolExp* exp)

{
struct CopyVisitor : BoolExpVisitor
{
BoolExp* result;
void visitVarExp(const VarExp& x) { result = new VarExp(x.name.c_str()); }
void visitValExp(const ValExp& x) { result = new ValExp(x.value); }
void visitNotExp(const NotExp& x) { result = new NotExp(copy(x.e)); }
void visitAndExp(const AndExp& x) { result = new AndExp(copy(x.el),copy(x.e2)); }
void visitOrExp (const OrExp & x) { result = new OrExp(copy(x.el),copy(x.e2)); }
} copier;

exp->accept(copier); Note to myself:
return copier.result; » Can’t accept/visit return BoolExp*?

} " Parameterized BoolExpVisitor<R>?
= Parameterized BoolExpVisitorimpl<R>

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 41

Example: replace

BoolExp* replace(const BoolExp* where, const char* what, const BoolExp* with)

{

struct ReplaceVisitor :

{

ReplaceVisitor(const char* n, const

BoolExp* result;
const char* name;
const BoolExp* with;

void
void
void

visitVarExp(const VarExp&
visitValExp(const ValExp&
visitNotExp(const NotExp&
void visitAndExp(const AndExp&
void visitOrExp (const OrExp &
} replacer(what, with);

where->accept(replacer);
return replacer.result;

BoolExpVisitor

BoolExp*

result =
result =
result =
result =
result =

Yuriy Solodkyy - Accept No Visitors - CppCon 2014

w) : name(n), with(w), result(nullptr) {}

X.name == name ? copy(with) : copy(&x); }
copy(&x); }

new NotExp(replace(x.e, name,
new AndExp(replace(x.el, name,

new OrExp(replace(x.el, name,

with)); }
with), replace(x.e2, name, with)); }
with), replace(x.e2, name, with)); }

Note to myself:
" Bad name: creates a copy of the
entire tree with applied replacements

42

Example: print

void print(const BoolExp* exp)

{
var<std::string> name; var<bool> value; var<const BoolExp*> el, e2;
Match(exp)
{
Case(C<VarExp>(name))
Case(C<«ValExp>(value))
Case(C<NotExp>(el))
Case(C<AndExp>(el,e2))
Case(C<OrExp >(el,e2))
} :
 dMatch Note to myself:
} = Patterns in the LHS

= Values in the RHS

Yuriy Solodkyy - Accept No Visitors - CppCon 2014 43

